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ABSTRACT

Discrete-event simulation (DES) models for healthcare service planning are time-consuming to develop
for both modellers and healthcare stakeholders. Model reuse is seen as a potential solution to reduce
duplication of effort and maximise the potential value gained from the model. One approach to model
reuse is to deploy a simulation model for the same purpose in a single application area, which can be
used for planning by healthcare staff such as managers, clinicians or analysts. A model deployed for reuse
by healthcare stakeholders needs to be shared and accessible. However, Python can present accessibility
and usability challenges for non-technical users. In this paper we investigate some of the advantages and
disadvantages to several methods of deploying interactive DES models to non-technical healthcare users.
Combining DES with methods and tools from computer science and software engineering, these hybrid
models aim to increase the usability, functionality, and accessibility of simulation models.

1 INTRODUCTION

Simulation models are used extensively for decision-support in healthcare service delivery research. Discrete-
event simulation (DES) is the most widely used method as it can effectively and intuitively capture the
complexity of health and care processes, though the reported impact of results remains low compared to
the number of publications (Roy et al. 2021; Vázquez-Serrano et al. 2021; Kar et al. 2024). Attempts at
addressing this include the use of generalizable models as a way of improving model use and reuse, with the
aim of reducing the time and cost of developing models for similar processes in similar settings (Hussain
et al. 2022; Fletcher and Worthington 2009; Robinson et al. 2004). Re-using generalizable models increases
the potential to align model objectives and timescales with those of stakeholders, which are well-known
barriers to the uptake of simulation in healthcare (Long and Meadows 2018; Jahangirian et al. 2017). There
has been sporadic but rising interest in the use of reusable models for health service delivery over recent
years, with the purpose of reducing unnecessary duplication of the clinical and researcher time and expertise
required to build models from scratch (Crowe et al. 2023; Boyle and Mackay 2022). Boyle et al. (2022)
defined generalizable models as those which can represent multiple units, and can be re-parameterised for
site-specific problems. Here, successful re-use may require adapting, composing, integrating, and validating
models and components (Fletcher and Worthington 2009; Hussain et al. 2022).

A simpler approach is to re-use a model many times for the same purpose (Robinson et al. 2004). In
healthcare services research, where simulation is commonly used, models are generally treated as disposable
artifacts. We see few applications of models that can easily be deployed to healthcare stakeholders for
reuse. An ongoing challenge is how to deploy a model to a healthcare organisation, to be used by healthcare
managers, clinicians, analysts, or for healthcare modeling and simulation (M&S) education. In order to
be used, a model needs to be shared, and accessible. The popularity of commericial off-the-shelf software
(COTS) is evident, with the majority of DES applications in healthcare using a COTS package such as
ARENA, AnyLogic, or Simul8 (Monks and Harper 2023a; Crema and Verbano 2021). These tools offer the
advantages of user-friendly interfaces, built-in functionalities for specific industries, and dedicated customer
support. However users without simulation knowledge may find the barriers to interacting with simulation
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software - such as time, capacity, data issues, and training - to be a significant hurdle (Brailsford et al.
2013). Perhaps a bigger obstacle to access by healthcare users is that COTS packages often come with
high license fees, including expensive upgrades to access more powerful features. Free versions may be
available for education/self-education, but may not be licensed for research, including reuse. This can
particularly present as a barrier for researchers in emerging and developing economies. Nonetheless, while
COTS remains the most popular choice for DES applied healthcare research, the majority of recent (2019
to 2022) DES models which have been made openly available have been developed in Free and Open
Source Software (FOSS), most commonly Python or R (Monks and Harper 2023a).

FOSS tools such as Python offer many advantages for M&S. For example, they integrate with other
tools, such as packages for machine learning or agent-based simulation, or into larger workflows or systems,
with extensive resources and communities to support researcher learning and trouble-shooting. FOSS offers
transparency in how simulation models are built and run, which can help to ensure reusability, and that
results are reproducible. The ability to reproduce published results is central to the scientific method,
and increasing emphasis on reproducible research in data science and M&S is encouraging researchers
to make their model or code available (Pouwels et al. 2022; Auer et al. 2021; Taylor et al. 2018;
Munafò et al. 2017). Nonetheless, FOSS can bring other challenges, such as requirements for code testing;
package/software version dependency management; providing a functional user interface; and addressing
the needs of different users. In particular for reuse, FOSS tools can present accessibility and usability
challenges for non-technical users (Collins et al. 2023).

