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ABSTRACT

We explore a hybrid approach to designing a biomanufacturing system with low-volume, high variability,
and individualized products. Simulating a large number of possible configurations to determine those that
meet target production goals is computationally impractical. We create an explainable surrogate model,
specifically a queueing network model, that is calibrated to the output of a few computationally expensive
simulations. The queueing network model enables a quick exploration of large numbers of mixed integer-
continuous configurations, which would be challenging for traditional surrogate-based approaches. The
queueing network model is used to quickly identify promising regions where a few configurations can then
be evaluated with the simulation. The difference in evaluations at these configurations is used to decide
whether the queueing model requires partitioning and/or re-calibration. The use of this hybrid approach
with an explainable surrogate enables analysis, such as identifying bottle-necks, and gives insight into
robust designs of the biomanufacturing system.

1 INTRODUCTION

Biomanufacturing provides unique challenges for simulation and optimization. These applications tend to
have low-volume production of highly variable personalized products. Production often requires timely
coordination between operators and machines across multiple production phases. Additionally, the resulting
yield is variable, which can cause the need for rework.

In addition to these structural challenges, these biomanufacturing applications can be difficult to model
due to a lack of data. Simulation, built from subject matter expert knowledge, can be a powerful tool. These
simulations, often discrete event simulations, are equipped to handle the many intricacies and randomness
of the true system. Their complexity, however, makes them computationally expensive. In some cases,
this can even lead to numeric issues, especially near edge of feasibility where the system may not perform
as expected.

A common approach to address the issues that come with complicated simulations is to generate a
surrogate model of the simulation. In fact, surrogate models represent a way to generate hybrid simulations,
where high fidelity simulators are associated to specific input locations, while predictions produced by
lower fidelity, computationally more efficient models are associated to a complementary set of inputs. One
such common surrogate is the Gaussian process model (Valentine and Sambridge 2020; Schulz et al. 2018;
Santner et al. 2003; Rasmussen and Williams 2006; Shen et al. 2005; Cressie 2015). Gaussian process
models are quite generalizable and, as such, are effective at modeling a wide range of functions. With
the advancement of machine learning, neural networks have also become a popular choice for surrogate
modeling (Cen and Haas 2023; Li et al. 2022; Tripathy and Bilionis 2018; Tsay 2021; Zhang et al. 2022).

Both of these surrogate modeling methods, however, lack explainability. If we have some understanding
of the structure of the system, we can utilize an explainable model to more effectively gain insight into
designs with good performance. The modeling method developed in this research utilizes a Jackson network
queueing model to represent the complex system while exploiting the properties of queueing systems. A
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similar methodology has been used to analyze and predict behavior of a semiconductor wafer fabrication
facility (Rose 2007).

An important component of surrogate modeling is calibration. The process of calibration is the estimation
of model parameter values to fit a model to data. There are many methods of calibration spanning many
different applications (Lee et al. 2019; Lee et al. 2023; Osborne 1991; Pernot and Cailliez 2017; Speich
et al. 2021). The calibration problem seeks to identify a set of model parameters that most closely match
model outputs to data. Several calibration methods seek to minimize a loss function, for example, minimize
mean squared error, while other methods accept calibration parameters with associated outputs within
targeted confidence intervals of output metrics.

In this research, we calibrate a sequential queueing model to the outputs of a discrete event simulation.
We demonstrate the benefits of this hybrid approach of utilizing an explainable surrogate model in exploring
the decision space and gaining insights into the most promising solutions. Namely, we explore the trade-off
between the number of servers (i.e., operators and machines) and the expected wait time of the system.
The Pareto optimal solution set was identified based on the results of the explainable surrogate model. This
solution set was then validated by comparing a selection of the queueing model results to the simulation
results and observing consistent trends.

