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ABSTRACT

In light of the challenges posed by the often unavailability of coherent data in manufacturing for operational
Artificial Intelligence (AI) decision support systems, the generation and utilization of synthetic datasets have
become essential. This study introduces a simple numerical Synthetic Simulated Environment (SSE) using
timed and parametrizable Petri Net (PN) modules, embedded in a Directed Acyclic Graph (DAG) structure
described by an adjacency matrix to represent material flow. Implemented in PyTorch for seamless integration
with AI components, our simulation framework simplifies manufacturing systems, yet remains expandable
for diverse use cases. The simulation model was demonstrated displaying its capability of generating
synthetic data. This approach explores the practicality and applicability of generated data. It could serve
as an ideal environment to benchmark Artificial Intelligence (AI) algorithms in comparative experiments,
investigating operational problems featured in the dynamic interactions of discrete manufacturing systems.

1 INTRODUCTION

Discrete manufacturing systems are focused on the production of distinct items that can be counted, such as
automobiles, electronics, and furniture. Each product in discrete manufacturing is made through a series of
individual steps. There are some operational challenges which hinder efficient manufacturing operations,
such as bottlenecks (Rocha and Lopes 2022) or equipment downtime (Saez et al. 2018). However, these
disruptions can be mitigated and operational efficiency improved by supervising and analyzing a process
in real-time (Saez et al. 2018).

Supervising a system is possible by data collection through Internet of Things (IoT) devices which can
collect vast amounts of data. They are broadly applied to monitor vitals of diverse systems in healthcare,
smart homes, and also manufacturing (Anderson et al. 2014). Much of this data is represented as time
series measurements which can be analyzed using parametric artificial intelligence methods, e.g., Deep
Learning (DL) for downstream tasks such as anomaly detection (Liu et al. 2023), forecasting (Yin et al.
2019), and causal inference (Gong et al. 2023). Real-time anomaly detection in discrete manufacturing
can, for instance, lead to better fault detection or condition monitoring (Jeong et al. 2022).

However, analyzing time series data involves overcoming several challenges. The collected data can
be very high-dimensional. For instance, a modern refinery may feature up to a million sensors each
tracking various parameters in real-time (Wang and Gross 2018). For deep learning time series models,
this characteristic poses a challenge which can be met with adequate scalability of the models towards
the number of time series. Another challenge in IoT data is that time series can be of non-stationary
distributions (Liu et al. 2023). Lastly, in discrete manufacturing, data associated with product flow is
featured not as continuous valued time series but also as discrete valued series such as stock and buffer
levels. This is in combination with other discrete data such as machine operation states (Saez et al. 2018).
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This type of data series, which is composed of non-negative integer values over time, has great
importance in a variety of fields including finance and earthquake-occurrence modeling (Manolakis et al.
2019). Benchmark datasets play a crucial role in evaluating algorithmic performance (Thiyagalingam et al.
2022). To investigate data analysis in these count series, a number of datasets are openly accessible.
For instance MIMIC-III (Medical Information Mart for Intensive Care) provides extensive, time-stamped
patient health records that include counts of medical events such as admissions, lab tests, and administered
medications (Johnson et al. 2016). However, in specialized domains like discrete manufacturing production
flows, comprehensive datasets that thoroughly analyze the complex interactions of machines are notably
lacking, to the best of the authors’ knowledge.

In various fields, Synthetic Data Generation (SDG) techniques have proven invaluable for simulating
complex scenarios where acquiring real-world data is impractical or costly (Nikolenko 2021). SDG is
broadly applied in computer vision for supervised training and testing machine learning algorithms (Paulin
and Ivasic-Kos 2023). For instance, SDG is employed in self-driving car research to create simulated
environments that replicate real-world conditions, including virtual roads, traffic dynamics, pedestrians,
and dynamic obstacles (Kaur et al. 2021). These simulations allow researchers to test and refine algorithms
under diverse scenarios to assess performance without real-world risks. Moreover, beyond applications in
computer vision and autonomous systems, SDG techniques are gaining traction in biomedical research.
Researchers utilize synthetic data to generate realistic patient datasets that facilitate the development and
validation of predictive models and treatment strategies (Goncalves et al. 2020).

