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ABSTRACT 

Digital models, digital shadows, and digital twins (DTs) are increasingly used in manufacturing/Industry 
4.0 to represent levels of integration between physical systems and their digital counterparts; data-flow 
mechanisms are the enablers of such integration. Healthcare operations management has also witnessed 
rising interest in hybrid models that use real-time data to increase situational awareness (SA) and enable 
short-term decision-making. In M&S literature, such models are referred to as Real-time Simulations (RtS) 
and DTs. Healthcare organizations can realize a heightened state of SA by transitioning from conventional 

modeling to RtS/DTs. The paper presents a Maturity Model for DTs to contextualize the increasing levels 
of healthcare Information Systems/Information Technology (IS/IT) integration with real-time models that 
such a shift will necessitate. The higher the Maturity Level of IS/IT integration, the greater the opportunity 
to develop modeling artifacts that realize the potential of real-time data and enable organizations to attain 
higher levels of SA. 

1 INTRODUCTION 

In IT management, maturity models enable the objective assessment of the IT capabilities of an organization 
against its goals, external requirements, and benchmarks, which help identify opportunities for new 
capabilities and solutions in a continual improvement cycle (Becker et al. 2009). The improvement cycle 
usually consists of a sequence of discrete maturity levels representing an evolutionary path from an existing 
state to a future anticipated state (ibid.). A five-point Likert scale is the most popular way of evaluating 
maturity, with ‘5’ representing the highest maturity level (De Bruin et al. 2005).  

 The Software Engineering Institute (SEI) at Carnegie Mellon University developed the first Capability 
Maturity Model (CMM) in the late 1980’s. The foundation of the SEI CMM was the concepts of effective 
processes developed by Philip Corsby, Edwards Deming, Joseph Juran and other pioneers of quality 
management (SEI 2010). Maturity models have since been developed for application areas such as business 
process improvement (Röglinger et al. 2012), project management (Fabbro and Tonchia 2021), and IS 
(Lasrado et al. 2015). Fraser et al. (2002) present examples of maturity models from a range of subject 

areas, identifying the discrete stages or maturity levels associated with the models (e.g., Level 1-5, Level 
A-F, Stage 0-3).   
 This paper focuses on maturity models for digital twins (DTs) in healthcare. DTs represent the highest 
level of maturity as, arguably, they represent the current state-of-the-art in real-time Modeling & Simulation 
(M&S). However, several evolutionary paths exist in progressing from minimal modeling capability to total 
maturity. In previous work, we presented the distinction between Real-time Simulation (RtS) and DTs that 

are developed from an Operations Research/Management Science (OR/MS) perspective (Mustafee, Harper, 
and Viana 2023a; Mustafee, Harper, and Viana 2023b). We argued that the two core requirements for an 
OR/MS RtS/DT are real-time data availability and a computational model for experimentation. We 
identified that the transition from a conventional OR/MS simulation, e.g., a discrete-event or agent-based 
simulation reliant on historical data, to a fully-fledged DTs (this requires high levels of integration with 
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sources of real-time data) includes an intermediate stage, which we define as RtS. The RtS computational 
models complement (predominantly) historical data with limited real-time feeds (ibid.). This paper 
advances the discourse on conventional modeling, RtS and DTs by investigating maturity models through 

the lens of IS and IT. The IS/IT perspective is important since it is core to data acquisition. As healthcare 
organizations evolve from a basic level of IS/IT capability to full maturity, the IS/IT systems support the 
development of increasingly complex models and act as enablers for real-time RtS/DT experimentation, 
enhancing organizational situational awareness, a knowledge state that is considered to be essential for 
decision-making and performance in dynamic environments (Harper, Mustafee, and Pitt 2023). 
 The remainder of the paper is organized as follows. Section 2 presents our contribution to the literature 

on hybrid modeling and discusses Kritzinger et al. (2018) classification of digital models in relation to RtS 
and OR/MS DTs. Section 3 reviews the literature on maturity models for DTs. Section 4 is on the case 
study motivating the development of the IS/IT maturity model. Section 5 uses Unified Modeling Language 
(UML) notation, which is a visual modeling language frequently employed in IS/IT for the design of 
software artifacts, to discuss the increasing levels of system integration, which serve as the building blocks 
for the maturity model of IS/IT system integration for DTs in healthcare (Section 6). Section 7 discusses 

the generalisability of the maturity model and concludes the paper. 

