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ABSTRACT

Drones are a promising choice to the last-mile delivery in place of conventional vehicles that contribute
to road congestion and air pollution. Despite the autonomy, flexibility, and agility of drones, their limited
battery capacity and payload compromise their flight range. In this paper, this challenge is faced through the
placement of charging stations where drone batteries are recharged to expand their flying span. This work
relies on a simulation-optimization solution approach to determine the optimal number of the drone hubs
to serve a given delivery order demand. The optimization aims at minimizing charging station installation
costs, drone energy consumption, and operational costs. The simulation model is run to simulate the parcel
delivery flights as well as the drone battery consumption and charging cycles. Moreover, allocating the
customer demands to stations and dimensioning the drones fleet to deliver packages efficiently pinpoint
the station locations and size.

1 INTRODUCTION

Technological advances have expanded the mobility capabilities of unmanned aerial vehicles (UAV),
attracting the interest of researchers around the world. Even if the last-mile delivery of goods by drones is
still considered to be at an experimental stage, drones represent one of the most promising technologies,
with successful trials by international companies such as Amazon, which announced that its latest Prime
Air drones will deliver to customers in three U.S. locations, as well as cities in Italy and the UK, by the
end of 2024 (Amazon 2023). As Zou et al. (2023) highlight in their research, compared to traditional
delivery vehicles, drone delivery offers higher delivery speeds by avoiding traffic congestion issues, flexible
throughput capacity by adjusting fleet size, and lower operating costs than courier delivery systems. However,
despite the positive benefits that drone delivery can bring to last-mile distribution, being one of them the
reduction of the pollutant emission (Figliozzi et al. 2020), its main limitation cannot be ignored: its
dependence on battery power for flight range. In addition, the payload is one of the key factors affecting
the flight duration and should, therefore, be considered in drone planning as it affects battery endurance.

Thus, the motivation of this research is to address the flight range constraint by using one of the
methods proposed in the literature, that is, by installing charging points for drones. With the aim of
designing the most cost-effective network for a given demand disposition, an optimization problem is posed
with the objective of minimizing all costs associated with the system: setup costs, flight or operational
energy costs, and the costs of ignoring customer orders. Therefore, given the previous considerations,
this work aims to design a model that finds the optimal number and size of drone hubs required to serve
the customer orders assigned to each hub. The problem considers the following aspects of the drone
delivery system: (i) limited battery and payload capacity of drones, (ii) limited flight range, and (iii)
volatile delivery order scenarios. In particular, this model includes the effect of delivery weight, and it
is used to account for the limitation of the maximum flight range of drones, constrained by the energy
consumption and battery capacity of UAVs to select the optimal locations of charging stations (CS). Given
the aforementioned ideas, the main contributions of this research are twofold: from the application side,
the consideration of drone characteristics in modeling and, on the methodological side, in exploring the
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potential of integrating optimization and simulation techniques to address the posed problem. This work
demonstrates the advantages of integrating Agent Based Modeling (ABM) and an Integer Programming
(IP) optimization model to address drone-assisted delivery. Applications of ABM to logistic operations
that consider electric vehicles, let alone those that include drones, are limited in the literature. Therefore,
the novelty of this research, that differs from the previous work, is that the model considers battery energy
consumption during UAV movement by incorporating System Dynamics Simulation into the ABS model.

2 LITERATURE REVIEW

The main challenge for UAVs is associated with battery limitations. There are at least three ways to mitigate
this limitation: first, drone-truck collaboration Gonzalez-R et al. (2024) and second, dynamic landing zones
that use public transport vehicles, such as the roofs of buses, for drone assistance (Moadab et al. 2022).
For example, Deng et al. (2023) propose a novel routing and scheduling algorithm for drone delivery that
takes into account the fixed schedules of public vehicles. The third one which is discussed in this paper is
the establishment of charging stations or service hubs where drone batteries can be recharged.