In this regard, to study the scalability of deep learning time series analysis models, we propose to
generate an arbitrary number of non-independent discrete time series using a simulation approach. The
system-level dynamics of discrete manufacturing are generally well understood and are often studied using
a Discrete Event Systems (DES) approach (Saez et al. 2018). There are a multitude of simulation models
available. Markov models are powerful for modeling systems where future states depend only on the current
state, making them suitable for time series analysis with well-defined state transitions (Cassandras and
Lafortune 2021). In contrast, Petri Nets offer a more comprehensive representation by explicitly modeling
concurrent events and dependencies, making them better suited for simulating the dynamic behavior of
manufacturing processes. To study the discrete manufacturing production flow dynamics, Petri Nets (PNs)
are frequently used to model the concurrent dynamics. Petri Nets allow explicit modeling of concurrent
events and resource interactions, providing a more detailed representation of complex workflows and
decision-making processes within production systems (Cassandras and Lafortune 2021).

1.1 Objective

The main objective of this paper is to propose a scalable simulation of a discrete manufacturing system as
a parameterizeable Synthetic Simulated Environment (SSE). The purpose of this simulation is to represent
machine variables as non independent and nonegative integer time series. To achieve this main objective,
the paper will aim for these specific objectives:

1. Propose a simplified model of a production unit which in numbers can be scaled to resemble the
complex interactions of a production line.

2. Describe the mathematical foundation for the numerical simulation model.
3. Demonstrate the capability of the proposed model in a practical use case.

In Section 2, the paper describes some related work on SDG, time series and discrete manufacturing
approaches. Section 3 proposes the methodology based on the concept of Petri Nets, Finite State Machines
and probability of events. The results are presented and discussed in Section 4, showcasing the data
generating capability in a practical example.

1717



Marti, Lopes, Chen, Rajashekarappa, Rekabi Bana, Göppert, Déspeisse, Stahre, and Johansson

2 RELATED WORK

In manufacturing, synthetic data can be generated through empirical approaches and simulation techniques
designed to replicate dynamic behaviors (Libes et al. 2017). Empirical methods involve constructing
laboratory setups, such as a production line built using LEGO®, to study and generate model processes
(Lugaresi and Matta 2021). However, due to scalability needs, our focus primarily centers on simulation-
based approaches.

2.1 Simulation Approaches for Manufacturing

Discrete event simulations (DES) are widely employed in discrete manufacturing processes. A hybrid
model combining DES and Continuous Dynamics (CD) can simulate individual machine behaviors and
system-level interactions in real-time, ensuring synchronization between virtual and physical environments
(Saez et al. 2018). Markov models, which generate time series data by transitioning between defined
states with set probabilities, are another method used for simulation (Shamshad et al. 2005). However,
both approaches may struggle with larger systems’ scalability. Digital twin simulations, unlike DES and
Markov models, can represent various dynamics, offering a comprehensive view of continuous and discrete
interactions (Phanden et al. 2021). However, for concurrent discrete dynamics like product flow, Petri Nets
provide a comprehensive framework.

2.2 Petri Nets in Manufacturing Systems

Petri Nets offer a detailed and scalable modeling approach for complex manufacturing systems (Cassandras
and Lafortune 2021). Various extensions have been developed to address specific needs:

• Colored Petri Nets (CPNs): Extend traditional Petri Nets by incorporating data, enabling more
detailed and scalable modeling through tokens that carry additional information such as attributes
or values (Gehlot and Nigro 2010).

• Hierarchical Petri Nets (HPNs): Enhance traditional Petri Nets by decomposing complex systems
into nested subnets, facilitating modular and scalable modeling (Fehling 1993).

• Hierarchical Timed Colored Petri Nets (HTCPNs): Model complex distributed manufacturing
systems by representing product flow and transitions, addressing the need for improved throughput
in modern manufacturing networks (Lv et al. 2013).

• Timed Petri Nets: Analyze system behavior within manufacturing systems, representing asyn-
chronous and concurrent transactions (Reddy et al. 1993). They are used for operational decisions,
such as scheduling (Casalino et al. 2021) or dispatching (Hu and Liu 2015).

Recent research has integrated Petri Nets with reinforcement learning (RL) algorithms to tackle job
shop scheduling problems (Lassoued and Schwung 2024). Parametrizable flow simulation models have
also shown promise in automating and streamlining labor-intensive tasks like model development, as
demonstrated by Milde and Reinhart (Milde and Reinhart 2019).

2.3 Conclusion of Related Models

Existing manufacturing simulation implementations often represent a given manufacturing system to study
a specific problem. These implementations typically focus on analyzing static or well-defined systems to
address particular issues such as optimizing a production line. However, for generating scalable time series
data of dynamic material flows, they are limited in suitability for synthetic data generation.