2 HYBRID MODELS USING REAL-TIME DATA 

In M&S literature, the term hybrid modeling refers to studies combining M&S techniques with a wider 
array of approaches from disciplines such as applied computing, engineering, data science and operations 
research (Mustafee and Powell 2018; Tolk et al. 2021). For example, studies that combine methods in the 
implementation stage of a simulation study may consist of hybrid models using both simulation and 

analytical/mathematical techniques (Byrne and Bakir 1999), or those using simulation with machine 
learning (von Rueden et al. 2020). However, the lifecycle of a simulation study also includes several other 
stages, and there are opportunities for deploying cross-disciplinary methods that extend beyond 
implementation. For example, Soft OR approaches such as Soft Systems Methodology (SSM) have been 
widely used in the conceptual modeling phase of a simulation study (Pereira et al. 2015); Parallel and 
Distributed Simulation (PADS) techniques developed in computer science are routinely used for faster 

execution of large and complex models and for model interoperability (D’Angelo and Marzolla 2014; 
Taylor 2019). Similarly, IS/IT systems/artifacts such as data acquisition software (DAS), databases and 
real-time APIs owe their origin to applied computing and related fields (Figure 1). Such systems/artifacts 
developed outside our discipline enable the development of hybrid models using real-time data streams to 
drive RtS/DTs and represent a step-change from conventional modeling using historical data.  

 

Figure 1: Real-time Simulation (RtS) and Digital Twins (DTs) use a mix of discipline-specific approaches 
to drive computational models with real-time data (adapted from Mustafee, Harper, and Viana (2023b)). 

 A critique of Digital Model (DM), Digital Shadow (DS) and DT: OR/MS models developed for 
healthcare operations management can be categorized as either offline models (conventional simulation 
models) or real-time models, namely, RtS and DTs; refer to Mustafee, Harper, and Viana (2023a) for the 
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characterization of RtS and DT. In Manufacturing/Industry 4.0, the terms DM, DS and DT are frequently 
used to refer to a broader range of digital artifacts, including OR/MS simulation models and symbiotic 
simulations (Aydt et al. 2009) that connect to physical systems with functionality to, for example, control 

throughput rates in assembly lines. As healthcare is a service-based system, simulation results are generally 
communicated to stakeholders who are empowered to make decisions. Using Kritzinger et al. (2018) 
classification of DM, DS and DT, our conventional simulation is thus a DM with no automated data 
exchange between the physical object (the healthcare environment, in our case) and the simulation model. 
Business intelligence dashboards and Virtual Reality/Augmented Reality-based systems conform to the 
Kritzinger et al. (2018) definition of DS since a change in the physical system's state leads to a change in 

the digital model through one-way data flow. From the standpoint of M&S, we argue that the digital models 
classed as DS may not necessarily be computational models used for experimentation. Finally, our usage 
of both RtS and DT conforms to Kritzinger et al. (2018) definition of DT, which emphasizes two-way data 
flows but with one key difference. The data flow from RtS/DT to the physical environment is arguably akin 
to “decision flow". This again emphasizes the need for a decision-maker to assess competing simulated 
alternatives using RtS/DT real-time experimentation. 

 Our previous contribution to real-time modeling focused on characterizing RtS and DTs (Mustafee, 
Harper, and Viana 2023a) and challenges associated with data synchronization and experimentation 
(Mustafee, Harper, and Viana 2023b). This paper focuses on the core IS/IT systems that capture, store and 
relay data, which are prerequisites for developing real-world RtS/DTs. 