The rest of this paper is organized as follows. Section 2 discusses a discrete event simulation of a
biomanufacturing application. Section 3 then introduces a queueing model representation of the same
system. Section 4 discusses the calibration of the queueing model outputs to the simulation outputs.
Section 5 utilizes the calibrated queueing model to explore the most promising designs. The selected
designs are then evaluated in the simulation to confirm their performance. Finally, Section 6 provides a
summary and conclusions.

2 DISCRETE EVENT SIMULATION

The biomanufacturing application that is the topic of this paper is an individualized cancer treatment
manufacturing system. This system first involves the harvesting of T-cells from patients. In parallel, virus
is harvested via outside processes. In the event that the cells must be transported to another facility,
additional steps are required for preservation. Then, viral transduction and cell expansion occurs before
the cells induction back to the patient. The viral transduction and cell expansion portions are referred to
in this paper as “processing” for brevity. This process results in a variable yield of usable cells, which is
tracked by the simulation. In the event that the yield becomes too low, new T-cells must be harvested.
This process is depicted in Figure 1. A discrete event simulation has been developed to represent the
biomanufacturing system with tune-able input parameters (Liu 2023a; Liu 2023b; Sharma 2020). In this
paper, the simulation is executed with all jobs being processed in the same facility and with sufficient
required resources, including virus and reagents.

This biomanufacturing system generates a personalized product and, as such, is highly dependent on
the patient for which the product is being made. As such, patient variability is a key source of uncertainty
in the system. More specifically, some patients’ cells will have high responsiveness to the processing and
result in higher yields, while others will have low responsiveness and result in especially low yield.

3 QUEUEING MODEL

The procedural nature of the biomanufacturing systems lends itself quite naturally to a Jackson network
queueing model representation, which is depicted in Figure 2. The stages of the simulation are consolidated
into sequential M/M/s queueing systems, as indicated by the dashed red boxes in Figure 1 and the
corresponding boxes in Figure 2. More specifically, the process steps relating to T-cell harvesting in the
simulation are grouped into two sequential queues in the queueing model. The first of the queues is labeled
as “Setup” and consists of the components requiring a human operator. The second queue is labeled
“Work” and consists of the components only requiring machinery. Similarly, the viral transduction and
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Figure 1: Flow chart of a biomanufacturing application.

cell expansion steps in the simulation, or processing, are consolidated and then split into a “Setup” and
“Work” portion in the queueing model. In a sequential nature, the transition probability of going from one
queue to the next in the queueing model, as indicated by the blue arrows in Figure 2, is 1 except in the case
of the “Processing Work queue”. In this stage, there is a non-zero probability that rework will be required
due to low yield. To reflect this, there is a probability of P(rework) to transition from “Processing Work”
to “Harvesting Setup” and a resulting probability of 1−P(rework) to transition out of the system. Under
the additional simplifying assumptions of exponentially distributed inter-arrival times and service rates,
this Jackson network model has explainable parameters with real-world significance and can be solved
analytically.

Some queueing model parameters were directly found from the simulation inputs while others require
calibration. The simulation is set so that a new job enters the system with a randomly drawn inter-arrival time
of either 1 or 2 days, or 1.5 days on average. In order to comply with the Jackson network queueing model
assumptions, the inter-arrival time must be exponentially distributed. To match this in the queueing model,
the mean arrival rate is set to a1 = 0.66 arrivals per day, which results in the same average inter-arrival time
of 1.5 days. Similarly, service times in the queueing model are assumed to be exponentially distributed. The
simulation defines a range of potential service times for harvesting setup, harvesting work, and processing
setup, and then draws one at random. The expected service time for each process in the simulation was
then used as the expected service time for the exponential distribution in the queueing model, resulting in
t1 = 2 days, t2 = 7 days, and t3 = 1 day.
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Figure 2: A Jackson network queueing model interpretation of the biomanufacturing system.