This study introduces a novel approach using Timed Petri Nets within a Directed Acyclic Graph (DAG)
framework inspired by HPNs. The simulation model is implemented in PyTorch (Paszke et al. 2019) for
simple AI integration. This method aims to streamline system modeling, minimize parameterization, and
enhance simulation efficiency for comprehensive manufacturing studies.
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3 METHODS

This study introduces a simplified numerical SSE employing timed and configurable PN modules, repre-
senting individual manufacturing assets within a Directed Acyclic Graph (DAG) structure characterized
by an adjacency matrix for material flow depiction. The implementation, carried out in PyTorch (Paszke
et al. 2019), is chosen for its seamless integration potential with Artificial Intelligence (AI) components for
subsequent simulation-based studies. While our simulation framework streamlines manufacturing system
modeling by representing it as a DAG without rework loops, its open-source nature allows for extensibility
to cater to diverse use cases. Additionally, our research endeavors to construct a concise meta-model of a
discrete manufacturing system, focusing on minimal parameters for efficient data generation. The model
adopts a discrete simulation approach, featuring entities with unique attributes that influence simulation
states, interactions with activities triggering events leading to state changes, resources with limited capacity,
and global variables for universal accessibility and key metric tracking. Random number generators facilitate
sampling, while a calendar schedules future events. Essential system state variables, such as current time,
and statistics collectors, which monitor states or entity attributes, complete the model’s key components.

Input:
Manufacturing System

Parameters

Synthetic Simulated
Environment

Output:
Labeled Synthetic

Data

Figure 1: The workflow to generate labeled synthetic data.

As visible in Figure 1, the simulation model is defined by the input parameters such as the adjacency
matrix of a manufacturing system, set up parameters such as buffer limits and distributions for timed events.
In this section we delve into the general concept of the used techniques in Section 3.1 and present the
resulting implementation in Section 3.2.

3.1 Simulation Concept

We have defined a simplified discrete manufacturing system as DAG. A graph is represented as a set of
nodes V, |V |= n and a set of edges E, |E|= m. The system can be denoted as G = (V,E). The relations
between node vi and node v j can be represented as an adjacency matrix Ai j ∈ Nn×n, where each entry Ai j
indicates the number of direct edges from node vi to node v j. If there is no direct edge between vi and v j,
then Ai j = 0. A graph is directed if A ̸= AT and acyclic if there are no directed circuits (Chen 2012).
newline

Graph based product flow: Each node vi contains a PN module as illustrated in Figure 2. Additionally,
when nodes vi and v j are connected, not only is the adjacency matrix Ai j updated to reflect this connection,
but a weight ωi j is also assigned to each connection. This weight represents the number of parts that need
to be transported simultaneously between the nodes, thus adding a layer of quantitative detail to the model
that informs the logistical or operational capacities required for material movement between processes.
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Figure 2: A combined figure illustrating a directed acyclic graph (DAG) modeling a discrete manufacturing
system with repositioned nodes (above). Each node vi in the network includes a Petri net module (below).

Our model simplifies the representation of the entire system to a degree equivalent to a traditional
PN. However, a key advantage of our approach lies in the significantly reduced dimensionality of the
resulting adjacency matrix of the DAG compared to the matrix of flow arcs in an equivalent PN. This
reduction in complexity is particularly beneficial for simulation purposes and for generating labeled data
for representation learning.

3.1.1 Petri Net Module

In our nested implementation displayed in Figure 2 we placed a PN inside each production node vi. A PN is
a mathematical modeling tool used to describe and analyze systems involving concurrent events and shared
resources. It is defined as a tuple (P,T,F,ω), where P, |P|= npn represents places for tokens, T, |T |= m a
set of transitions, F ⊆ (P×T )∪ (T ×P) flow arcs, and ω : F →{1, . . .} a weight function on these arcs.

Central to a PN’s dynamics is the concept of markings, M : P→N, which assign a non-negative integer
to each place indicating the token count. The system state is thus defined.

When a transition t fires, it alters markings based on the rule:

M′(p) = M(p)−ω(p, t)+ω(t, p′) for all connected p, p′ ∈ P, (1)

where M′ represents the new state post-transition. This marking update is critical for analyzing the Petri
Net’s behavior (Cassandras and Lafortune 2021).

Timed Petri Net Module: We have defined the PN-module illustrated in Figure 2 as follows:

PNmodule vi = (P = {p0, p1},
T = {t0, t1},
F = {(t0, p0),(p0, t1),(t1, p1)},
ω = {ω(t0, p0),ω(p0, t1),ω(t1, p1) = ω(p0, t1)})

(2)

t0 and t1 transitions manage token flows between production (p0) and output buffer (p1) spaces, re-
spectively, which are constrained by capacities C(p0) and C(p1), reflecting the operational limits and
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interactions of the network. This representation highlights the intricate, interconnected nature of manufac-
turing processes.