With the aim of improving uptake of M&S by health and care services, this paper investigates hybrid
methods of deployment of DES models for reuse by healthcare staff with limited technical expertise in
simulation. In M&S, hybrid modeling refers to the combined use of simulation with methods and tools from
other academic disciplines (Mustafee, Harper, and Fakhimi 2022). By combining DES with established
methods from computer science and software engineering, the aim is to increase the functionality and
accessibility of the model. The focus of this paper is on deploying interactive models for reuse for the
same purpose - that is, a model is bespoke to a service (such as discharge planning) or a purpose (such as
education), and is intended for repeated-use by the service. In contrasting alternative methods of deployment
for non-technical users, our objective is to enable applied DES researchers to improve the usability and
reusablity of their FOSS models.

2 LITERATURE REVIEW

In previous work, we examined the code and model sharing literature for healthcare DES studies (Monks
and Harper 2023a). Although sharing model code enhances transparency (Pouwels and Koffijberg 2024),
we found very few shared FOSS DES models that had the potential for reuse, although most shared models
used FOSS. The reasons for this varied, and included no license for reuse, code formatting (e.g. code
shared as a word document), or a lack of simple instructions for use. These represent basic, essential
components for sharing reusable models, as without these, the model is difficult or impossible to reuse.
We proposed a framework to support M&S researchers to share their Python code for reusable simulations
for healthcare: Sharing Tools and Artifacts for Reusable Simulations (STARS) (Monks, Harper, and
Mustafee 2024). Our framework, as with other frameworks designed to provide a conceptual workflow
for open science (Van Lissa et al. 2021), aims to enable researchers to meet different standards for open
science. Adhering to the ‘essential’ components that we specified (open licensing; dependency management;
minimum documentation for use; research metadata which includes an ORCID and citation information; a
maintained code repository; and long-term archiving and preservation of the model) will enable a model
to meet the criteria for being discoverable, accessible, and usable, and in principle is platform-independent
(The Turing Way Community. 2022; OMF. 2023; Monks, Harper, and Mustafee 2024). Mark W. Isken
and Roumani (2023), Anagnostou et al. (2022), Chalk et al. (2021), and Bartz-Beielstein et al. (2021)
provide uncommon examples of shared healthcare DES models that are likely to be reusable, based on
meeting some or (rarely) all of these criteria. A generalizable model that did not meet these criteria would
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be difficult or impossible to reuse, even if the model or code were made available, as other researchers
have discovered when attempting model reuse (Boyle and Mackay 2022).

Our framework also considers accessible deployment, and includes options for deploying models to users
of differing technical ability. Documentation hosting using open source technical publishing systems offers
a way of publishing enhanced documentation alongside a research paper. An online coding environment
enables code to be run on a remote kernel for a technical user base. Finally, a model interface allows the
model to be accessible to less technical simulation users such as healthcare analysts, clinicians, managers,
researchers, or the general public. This can be achieved by providing a simple interface for setting up and
executing the model and its experimental scenarios, which can be installed and run locally in a browser.

Focusing on accessibility and model reuse, Tyler et al. (2023) provided an example of an open source
model in R aimed at increasing uptake of simulation by health services with a graphical user interface
and accompanying documentation. Alternatively, by using a hosting service such as Streamlit Community
Cloud or Shiny.io, both of which offer a tier of free hosting, the model can be shared directly with users
via a URL, requiring no software to be installed. Example applications have been developed for resource
planning directly by healthcare stakeholders (Harper et al. 2023; Hassanzadeh et al. 2023).

Other robust methods have been used for model deployment outside of healthcare. For example,
Moreau et al. (2023) promoted the use of containerization for improving reproducibility in computational
sciences. Containers are lightweight and share the host’s system, while virtual machines are more isolated
but use more resources. Containers are being used in a growing number of computational fields, enabling
efficient, collaborative, shared research, and ensuring compatibility across operating systems (Ferro et al.
2022; Lin et al. 2021; Van Lissa et al. 2021). Isolating the model and its environment, including software
and all required packages, in a container ensures that a DES model can be used across different computing
environments by any user, with a consistent runtime environment, supporting reusability standards (OMF.
2023), however examples in healthcare M&S are few. Another approach to deployment is WebAssembly,
a technology that allows programming languages to run at near-native speed in web browsers, enhancing
the performance and capabilities of web applications. These approaches extend our existing framework,
providing advanced options for deployment to healthcare users. Each method offers unique tradeoffs and
advantages depending on the specific needs and preferences of users. While containerization excels in
ensuring reproducibility and compatibility across different systems, WebAssembly enhances performance
and accessibility directly in web browsers. Understanding the opportunities and limitations of different
methods helps researchers select the most suitable deployment strategy for their particular application and
computational environment.