Some of the queueing model parameters have no direct representation in the simulation and thus must be
calibrated. The processing work time, t4, is dependent on the attributes of the individual patient, including
age, sex, and blood volume, and thus varies. In the simulation, need for rework is determined by the yield,
which is itself a function of many attributes, including patient responsiveness and processing duration. In
the queueing network, rework is determined by a probability, P(rework), and thus that probability must be
calibrated to reflect the simulation. These parameters, whether directly determined from the simulation or
requiring calibration, are displayed in Figure 2.

Additional inputs to both the simulation and queueing model include the number of operators and
machines for each of the processes, s1, s2, s3, and s4, jointly referred to as “servers” for brevity. These
inputs are independent variables of both the simulation and the queueing model and are decided by the
user.

Table 1: Parameter sets run by the discrete event simulation.

Parameter Levels
s1 {4,5}
s2 {8,10}
s3 {4,5}
s4 {14,19}

Patient Mix {Low Response, High Response}

4 MODEL CALIBRATION

Five parameters of the simulation were varied for analysis. Four of those are the independent variables of
the number of servers, s1, s2, s3, and s4. The remaining parameter, called patient mix, is a representation of
the uncertainty in how each individual patient’s cells will respond to the process. Some patient’s cells are
quite responsive to the process, which results in higher yield, while other are less responsive, resulting in
lower yield. The patient mix called “Low Response” is the case in which a higher proportion of patients’
cells exhibit lower responsiveness, while the patient mix called “High Response” is the case in which a
higher proportion of patients’ cells exhibit higher responsiveness. This parameter is an unknown input of
the system and it is thus important to explore both levels. Two levels are selected for each of these five
parameters, as detailed in Table 1, resulting in 25 = 32 different parameter sets.

The simulation was run for each of the 32 parameters sets with 40 replications, and the average time
each job spent in the system was recorded. Figure 3 displays the average time in system across the 40
replications along with the 99% confidence interval.

The calibration parameters were determined by searching a Latin hypercube and down-selecting based
on the resulting queueing outputs. A Latin hypercube sampling scheme was utilized to generate 100,000
queueing calibration parameter combinations for t4 ∈ [1,100] and P(rework) ∈ [0,1]. For each of the 32
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Figure 3: Simulation results for average time in system for each parameter set with 99% confidence interval.

simulation parameter sets, all 100,000 queueing calibration parameter combinations were input into the
queueing model. Queueing calibration parameter combinations that resulted in an average time in system
within the 99% confidence interval identified by the simulation for all 32 simulation parameter sets were
accepted.

However, this initial calibration attempt was unsuccessful in the sense that there were no queueing
calibration parameter combinations that generated queueing network outputs within the tolerance for all
32 simulation parameter sets. This indicated that the model needed to be improved before an accurate
calibration could be found. By looking at Figure 3, it can be seen that cases in which s4 = 14 resulted in
approximately the same average time in the system. Cases in which s4 = 19, on the other hand, varied
based on the value of the other parameters. This suggested a natrual partition to the model on s4. The
model was thus improved by splitting the state space into two groups, such that one queueing model was be
calibrated for parameter sets with s4 <= 16 and a second queueing model for parameter sets with s4 > 16.
Using the same 100,000 Latin hypercube samples, one successful calibration was identified for parameter
sets with s4 = 14 and a different successful calibration was identified for parameter sets with s4 = 19. The
accepted values for the calibration parameters t4 and P(rework) are detailed in Table 2.

Table 2: Summary of calibration results.

s1 s2 s3 s4 Patient Mix t4 P(rework)
Calibration A {4,5} {8,10} {4,5} {14} {Low, Hi} 19.90066051 0.03617732
Calibration B {4,5} {8,10} {4,5} {19} {Low, Hi} 17.04246784 0.38201367

5 IDENTIFY DESIGNS WITH GOOD PERFORMANCE

We aim to reduce average time in system with the fewest servers possible. In other words, we need to
balance the number of servers with the average time in the system. This leads to a multi-objective black-box
optimization problem where one objective is to minimize the total number of servers and another objective
is to minimize the average time in the system. This problem, which requires many samples to identify
a Pareto optimal solution set, quickly becomes intractable with the discrete event simulation alone. The
calibrated queuing model can instead be leveraged to efficiently sample a large set of different server
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number combinations and report the average time in the system. The set of non-dominated solutions, which
is defined by the set of solutions where an improvement on one objective cannot be achieved without
worsening on another objective, can then be analyzed by the simulation for validity.