3.1.2 Manufacturing Parameters and Finite State Machine

Determining the properties of a simulation model is crucial for accurately predicting manufacturing outcomes
and enhancing system design and optimization. We compile essential parameters that describe industrial
assets, categorizing them into temporal parameters, quality metrics, and performance indicators. These
parameters play a vital role in the evaluation and improvement of manufacturing processes.

Building on our objectives, we implement an Finite State Machine (FSM) for each node vi to simulate
the operational workflow of a production system asset. A FSM is a computational model used to design
both computer programs and sequential logic circuits, consisting of a finite number of states. It is defined
by a tuple (S,S0,Σ,δ ,F), where S is a finite set of states, S0 ⊆ S includes the initial states, Σ is a set of
input symbols (input alphabet), δ : S×Σ→ S is the state transition function, and F ⊆ S represents the set
of final or accepting states.

q0

q2

q1

q3

β/Fire(T i
0)

εc∧¬γ/Fire(T i
1)

εc∧ γ/Stop¬γ/Fire(T i
1) ε f /Stopεr/Restart

(a)

Category Symbol Description

States
q0 Idle
q1 Producing
q2 Blocked
q3 Failed

Events

εc Cycle Time Reached
ε f Time to Failure Reached
εr Time to Repair Reached
β Input part available
γ Output space available

(b)

Figure 3: Illustration of the Mealy machine (a) used to model the operational states of a production system
asset. Each transition is labeled with an event and its corresponding output, reflecting the immediate effect
of the transition. Each symbol is explained in (b).

Our model defines the asset’s potential states with S = {q0,q1,q2,q3}, each representing a distinct
operational condition, which are detailed in Figure 3 (a), including the state transition functions. The set
of input symbols, Σ = {εc,ε f ,εr,β ,γ}, includes triggers for transitions between these states, as specified
in Figure 3 (b). The initial state of our system is set as s0 = q0.

3.1.3 Probability Distributions of Temporal Events

In an event-driven model, transitions between states are not governed by fixed time intervals but by the
occurrences of discrete events. We denote the current system time by τcurrent, and define E = {ε1,ε2, . . . ,εn}
as the set of all planned events. Each event εi in this set is scheduled at a time τi where τi ≥ τcurrent. The
system transitions to the state associated with the next event εnext, determined by (Cassandras and Lafortune
2021):

τnext = min{τi|τi > τcurrent,εi ∈ E } ∈ R+ (3)
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Temporal Event Randomization: Expanding upon this model, each node vi in our system experiences
temporal events ε i

p,ε
i
f , and ε i

r which are strictly dependent on their respective occurrence times τp,τ f , and τr
aligning with τcurrent. These event occurrences are modeled as random variables:

ε
i
x ∼Fx(τx) ∀x ∈ {p, f ,r},∀i ∈V, (4)

where Fx is an unknown distribution function independently assigned to each type of event at each node.
This setup ensures that the event timings τx are independent and identically distributed across different
nodes and event types, introducing a level of stochastic variability and unpredictability inherent in the
system’s dynamics. These independent distributions may exhibit a variety of characteristics.

3.2 System Dynamics

The dynamic behaviors of discrete manufacturing systems are fundamentally influenced by their underlying
variables and operational rules. This section outlines the key variables of our system model.

3.2.1 System Variables Overview

The following table provides a concise overview of the key matrices utilized in the system model, detailing
their structure and purpose:

Table 1: An overview of system matrices which are used in the implementation.

Matrix Dimensions Data Type Definition

State Matrix (Q) n×4 N qi j =

{
1 if vi is in state q j,

0 otherwise
Marking Matrix (M) n×2 N mi j = M(pi

j)

Event Timing Matrix (E) n×3 R+ ei j =


τ i

p if j = 1,
τ i

f if j = 2,
τ i

r if j = 3

Capacity Matrix (C) n×2 N ci j =

{
C(pi

0) if j = 1,
C(pi

1) if j = 2

Weight Matrix (W) n×2 N wi j =

{
ω(t i

0, pi
0) if j = 1,

ω(t i
1, pi

1) if j = 2

Adjacency Matrix (A) n×n N Ai j =

{
ωi j if vi and v j directly con. ,
0 otherwise

3.2.2 Algorithm

This algorithm is designed to optimize the execution of events by selecting the most imminent event based
on the current state of the system. It handles the complexity of event scheduling by determining which
event should occur next and precisely when it should be executed to maintain the integrity and accuracy
of the system’s operational timeline.
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Algorithm 1 Event Scheduling and Simulation Algorithm