3 LITERATURE REVIEW 

Uhlenkamp et al. (2022) present a maturity model for the assessment of DTs in production and logistics 

under seven categories (context, data, computational aspect, model integration, control and human-machine 
interface). In developing the model, the study follows the approach presented by Becker et al. (2009) and 
augments it with a systematic literature review of 73 papers and the authors’ experience in DTs. Another 
example of a DT maturity model is the work by Papic and Cerovsek (2019), who present the Digital Built 
Environment Maturity Model to evaluate the level of digital capability of asset management organizations 
in three dimensions, namely, areas of digital capability (data management, data analysis and decision-

making), supporting organizational environment (people, process and technology) and the five DT maturity 
stages (ad-hoc databases, DT formation, DT standard operation, DT real-time automation, and DT 
intelligence contextualization).  
 Klar et al. (2023) observed that several of the existing DT maturity level models were either domain-
specific or viewed the system to be “twinned” in isolation; to address this, the authors consider interoperable 
DTs and present a maturity model that includes six levels, with levels 1 and 2 (replication and connection) 

categorized as a Digital Model, level 3 (synchronization) as Digital Shadow, levels 4 (interaction) and 5 
(automation) as Digital Twin, and Level 6 (interoperability) as Connected Digital Twin. As will be 
discussed later in the paper, some elements of Klar et al. (2023) model, such as SA, simulations and real-
time SA are concepts extensively used in our work. However, as discussed in Section 2, key differences 
exist in our use of the terms RtS/DT in relation to Kritzinger et al. (2018) classification of DM/DS/DT, the 
categories used by Klar et al. (2023). 

 Medina et al. (2021) present a four-level maturity model for DT implementation for original equipment 
manufacturers (OEMs) in the commercial aerospace industry (CAI). The authors used the Design Research 
framework (Hevner et al. 2004), which involves the collaborative building and evaluation of artifacts such 
as constructs, models or methods designed to meet business needs (Hevner et al. 2004), to consider the 
environment (CAI, OEMs, DT, business needs), the knowledge base (literature reviews, existing maturity 
models, industrial context, etc.) for artifact design (maturity model). The authors identified ten dimensions 

based on which maturity levels 1-4 were determined; this provided precision on the attainment level, per 
dimension, that an organization was expected to reach to claim a certain maturity level. The work by Medina 
et al. (2021) resonates with us since our previous work discussed participatory design research for 
developing RtS models in healthcare (Harper and Mustafee 2023). Although the study by Medina et al. 
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(2021) is on CAI OEMs, the dimensions related to ‘Analytical Capability’, ‘Data Collection Frequency’ 
and ‘Model Update Frequency’ are particularly important in the context of OR/MS simulation models and 
the authors’ previous work (Harper, Mustafee, and Pitt 2023; Mustafee, Harper and Viana 2023a; Mustafee, 

Harper, and Viana 2023b; Harper, Mustafee, and Viana 2023). These dimensions are explored further. 
 Analytical Capability: Our previous work on increasing SA in healthcare through RtS identified 
opportunities for the deployment of descriptive, diagnostic, predictive and prescriptive analytics to enable 
increasing levels of SA (Harper, Mustafee, and Pitt 2023); this is similar to the monitoring, diagnostics, 
predictive and prescriptive functionality (‘Analytical Capability’ dimension) expected from CAI OEM DTs 
as they progress from maturity levels 1 to 4. Our SA framework acknowledges that ‘monitoring’ can be 

achieved through real-time data and descriptive analytics, ‘predictive’ capabilities can be built using time-
series forecasting models, and ‘prescriptive’ element is introduced through the use of simulation models 
(which are our core computational models that drive our RtS/DTs).  
 Data Collection Frequency: For CAI OEM DTs the data collection frequency may be demand-based, 
it could be flight history data, in-flight data, or real-time data (Medina et al. 2021). Similarly, our previous 
work has discussed that the shift from conventional modeling (reliant on historical data), to RtS (using 