2.1 Drone Infrastructure and Fleet Dimensioning Optimization Problems

With a large number of customers to serve over a large area, there is likely a need for battery recharging.
Charging stations ensure longer flight times and are used as platforms where drones land and have their
batteries changed or recharged (Raivi et al. 2023). Therefore, the implementation of freight transport
by drones in urban and rural airspace will require an extensive infrastructure consisting of various types
of service, operation or supply facilities. The problem of locating drone facilities has been investigated
for numerous applications. That is the case of Ghelichi et al. (2022), who propose a novel stochastic
optimization model to address demand location uncertainty in Facility Location Problems (FLP) and
considers the critical aspects of a drone delivery system in humanitarian logistics. Furthermore, Chauhan
et al. (2019) present the Maximum Coverage Facility Location Problem with Drones (MCFLPD), an Integer
Linear Programming formalism with the objective of maximizing coverage while explicitly incorporating
the drone energy consumption and range constraints. A case study on a Portland metropolitan area is
presented to test the feasibility of using drones for deliveries. Likewise, Hadas and Figliozzi (2024) develop
a novel optimization approach for drone fleet sizing, extending the news vendor model with stochastic
demand in terms of two decision variables: firstly, the number of deliveries and, secondly, the deliveries
weight or payload. As they pinpoint in their research, payload is important because for drones, unlike
ground vehicles, payload is a major constraint that severely reduces drone range and impacts on its costs.
In that research, the objective function is profit maximization and the costs associated with the drone size
and unmet customer demands are considered, too.

2.2 Agent Based Modeling and Simulation in Drone Delivery Systems

As Balaban et al. (2016) highlight, simulation-based research is used to provide initial insights into
important factors that business stakeholders should consider. In the literature, a great range of works that
tackles the last-mile delivery problem with drones address Vehicle Routing Problems (VRP) and, more
specifically, focus on small fleet of drones assuming equal operating conditions (Benarbia and Kyamakya
2021). Nevertheless, in practice, delivery companies assemble fleets of drones considering heterogeneous
configurations and characteristics (speed, endurance and energy supply technique) to satisfy various customer
package demands (Wang et al. 2023). ABM has proven to be an alternative way to model complex problems.
Over the last two decades, extensive work has been produced using ABM for many complex problems.
As such, Wang, et al. (2022) utilize simulation to optimize the drone delivery system design in rural areas
and consider the limited flight range of drones. They proposed a novel simulation-heuristic framework that
considers three types of agents: customers, charging stations, and drone depots. Similarly, Chour et al.
(2023) model the multi-UAV rendezvous recharging problem for surveillance purposes, which consists of
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energy-limited aerial vehicles that rendezvous with a mobile or fixed charging station. They discuss how
the multi-UAV rendezvous recharging problem can be described as an agent-based model under a custom
framework.

Finally, with the expansion of renewable energy towards a low carbon profile, alternative sustainable
modes of transport have emerged as a potential solution to this environmental transition. The proliferation
of electric vehicles in all their modes (road or air) poses a challenge for charging infrastructures, which will
require an expansion to meet the future charging needs of these vehicles. The existing literature includes
studies on ABM simulating the logistic operations of electric vehicles. As stated by Utomo et al. (2020),
when such logistic systems are modeled, the use of a representative energy consumption model is also
important. Their study presents the preliminary result for an ABM that analyzes an electrification strategy
for the UK’s long haul logistics operations and includes an an alternative approach to model the vehicle
energy consumption. Likewise, Sing et al. (2022) present a hybrid model combining system dynamics and
discrete event simulation for an electric vehicle charging system.

3 METHODOLOGY

3.1 The Simulation-Optimization Framework

As a novelty to previous contributions, a system dynamics simulation model has been integrated in the
hybrid model to estimate battery energy consumption during UAV movement. Combining simulation and
optimization approaches implies that the optimization model provides the initial simulation data: once the
initial FLP is solved, the resulting station and demand assignment significantly influences the performance of
the delivery system. While ABM and System Dynamics (SD) are popular in urban logistics, hybrid models
combining these approaches, such as for electric vehicle charging systems, are novel in drone-assisted
delivery scenarios, where the focus is on optimizing facility locations to maximize user participation and
minimize setup costs. The estimation of energy consumption, total travelled distance, and delivery time
are all considered within the hybrid approach. The model was realized using the commercial software
AnyLogic, as it supports hybrid simulation by combining different simulation techniques, including system
dynamics and discrete event simulation, and the development of ABM frameworks.