A Latin hypercube sampling scheme was utilized to generate 10,000 combinations of server sets for
s1 ∈ [1,30], s2 ∈ [2,50], s3 ∈ [1,30], and s4 ∈ [2,30]. Each server set was run for one of the two calibrated
queueing models based on its value of s4. More specifically, any server sets with s4 ≤ 16 used Calibration
A while any server sets with s4 > 16 used Calibration B, as given in Table 2. Any sets that result in queue
utilization of over 1, indicating a queue that fails to reach steady-state, were discarded. The resulting
queuing model outputs for average time in system are plotted in Figure 4 where the total number of servers,
s1 + s2 + s3 + s4, is plotted on the horizontal axis. Many of the server sets tested could achieve the same or
shorter average time in system for less total servers. The nondominated server sets, highlighted in green
in Figure 4, reside on the efficient frontier between average time in system and total servers.

Figure 5 shows the first 15 nondominated server sets, which can be considered some of the most
promising designs. These first few nondominated server sets can be considered the “knee” of the curve, as
adding additional servers elicits very little additional improvement in average time in system. The results
in Figure 5 indicate that 16 processing machines, s4, and 2 or 3 processing operators, s3, appear in most
promising designs. When deciding on the optimal number of harvesting operators, s1, and machines, s2, it
should be noted that there is a trade-off between the number of operators and machines and the resulting
average time in system. More specifically, increased harvesting servers and machines will decrease the
average time, but the marginal improvement decreases with each added server, as seen in Figure 5.

Figure 4: Queueing model results for average time in system across 10,000 combinations of servers with
nondominated points in green.

In order to validate the results elicited from the queueing model, four of the most promising server sets
were also run in the simulation. The simulation results for both the low response case and the high response
case, along with the queueing model results, are shown in Figure 6. While the simplifying assumptions in
the queueing model lead to some inaccuracies in the output average time in system, the trends between the
queueing model and the simulation remain consistent. This indicates that, while it is important to utilize
the simulation to ensure accuracy, the queueing model is successful in identifying the trends in the system
and can help to highlight promising designs for further analysis.
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Figure 5: Details of the Pareto optimal solution sets, including time in system and their respective number
of servers.

Figure 6: Comparison of simulation and queueing model results for 26-32 servers.

6 CONCLUSION

In this research, we used a hybrid approach consisting of calibrating a queueing model by utilizing the
outputs of a discrete event simulation, to represent a biomanufacturing system. The explainability of the
queueing model allowed for insights to be gained with regards to well-performing designs. This type
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of study utilizing an explainable analytic model in conjunction with a simulation can be used in other
applications besides biomanufacturing and with different explainable models other than a queueing model.

By analyzing the queueing model for a wide range of number of operators and machines we are able
to identify the Pareto optimal solution set that minimizes average time in system and number of total
operators and machines. The computationally cheap nature of the queuing model makes this analysis very
easy to perform and the explainability further enhances our ability to draw conclusions from the results.
Additionally, by performing this analysis on both the Low Response and High Response cases, we can
further ensure that the system performs well under the uncertainty in the true system.

In future research, we aim to investigate other sources of uncertainty in the system, such as unexpected
fluctuations in arrivals and fluctuations in manufacturing time, reflecting both stress and relaxed systems.
Additionally, we intend to further explore the interplay between the simulation and the queueing model.
This includes obtaining simulation results for more parameter sets and performing additional rounds of
calibration to more closely examine how which parameters can be represented via the queueing model and
which require separate calibrations.
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