historical data with some real-time feeds) and finally to DTs (using real-time data) necessitates increasing 
data collection frequency (Mustafee, Harper, and Viana 2023a; Mustafee, Harper, and Viana 2023b). 
 Model Update Frequency: Medina et al. (2021) state that as organizations move from maturity levels 
1 to 4, the model update frequency will reduce from weeks to days and then to hours and minutes. In the 
context of CAI OEMs, they identify a difference between data collection frequency and model update 
frequency. In our existing work, we note that RtS do not necessarily need to execute every time real-time 

data is received but are triggered when there is a breach in the normal KPI thresholds defined in the model 
(Harper, Mustafee, and Viana 2023). Our RtS/DTs are based on OR/MS computational models for 
operational decision-making (rather than engineering models that are the basis for CAI OEM DTs). In the 
context of our work, model update frequency will necessitate faster than real-time experimentation. 
However, the execution of the simulation experiments is not pre-determined (as with CAI OEM DTs); 
rather, they will be triggered if automated assessment of real-time inputs warrants further experimentation.  

 The definitions of DTs vary based on areas of application. Thus, it is not surprising that the fundamental 
building blocks for the DT maturity level models are also different. The literature would benefit from a 
maturity model specific to M&S, which, as its building block, acknowledges the need for IS/IT system 
integration - the enabler for real-time RtS/DT simulation experimentation. Real-time models have the 
potential to offer increasing levels of SA in healthcare operations management, which could be mapped to 
the attainment of well-defined maturity levels in IS/IT system integration. With this objective, the paper 

introduces the maturity model of IS/IT system integration for DTs in healthcare.  

4 CASE STUDY ON IS/IT INTEGRATION OF PATIENT FLOW SYSTEMS 

Healthcare IS/IT systems that capture the flow of patients in hospitals (scheduled care) and urgent and 
emergency settings are referred to as Patient Flow Management (PFM) systems. Conventional (offline) 
modeling mostly uses PFM data as historical snapshots. The case study motivating this research also has 
its genesis in our early work on offline modeling of Emergency Departments (EDs) and Minor Injury 

Units/Urgent Care Centres (MIU/UCCs), which are walk-in healthcare facilities for urgent care, in the 
South West of England. The work led to the NHSquicker project, which investigated the leveling of demand 
for urgent care by nudging users to visit certain facilities in priority order; the nudges were based on real-
time data on waiting times and travel times and needed PFM system integration (Mustafee and Powell 
2021). Our interest in IS/IT integration of PFM systems thus stemmed from the need to make summative 
data on patient numbers and waiting times available to users through an app. In terms of the overall system 

architecture, this meant that the PFM systems had to publish data in real-time; our backend NHSquicker 
system acted as a receptor of this data (server).  
 The UK has a publicly funded healthcare system called the National Health Service (NHS). NHS Trusts 
are free to procure IS/IT systems. Thus, both legacy and modern PFM systems co-exist in the urgent care 
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ecosystem. Newer systems use an open architecture and technologies like web services and web APIs, 
which make it possible to query and publish data such as patient arrival, triage start and stop, and allocation 
of clinicians in real time (Warwick et al. 2021). Older systems, although they may capture numerous events 

of interest, are still fundamentally closed systems. For real-time M&S, the distinction between open and 
closed PFM systems assumes importance.  
 Through our longstanding NHSquicker project (since 2017), we experienced how some stakeholder 
organizations have transitioned their IS/IT systems, including implementing bespoke solutions, and made 
them more open. With several of the healthcare Trusts, the PFM system gradually offered increasing levels 
of functionality, for example, by first making data available internally as a business intelligence solution 

for decision support; next, by making a sub-set of data available to the public using information dashboards; 
finally, and through our involvement, integrating existing PFM systems with our backend NHSquicker 
system (this necessitated joint work with the IS/IT technicians at the NHS Trusts; on occasions, it also 
required PFM vendor support). 