1: Find Minimum Event Time:
2: Emin←min({Ei j | Qi}) ▷ Find the smallest event time regarding the states
3: (i∗, j∗)← argmini, j(Ei j) ▷ Identify the node and event type with the minimum time
4: Define Event Variable:

5: event←


εp if j∗ = 0
ε f if j∗ = 1
εr if j∗ = 2

▷ Determine the event based on the index

6: Execute Event:
7: Execute event at node i∗

8: Update state Qi
9: Transition Nodes which are in state 0 and 2

10: while any(node k∗ unblocked or supplied) do
11: Update state Qk
12: Fire Transitions tk and update M
13: end while

4 DEMONSTRATION OF TIME SERIES DATA

In this demonstration, we visualize data from a simulated manufacturing system with 5 nodes illustrated
in Figure 4. Using color-coded plots, we illustrate the buffer levels and operational states over time. The
mean values of τc, τ f , and τr in the manufacturing system are 180s, 18000s, and 3600s, respectively. These
parameters, denoted as temporal variables governing the system, follow normal distributions N (180,72),
N (18000,7200), and N (3600,1440), respectively. Additionally, the capacities C(p0)i and C(p1)i for
each node are set to 1 and 5, respectively, except for the last node, which has an unlimited capacity as the
final output.

1 2 3 4 5

Figure 4: A simple manufacturing system which is used as a demonstrator.

In Figure 5, the buffer levels and final produced number of products are displayed, showcasing the
simulation data generation process. The buffer levels represent the amount of inventory at each node
throughout the simulation, while the final produced number of products illustrates the overall output of the
manufacturing system.
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Figure 5: The visualization of buffer levels and machine states as they evolve over time in a manufacturing
system.

4.1 Discussion

Our approach focuses on generating time series data as vectorized representations, which are commonly used
in deep learning networks for efficient processing and analysis. This contrasts with the method proposed
for instance by Anderson (Anderson et al. 2014), who generates synthetic data by creating XML files
representing log files. While Anderson’s approach aims at providing a comprehensive log file structure for
various applications, our method specifically produces time series data suitable for deep learning models,
ensuring a streamlined and focused dataset for AI-based analysis.
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The experiment demonstrates the simulated manufacturing system’s capabilities. Our framework can
simulate a system of n nodes (machines) with given buffer limits, creating an n-dimensional dataset of
buffer levels over time. Additionally, it generates an n-dimensional dataset of machine states as time series.
However, further experiments with real data are necessary to enhance the models validity for future AI
model training.

The model is currently limited as it does not including cyclic process flows and rework loops, however
they are essential for industries like semiconductors. Expanding the model to incorporate rework loops will
require modifying the Petri Net structure. Further, maintaining the model’s parallel computing capabilities
is crucial for fast computation and scalability. This aspect is crucial for enabling efficient simulation of
large-scale manufacturing systems and supporting real-time, high-volume data generation.

5 CONCLUSION AND FURTHER WORK

In conclusion, our study highlights the importance of synthetic datasets for overcoming data scarcity in
manufacturing AI systems. We introduced a Synthetic Simulated Environment (SSE) using timed and
parametrizable Petri Net (PN) modules within a Directed Acyclic Graph (DAG) framework. Implemented
in PyTorch, this framework offers a flexible and efficient way to represent material flow dynamics and
generate data for diverse applications.

While traditional simulation models focus on static systems, our approach generates scalable time
series data of dynamic material flows, better suited for synthetic data generation. We plan to modify the
Petri Net structure to support cycles and rework. This could further improve the model to mimic distinct
system dynamics of rework loops which are frequent in industries like semiconductors.

Additionally, we aim to extend our model to include both discrete and continuous time series, integrating
variables like temperature and pressure with discrete events. Exploring domain randomization techniques,
such as Generative Adversarial Networks (GANs), will further enhance dataset realism and variability,
improving AI benchmarking in manufacturing systems.

By expanding these capabilities, we aim to provide a robust simulation framework that supports advanced
time series analytics development, ultimately leading to enhanced manufacturing operations.

CODE AVAILABILITY

The code used for the analyses in this paper is available on GitHub at the following URL:
https://github.com/nachtflug6/ProcessTimeSeries
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