3.2 The Agent-based Simulation Model

For the simulation model, four types of agents are considered: customers, orders, charging stations, and
drones. The locations of customers, charging stations, and drones are modeled on a Geographic Information
System (GIS) map according to their latitude and longitude. As Sing et al. (2022) depict, using ABM to
develop a model allows for different parameters to be set individually, enabling the exploration of different
system and usage scenarios.

Drone performance is modelled through a statechart together with a SD model for the drone battery
as depicted in Figure 1. Initially, drones stay in idle state, until an order arrives to the station where
the drone is parked. When a drone is assigned to an order, it will pass to the Go state and move from
the station to the assigned customer. In this state, the discharge variable is switched on activating the
discharge flow and making the electric charge (in Wh) stock run out in the SD model. When the order is
delivered, the drone will go back to its station to get recharged. At this moment, it will enter the charging
state, switching off the discharge and switching on the charge variable in the SD model of the battery.
Once the battery is fully charged, the drone will pass to the idle state, waiting for the next customer
order to be served and switching off both charge and discharge flows in the SD model. Each drone in
the system has its own attributes like speed, payload, and flight range. Drone speed is chosen from a
triangular distribution sgo = triangular(16,30,20), in m/s, when carrying a package and speeding up with a
sback = triangular(16,35,25) when coming back empty to the station to recharge. Note that these triangular
parameters are set according to the technical characteristics of the selected experimental drones.
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Figure 1: Drone agent statechart (left) and battery system dynamics model (right).

SD is combined with discrete event simulation, making the electric charge and discharge change
continuous with respect to time while the drones fly or stay charging. The battery consumption rate (BCR)
can be defined as the amount of charge consumption per minute. It is the rate at which battery charge
decreases during the flight, and is measured in Watts (W). Thus, SD is used to represent power flows. As
such, BCR is characterized for both package carrying and empty flying states in Equation 1 and Equation
2, where the relevant parameters are explained in Tables 2 and 3. The battery charging rate follows a
triangular(750,1500,1000) distribution in W to account for uncertainty.

d BCRgo

dt
=

(w j +mt) ·g
ld ·η

· sgo (1)

d BCRback

dt
=

mt ·g
ld ·η

· sback (2)

Customer behavior is also modelled through a statechart, where initially a customer is in an idle state
until an order is placed, following the order arrival schedule shown in Table 1. At that point, the customer
can go to an unattended state or stay waiting for the order to be delivered according to the optimization
problem solution. Once the order is delivered, the customer moves to a delivered state and its demand is
satisfied. Simultaneously, the station agent models the action of order arrivals and drone assignment to
those arrivals through a discrete event flowchart, where orders behave as entities and drones as resources.
Station, customer, and drone agents are all connected through messages that announce a given event such
as order arrival, concluded delivery, or a full charge taking place.

Table 1: Customer order arrival schedule.
Time Order %
8:00 - 9:00 0.00112
9:00 - 10:00 0.01849
10:00 - 11:00 0.10970
11:00 - 12:00 0.23006
12:00 - 13:00 0.28125
13:00 - 14:00 0.23006
14:00 - 15:00 0.10970
15:00 - 16:00 0.01849
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3.3 The Facility Location Model

This section presents the IP to determine the configuration of the drone hubs, determining their location
and the allocation of customer demand to stations. In this sense, the authors extend the classic Coverage
Facility Location Problem (CFLP) by optimally deploying the drone hubs in a parcel distribution system
with a fleet of drones operating with different payloads and maximum flight ranges.

Table 2: Model variables and model parameters.

Variable Description
yi Binary variable valued 1 if CS i ∈ I is open, 0 otherwise
xi j Binary variable valued 1 if customer j ∈ J is assigned and

served by CS i ∈ I , 0 otherwise
ui j Binary variable valued 1 if customer j ∈ J is unattended and

not assigned to CS i ∈ I , 0 otherwise
Parameter Description
sci Setup costs of a CS i ∈ I
M Penalty costs for unattended demand
pe Price of electricity in e per kwh
r j Flight range of drone for demand of customer j ∈ J
w j Weight of demand of customer j ∈ J measured in kg
e j Specific energy consumption per km traveled measured in Wh/km
di j Distance from customer j ∈ J to a CS i ∈ I in km
ci j 1 if distance di, j from customer node j ∈ J to a CS i ∈ I

is smaller than r j, and 0 otherwise
NCi Maximum number of customers that a CS node i ∈ I can host

This model is defined over the set of nodes i ∈ I and j ∈ J representing the potential locations
for drone CS infrastructures and the potential customer demand points. Additionally, each demand point
features a demand w j (measured in kg). The notation, variables, and parameters are described in Table 2
whereas the mathematical model is contained in the Equations (3) – (8).