In developing the maturity model, we are not merely reflecting on capabilities that our stakeholder 
organizations have already acquired but also how they could gain further from deploying state-of-the-art 

solutions such as RtS and DTs; the latter may necessitate attaining higher levels of IS/IT integration. With 
the increase in maturity level, the PFM systems started publishing data. This allowed us to make 
ED/MIU/UCC waiting time available in real-time through the NHSquicker mobile app. We now use our 
real-time system to investigate the methodological advances needed to transition from offline modeling 
approaches to real-time M&S. As our experience of healthcare IS/IT systems is based on our work with 
PFM systems, the phrases “IS/IT system integration” and “PFM system integration” are used synonymously 

for the remainder of the paper.  

5 MATURITY OF PATIENT FLOW MANAGEMENT (PFM) SYSTEM INTEGRATION 

5.1 Capture Data - Maturity Level 1 (ML-1)  

Organizations in ML-1 lack IS/IT systems and automation. The defining characteristic of ML-1 is to capture 
data (the descriptor for the maturity level is capture), which allows bespoke analysis based on the decision-
maker's needs. At ML-1, data is captured mostly using pen and paper, spreadsheets, or other general-

purpose software. Thus, the receptionist may record information such as patient arrival, patient ID/address 
and symptoms. A medic may record health indicators like temperature and blood pressure, diagnosis and 
medicines that were prescribed. Data collected using pen and paper may be transferred to a computer 
program for analysis using Excel or other software. ML-1 is similar to Stage 1 (ad-hoc databases) of the 
Digital Built Environment Maturity Model (Papic and Cerovsek 2019). The UML interaction diagram in 
Figure 2 (a) illustrates the interaction between the environment actor (healthcare system) and the decision-

maker actor (for simplicity, the decision-maker role is assigned to both clinical and non-clinical staff). UML 
is a visual modeling language frequently employed in IS/IT for the design of software artifacts. The 
interactions are primitive, with data from the environment captured manually and bespoke analysis 
undertaken occasionally. For simplicity, the diagram does not introduce an additional UML object to denote 
spreadsheets or other general software that may be used.  

5.2 Report - Maturity Level 2 (ML-2)  

Organizations that have invested in PFM systems are in ML-2. They build on the inherited ML-1 
functionality of capturing data, albeit the process is now automated using specialist software, with the 
additional requirement that they can generate complex reports to support the business functions of the 
decision-maker. For example, the PFM may include a visual front-end for field selections for cross-tab 
reporting, etc., which generates reports using backend structured query language (SQL) queries. Thus, the 
descriptor for ML-2 is report. The PFM systems are also the repository of historical data that can be used 

for modeling purposes. The interaction diagram in Figure 2(b) introduces ‘PFM’ and ‘conventional 
simulation’ as two objects (indicated in grey) that are between the environment and decision-maker roles 
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(in blue). The automation involved in capturing data from the environment is presented as a control element 
in the lifeline of the PFM object. In UML, control elements denote a period of time an object is performing 
an action. Control elements are illustrated as a vertical rectangle on the lifeline of an object (shown as a 

dotted line). Both the healthcare and the PFM actors include UML control elements that span their lifelines 
(shown in blue and grey, respectively); this indicates that any change in the environment (e.g., new patient 
arrival) will be automatically recorded in PFM as the virtual system runs in parallel to the physical system 
(i.e., when a facility is open, the PFM system is running). The second object introduced in Figure 2(b) is 
the ‘conventional simulation’; as an offline model, the data requirement is mostly historical snapshots. With 
ML-2, the decision-maker invokes the PFM to generate reports and/or to execute an offline simulation 

model to determine credible alternatives. For simplicity, the dependence of the conventional model on PFM 
data is not explicitly shown. 

(a) Maturity Level 1 
 

(b) Maturity Level 2 

Figure 2: (a) The defining characteristic of ML-1 is to “capture” data; there are no automated PFM systems; 
(b) Organizations in ML-2 will deploy PFM systems and generate “reports”. The PFM will also serve as 

the primary source of data used for conventional (offline) simulations. 

5.3 Publish Data – Maturity Level 3 (ML-3)  

Organizations in ML-3 will publish data captured by PFM systems (the descriptor for the maturity level is 
publish). Other (external) systems could use this data for value addition through novel forms of 
transformation. In Section 4, we present a summary of our case study work on urgent care. Taking the same 
example, the organizations that relay data from PFMs such as Symphony, EPIC and TrackCare to our 

NHSquicker system (Mustafee and Powell 2021) are said to have reached a minimum ML-3. Figure 3 
introduces an additional UML object ‘information dashboard’ (ID) to represent external systems that 
receive real-time feeds. Like ML-2, the UML control element for ID spans its lifeline, denoting that the 
external system runs in parallel to both the environment and the PFM system. From our experience, the 
data from the sender PFM system is generally set at pre-defined intervals, e.g., between 5-15 minutes. This 
is shown by introducing the loop element and the variable ‘x’, which signifies the minutes the system waits 

before sending the next batch of data. ML-3 builds on ML-1 and ML-2. Note that in ML-3, although the 
PFM systems publish data, it is not yet integrated with analytical artifacts that enable real-time M&S.  

5.4 Integrate Callbacks - Maturity Level 4 (ML-4)  

An organization with IS/IT integration level ML-4, will deploy PFM systems that await requests for real-
time data from an RtS or other digital equivalents. Thus, in Figure 4, the UML object representing 
conventional simulation is replaced by RtS. Although conventional modeling will still be supported (per 

ML-3), this will not harness the true potential of the higher level of IS/IT integration that has been achieved. 
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The descriptor for the maturity level is integrate since it is not merely a publisher of data (ML-3) but rather 
integrates functionality that allows a PFM system to listen for incoming requests (indicated with the new 
UML loop element and an arrow on the PFM control element), process the request (shown as an overlay of 

the orange control element on the main PFM element) and then send data to the requestor system (RtS). In 
technical terms, ML-4 implementation will require PFM systems to support technologies such as web and 
real-time APIs, with some degree of bespoke development based on the needs of the RtS. 

 

Figure 3: ML-3 builds on ML-1 and ML-2, and its defining characteristic is the ability to “publish” data. 

 

Figure 4: The defining characteristic of ML-5 is for the PFM system to implement a “callback” function. 

5.5 Execute Model – Maturity Level 5 (ML-5)  

ML-5 is the highest level of our maturity model. Building on the move from manual to automated systems 
(ML-1 to ML-2), and with increasing levels of IS/IT integration achieved in ML-3 and ML-4, PFM systems 
at ML-5 will be able to trigger DT experimentation. The experiments may be triggered in response to the 
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real-time key performance indicators (KPIs) values (calculated by the PFM systems continuously) 
breaching the normal operational KPI thresholds defined in the system. Thus, the descriptor for ML-5 
maturity level is trigger.  

 In Figure 5, the UML object representing RtS (see Figure 4) is replaced by DT. Per ML-4, RtS is still 
a possibility (indeed, Figure 5 includes the “integrate” element where the DT assumes a role similar to RtS 
and requests real-time data from the PFM system), but the ML-5 system is not being used to its full 
potential. The role of the decision-maker is also important in relation to ML-4 and ML-5. In ML-4, the 
decision-maker is the initiator of the RtS; they may rely on information dashboards (ML-3) to assess the 
need for experimentation. In ML-5, automation replaces the role of decision-maker as initiators of real-time 

experiments; all requests for data, real-time assessment of KPIs, triggers for experimentation and results 
capture are performed through automated system-level coordination between PFM systems and the DTs. 
In this heightened state of automation, the role of the decision-maker is still significant; they assess the 
results of the DT simulation and implement changes towards returning the physical (healthcare) system to 
normal operation thresholds. Finally, Figure 5 shows that an ML-5 system may receive the results of a DT 
simulation in the form of simulated KPIs. This allows the triggering mechanism in PFM systems to become 

increasingly intelligent, mimicking the behavior of a decision-maker who may rely on experience to 
ascertain the need for experimentation. 