Min ∑
i∈I

sci · yi + ∑
i∈I
j∈J

M ·ui j + ∑
i∈I
j∈J

pe · e j ·di j · xi j (3)

subject to

∑
i∈I

(ci j · xi j +ui j) = 1 ∀ j ∈ J (4)

ci j · xi j ≤ yi, ∀i ∈ I ,∀ j ∈ J (5)

∑
j∈J

ci j · xi j ≤ NCi · yi ∀i ∈ I (6)

∑
i∈I

w j · ci j · xi j ≤ p ∀ j ∈ J (7)

xi j,ui j,yi ∈ {0,1} ∀i ∈ I ,∀ j ∈ J (8)

The objective function (3) defines the minimization of installation and operational costs together
with minimizing unattended demand, i.e., maximizing demand coverage. Restrictions considered in the
optimization problem sum up to assignment constraints (4, 5), station capacity (6), and drone payload
capacity (7). Finally, Equations (8) define the decision variable ranges.

The power consumed by a drone in a delivery action from CS i ∈I to demand point j ∈J is estimated
with statistical methods as described in Equation (9), adapted from Figliozzi (2017), where the relevant
parameters are explained in the Tables 2 and 3. The specific energy consumed by a drone is computed as
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e j =
(w j +mt) ·g

2 · ld ·η
+

mt ·g
2 · ld ·η

(9)

The binary parameter ci, j is used to force the FLP to only assign potential station nodes to customers
nodes that are within the range of a drone rd , since this is the maximum distance the drone can travel
depending on the carried package load (w j) and the battery capacity (bc) such that

r j =
bc ·V

e j
(10)

In order to avoid unfeasibilities, a penalty function is added to the objective function consisting of a
penalty coefficient M with a sufficiently large number multiplied by an artificial variable ui, j, that stands
for the unattended deliveries. The travel distances of drones are considered Euclidean. This assumption
is employed to estimate the energy consumption of each round trip done by a drone, which is used to
calculate the last term of the objective function taking into account the electricity price pe. The price of
electricity is fixed to a value obtained March 17th 2024 of e0.1228 per kWh consumed in Spain. The
number of drones a station can host is limited to 75 for all the stations (NCi = 75).

4 COMPUTATIONAL EXPERIMENTS

In this section, instances are generated to simulate drone-assisted delivery scenarios under different conditions
of spatial demand distribution. The model is tested to create a framework that considers four potential
locations for setting up the charging facilities and three demand scenarios. For each case, there are 100,
200, or 300 payloads to be delivered, which are randomly generated from a truncated normal distribution
with mean 1 kg and standard deviation 0.4 kg (W ∼ N (µ = 1,σ = 0.4)) and restricted to positive values.
Similarly, the setup costs for each facility are also randomly generated, considering a uniform distribution
U [500,1000]. Computational experiments are run for multi-rotor-type drones, which are predominant for
delivery purposes. The parameters characterizing the drones are shown in the Table 3. Gravity is taken as
g = 9.81 m/s2.

Table 3: Drone parameters considered for experiments.

Parameter Description Value
ld Lift to drag ratio 3.5
η Power transfer efficency 0.67
mt Tare weight of a drone without load in kg 4 kg
bc Battery capacity from datasheet in mAh 10000 mAh
V Voltage of battery from datasheet in V 37 V
p Maximum payload of a drone in kg 2.3 kg

The distribution of orders arriving during an eight-hour workday is modeled through a schedule following
a discretized continuous beta distribution. Starting with the beta distribution parameters α and β , as well
as lower and upper limits l and u (Hadas and Figliozzi 2024), equidistant values are generated along the
cumulative distribution function of the beta distribution and obtain the discrete values representing the
number of orders arriving in each hour (Table 1). Before the simulation, all the agents are initialized with
their longitude and latitude, and the rest of their parameters.