 

Figure 5: The highest level of maturity (ML-5) will enable PFM systems to “trigger” real-time experiments. 

6 MATURITY MODEL FOR IS/IT SYSTEM INTEGRATION FOR DIGITAL TWINS 

The previous section has identified five levels of IS/IT maturity (ML-1 to ML-5). The move from initial 
stages to more advanced stages is achieved when healthcare organizations have attained higher levels of 
integration capabilities; this also offers them the opportunity to lower their dependence on historical data 
analysis in favor of real-time modeling, the latter contributing to enhanced situational awareness (SA) and 
making organizations better prepared in meeting operational performance metrics. Our maturity model 

refers explicitly to DTs; this signals that organizations should aim to deploy decision-making tools and 
approaches that are the current state-of-the-art (like DTs), an aim achieved by attaining ML-5. Thus, by 
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signaling what is possible through advanced OR/MS artifacts and what this necessitates in terms of 
interfacing systems with models, the aim is to use our maturity model to motivate organizations to attain 
higher levels of system integration. 

 Figure 6 presents our maturity model, which comprises three axes (x-axis, y-axis, and y’-axis), which 
are discussed next: 
• The x-axis, a Likert Scale of 1-5, represents the increasing IS/IT system integration capability achieved 

by an organization as they move through the maturity stages of “capture”, “report”, “publish”, 
“integrate” and “execute”.  

• The y-axis conveys the data requirements for OR/MS artifacts. For ML-1 and ML-2, the OR/MS 

artifacts rely only on historical data. For ML-3 to ML-5, the bidirectional arrows communicate the 
increasing reliance of these artifacts on real-time data.  

• An additional element on the y-axis is the “M&S perspective” (the y’-axis) represents artifacts that are 
realized at different maturity levels (x-axis) based on the mix of historical and real-time data (y-axis); 
in other words, artifacts denoted through the y’-axis are at the intersection points of x and y axes, which 
gives the appearance of a stacked histogram.  

In our maturity model, increasing IS/IT integration levels presents opportunities for newer and more 
advanced analytical solutions. These new modeling artifacts are illustrated in cyan. ML-1 is not considered 
since it is a manual system, and only bespoke analysis is possible (Section 5.1). At ML-2, PFM systems are 
first introduced. They enable automation regarding report generation and the use of PFM databases; the 
latter are repositories for historical data which can be used for conventional offline modeling. Thus, at ML-
2, we identify two new analytical artifacts - ‘conventional simulation models’ and ‘automated 

analysis/reporting’ (Section 5.2); both are identified in cyan. IS/IT systems at ML-3 publish data and make 
them available to receptor systems. This enables the development of artifacts external to the PFM systems, 
like a ‘real-time information dashboard’ (Section 5.3). As new levels of maturity build on the attainments 
of prior levels, we see that ML-3 benefits from both automated reporting and the opportunity to develop 
convention simulations (both requiring only historical data); however, the highest level of OR/MS artifact 
attainment for ML-3 are the online information dashboards (Section 5.3). In ML-4, having achieved the 

maturity level with the descriptor “integrate”, the organizations are, for the first time, technologically ready 
to interface the PFMs and OR/MS models for developing RtS models that allow real-time experimentation 
(Section 5.5). Finally, when healthcare organizations reach ML-5, they are ready to deploy DTs triggered 
by PFMs (Section 5.5). In Figure 6, the online information dashboards, RtS and DT are all shown in cyan 
as they represent the highest attainment of OR/MS artifacts in ML-3, ML-4, and ML-5, respectively. 
 As organizations advance through maturity stages, the potential contribution of IS/IT system integration 

capability to organizational SA increases. Real-time information contributes to awareness of the current 
system state by updating decision-makers’ knowledge to support fast decisions (Harper, Mustafee, and Pitt 
2023). This is achieved by enhancing SA, a knowledge state that is an important constituent in subsequent 
cognitive decision processes (Endsley 1995). With sufficient SA, a match between experience and 
knowledge about the current system state can enable decision-makers to determine an appropriate course 
of action. Endsley’s (1995) model of SA defines a closed-loop system between a decision-maker, and a 

physical system. SA is defined as “the perception of the elements in the environment, within a volume of 
time and space, the comprehension of their meaning, and projection of their status in the near future” 
(Endsley and Jones 2024), referring to ascending levels of SA. In Figure 6, five levels of SA are identified 
and which correspond to the increasing maturity levels of IS/IT system integration (SA1 to SA5). A 
feedback loop from the physical system represents the outcomes of action; the feedback may not be 
immediate, as the outcomes of actions need to be perceived and comprehended. Real-time information 

supports this feedback loop by updating decision-makers’ immediate knowledge. Higher quality real-time 
information has a higher contribution to SA. At ML-4 and ML-5, RtS and DT can be seen as fulfilling 
certain roles alongside human decision-makers, as their functions have progressed from observer, to 
analyst, to decision-maker, to actuation and communication, increasingly informing the ascending levels of 
SA (Agrawal et al. 2023).  
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Figure 6: Maturity model of IS/IT system integration for DTs in healthcare consists of five maturity levels 
(capture, report, publish, integrate, and execute).  

7 DISCUSSION AND CONCLUSION 

Maturity models consist of a sequence of discrete MLs representing an evolutionary path of improvement 
from an existing state to a future anticipated state; advancing between the two extremes involves a 
continuous progression of organizational capabilities or process performance (Becker et al. 2009). In our 

maturity model, the IS/IT systems are PFMs. The first stage is ML-1, representing a lack of automation. 
The conception of total maturity is achieved at ML-5 with PFMs intelligently triggering real-time 
experiments mimicking the behavior of a decision-maker who may rely on experience to ascertain the need 
for experimentation. ML-5 can theoretically be generic enough to consider a future AI-based system (e.g., 
multi-agent-based RL systems) for such triggering mechanisms, replacing a human. However, this is likely 
to be only applicable to a very small subset of decision-type problems that are highly unlikely to directly 

affect patient safety. From an M&S perspective, a move towards higher maturity levels is accompanied by 
opportunities to deploy analytical artifacts with increasing reliance on real-time data, achieving higher 
degrees of SA in healthcare organizations. The model explicitly refers to DTs to signal that organizations 
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should aspire to deploy the latest advances in decision-making tools, which will, in turn, necessitate 
attaining the highest level of IS/IT system integration.   
 The model was developed based on our experience with a long-running project on urgent and 

emergency care, which necessitates integrating existing healthcare IS/IT systems with our NHSquicker 
solution (Mustafee and Powell 2021). Through this work, we found that our stakeholders – the NHS Trusts 
in the South West of England – have achieved ML-2, and the majority are in ML-3 (our intervention also 
contributed to the translation from ML-2 to ML-3). For our empirical work on Real-time Simulation (RtS) 
(Harper, Mustafee, and Viana 2023), we are using the NHSquicker system to implement the ML-4 
functionality of “callback”. As our platform receives real-time data from several ML-3 PFM systems (ML-

3 descriptor “publish data”), it serves as a proxy to the desired future state where the stakeholder will invest 
in achieving higher IS/IT PFM integration levels. Such investment will happen when they see the value of 
real-time modeling using RtS and DTs; our ongoing work on RtS using our backend system is a step in that 
direction.  

Our maturity model focuses on healthcare IS/IT systems. However, data conducive to real-time 
modeling exist in other clinical and administrative IS/IT systems. Similarly, specialized services like the 

ambulance service may deploy systems for ambulance dispatch that record the availability and location of 
assets. Manufacturing, maintenance, repair and operations (MRO), supply chain and logistics and other 
domains have specialist IS/IT systems that similarly capture routine data to support business operations. 
Thus, our maturity model applies to the general class of IS/IT systems that capture operational data (e.g., 
DAS); data that can be used to develop various forms of modeling artifacts, including offline simulations, 
RtS and DTs.  
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