5 RESULTS AND DISCUSSION

All experiments are conducted on a Windows 11 desktop with Intel Core i7-10750H CPU 2.60GHz, and
16 GB of RAM and are solved using IBM®ILOG CPLEX 12.6.2 API for the Java Environment solver in
the Anylogic simulation software. Results show the optimal configuration of drone charging stations and
the optimal assignment of customers to stations for a given demand of orders.
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5.1 Facility Location Problem Results

In all the scenarios of demand posed, four potential charging station locations are considered. While in
the case of 100 customers only three stations are opened, in the other two cases all stations are used. The
GIS map in Figure 2 shows the location of opened facilities and demand nodes (in red unattended and
blue attended). Demand coverage values lie around 96 % and 99 %, being the least populated scenario the
one with the highest coverage with a single customer unattended. The demand coverage corresponds to
the percentage of attended customers. Depending on the instance, the amount of customers to be attended
is different and can be either 100, 200, or 300. In most cases the reason to leave a client unattended has
to do with the payload limitation. When it comes to computed costs of the delivery system, it can be seen
that the higher the population and concentration of demand, the higher the cost. These results are in line
with the number of facilities selected after solving the FLP and collected in Table 4. The actual cost of
the framework are computed from subtracting the unattended penalty costs from the objective function.

Figure 2: Drone charging station configuration and demand nodes obtained from solving the FLP for a)
100 customers, b) 200 customers and c) 300 customers.

Table 4: Average values of results obtained from solving the FLP in each demand scenario.

Instance Total costs (e) Coverage (%) Avg. range (km) Avg. e j (Wh/km)
100 customers 4,910.16 99.00 18.94 19.54
200 customers 6,562.92 96.00 18.98 19.50
300 customers 10,251.65 96.33 19.00 19.48

5.2 Drone Performance in Simulation Results

This section gathers the results retrieved from the simulation model, which represent drone operation
performance. The key performance indicators are summariced in Figure 3 for the travel distance and in
Table 5 for coverages, average distances flown from stations to customers, and flight times. Simulated
values of drone flight time and distances can be compared with the results obtained from the optimization
problem. On the one hand, the average travel distance of drones flying from Station 0 in the 100-customer
instance (20.05 km) can be seen to be slightly longer than the calculated average range (18.94 km). The
same comparison can be done with all the stations in each scenario, and it can be seen that in some cases

1522



Izco, Serrano-Hernandez, and Faulin

the average travelled distance exceeds the calculated average flight range. This implies that the energy
consumption per km travelled lacks the effect that speed has in energy consumption, which is actually
included in the simulation model. Besides, if focusing on the travel distance for each scenario as displayed
in Figure 3, drones in the model are able to perform flights ranging from 5 km up to 30 km. Despite
the assumption that station assignment minimizes travel distance, some stations end up covering longer
distances to serve their customers.

Figure 3: Travelled distance per drone from its station to its assigned customer for cases a) 100 customers,
b) 200 customers, and c) 300 customers.

On the other hand, as presented in Table 5, flight time and delivery time also change depending on
the scenario and the analyzed station. The mean delivery time, which corresponds to the flight time from
the station to the customer (tc in the table), lies between 8.75 and 21.63 min considering all scenarios and
stations. Meanwhile, the total travel time average lies between 16.69 and 31.85 min. Thus, from running
the proposed experiments it is obtained that the average flight times are in line with the specifications
from commercial drone models such as AmazonAir MK27-2 (Amazon 2023) or Wing drones (Wing 2022),
claimed to be able to sustainably deliver a vast selection of items in under an hour, and possibly within 30
minutes. This results also coincide with those of Figliozzi (2018), reporting that most available commercial
UAVs flying times are in the range of 20 to 30 minutes. Note that these average values have been computed
with the times recorded during simulation from all the drone flights from departing to arrival at a given
station.

Table 5: Summary of stations results.

100 200 300
dt tc ts d tc ts d tc ts

(km) (min) (min) (km) (min) (min) (km) (min) (min)
Station 0 20.05 15.46 14.16 21.81 16.86 14.99 17.25 13.15 11.65
Station 1 - - - 11.58 8.75 7.94 15.05 11.28 10.35
Station 2 14.45 11.70 9.49 13.55 10.47 9.43 21.10 16.31 14.55
Station 3 20.50 15.40 13.99 17.26 13.51 11.75 16.73 12.32 11.69
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In Table 5, dt is defined as the average distance from a station to a customer travelled by a drone, which
is calculated for each station. The variable tc is the average flight time to a customer from a station, and
ts is the flight time back to this station from the customer node, calculated on average for a given station.

5.3 Battery System Dynamics Model Results

This section displays an example of the results obtained with the system dynamics simulation model of the
drone battery state of charge (SOC). One operative drone is selected for this aim from the instance where
100 customers are considered, in order to show the evolution of the battery state during operation. The
results of the electric energy are shown in Figure 4, accounting for a single delivery and an entire charging
cycle. As visible in the figure, the drone is assigned an order around 10:00 (120 minutes of simulation),
and begins its fly towards the customer to be served decreasing its battery with a given BCR. This implies
that the SD discharge flow will be switched on and the battery charge will be consumed. The order is
delivered in approximately 10 minutes, and afterwards the drone goes back to its station to get recharged
(depicted in green in Figure 4). It takes around seven minutes to get back to the station, with 45 % of
its battery consumed for delivery purposes. The BCR decreases in the return trip, as the mass decreases
significantly once the payload is put down. When arrived at the station, the SOC increases from 55 % to
fully charged in twelve minutes, on a constant battery charging rate, as depicted in yellow.

Figure 4: Drone battery evolution during delivery operation.

6 CONCLUSIONS

This study considers the optimization of parcel delivery by drones with the integration of charging stations.
By formulating an optimization problem aimed at minimizing costs associated with the system setup,
operational energy, and customer order fulfillment, a cost-effective network of drone hubs is obtained. This
model accounted for the limited battery and payload capacities of drones, flight range constraints, and
different delivery scenarios, incorporating the selection of optimal charging station locations and demand
allocation. Major players in the delivery sector, including Amazon, Google, UPS, and DHL, are heavily
investing in advancing their UAV technologies for everyday operations. This research aims to support these
efforts by providing insights into establishing operational frameworks conducive to widespread adoption of
drone-powered delivery solutions. Thus, the authors introduce an optimization model designed to support
decision-making processes in crafting distribution strategies leveraging existing drone technologies.
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Therefore, there are two major conclusions derived from this work. Concerning the results, it has
been demonstrated that considering the weight of parcels and the flight distance significantly impact the
performance of drone distribution to stations, as they have a direct effect on the battery consumption
dynamics and the flight range. These findings highlight the importance of adjusting operational parameters
based on drone payload and range to optimize the delivery system. Second, this research highlights the
convenience of hybrid methodologies for addressing real-world complex problems. The authors explored
the integration of optimization and simulation techniques and demonstrated the advantages of combining
Agent-Based Modeling and Integer Programming optimization to tackle drone-assisted delivery, a novel
approach in logistics literature. This hybrid approach provides greater flexibility and capacity to capture the
inherent complexity of modern distribution systems, making it a valuable tool for strategic decision-making
in the last-mile logistics domain. Additionally, by incorporating System Dynamics Simulation into the
ABM model, this study addressed the energy consumption dynamics during UAV movement, enhancing the
realism of the simulations. The advancements in Operations Research demonstrated in this work pave the
way for refining similar models applicable to autonomous vehicles, robotic-assisted deliveries, and other
innovative solutions for last-mile delivery.

While this hybrid model has proven effective in optimizing last-mile logistics, certain limitations must
be acknowledged. Data limitations, potential inaccuracies, and omitted factors like climate impact and
traffic circumstances may have affected the analysis. Future research should focus on overcoming these
limitations by acquiring primary data sources and conducting in-field surveys to enhance the accuracy and
reliability of models. Parameter values selected for the experiments could be easily adjusted according to
other scenarios that could be posed in future works. As highlighted by Dukkanci et al. (2023), substantial
uncertainties surround the costs associated with drone-assisted delivery operations, facility expenses, and
battery charging costs and times due to the relatively new and developing technology. This underscores
the need for ongoing research and adaptation as technology progresses. Future work should address these
uncertainties, considering the dynamic nature of demand and optimizing drone hub locations accordingly.
Moreover, alternative methods should be also considered in future contributions to analyze cost savings,
efficiency improvements, and other key metrics in the delivery system.
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