In this paper, we examine the advantages and trade-offs of four different methods of deploying
DES models to non-technical healthcare users. We assume that all ‘essential’ components have been
met (Monks, Harper, and Mustafee 2024), which meets the following UNESCO principles of Open
Science (UNESCO. 2021): openly available, openly accessible, reusable, transparent, scrutable, open
science infrastructures, open educational resources, sustainability of resources. By focusing on accessible
deployment and reuse by healthcare users, the following UNESCO concepts on Open Science are additionally
met: increased collaboration, sharing information, communication beyond the scientific community, open
scientific knowledge, science communication, open engagement of societal actors, equality of opportunities.
These represent good practice, and open, reproducible science is undoubtedly good science (Pouwels and
Koffijberg 2024; Munafò et al. 2017). However, while we position our work in the principles of open
science, our focus here is on improving decision-making for healthcare service delivery using M&S, and the
potential for real-world benefit. Figure 1 illustrates the four methods of deployment of a simulation model
developed using SimPy (Team SimPy. 2020), with an open license. A use case for WebAssembly using
Jupyterlite (Jupyterlite. 2024) is discussed in more detail. A list of papers, tutorials, and code artefacts
detailing all methods are archived at Monks and Harper (2024a). For additional detail on the methods in
3.1 and 3.2, we refer readers to Monks et al. (2024); Sections 3.3, 3.4, and 4 extend our previous work.
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Figure 1: Methods of hybrid model deployment.

3 DEPLOYMENT METHODS

3.1 FOSS and Virtual Environments

Sharing accessible and reusable code requires some basic steps which allows a FOSS model to be available
long-term and likely to be at a standard that is reusable in further work (Monks, Harper, and Mustafee
2024). All packages and programs are susceptible to updates, changes, and bugfixes, and FOSS is regularly
updated, often by a community of contributors. Changes to code can result in changes to outputs. For
deploying a model, a simple approach to tackling software or code deployment challenges is to detail the
necessary software packages, versions, and sources that are needed for the model to run without conflicts.

The majority of published healthcare DES studies that share their model do not use formal dependency
management (Monks and Harper 2023a). Python dependency management tools like pip virtual environ-
ments, conda environments, and poetry offer ways to record and manage these dependencies efficiently,
making it easier for others to replicate the setup with minimal effort. Code and virtual environment files
are committed to GitHub (or an alternative repository), which can then be downloaded and run locally
on a laptop or desktop. The environment manager is installed directly on the users’ machine and will
attempt to install the correct operating system-specific version of software packages directly. However,
conflicts between packages can still arise: different packages may have incompatible dependencies; if
the environment is not fully specified then dependencies of key dependencies may change over time, and
package managers won’t mitigate against differences in outputs across different operating systems. The
relative merits are:

• Updates can be pushed to the repository and the latest version can be used.
• Users can view the source code, modify parameters, and understand how the model works in detail.
• An accurate virtual environment ensures that all dependencies are correctly installed and versions

are matched, reducing the risks of missing dependency errors that will require solving.
• As the model is used locally, it is possible to run parallel replications, for example using a laptop

with multiple virtual cores, reducing run time.
• A user-friendly interface can be provided, to run in a browser locally. These allow users to modify

parameters and run simulations, turning complex models into interactive web pages, although the
interface will need to be launched.

The trade-offs are:
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• Requires users to have some technical knowledge, including understanding of version control
systems (like Git) and how to set up and manage virtual environments.

• Users must clone the repository and set up the virtual environment, which can be an obstacle for
less technical users.

• Updates to the model may mean that dependencies may change during a project, requiring some
re-work of environment files.

• While a user-interface increases accessibility, launching the model interface from a command line
may be a barrier for users with limited technical expertise.

3.2 Web Applications

Online deployment of computer models provides significant advantages over the use of executable, shared
code for non-technical users. Running code for healthcare DES models requires specialist skills, while web
apps offer a user-friendly interface that increases research accessibility to healthcare professionals via a
shareable URL. When you run a Streamlit web app, the framework starts a web server and serves a frontend
app, dynamically constructed by the Python Streamlit script, using a server-client architecture. Streamlit
is server-based - each time there is a user interaction, the server is notified and the whole application is
re-run on the server, updating the web page. Monks and Harper (2023b) and Smith and Schneider (2020)
provide comprehensive worked examples for structuring code for DES models using Streamlit for Python
(Streamlit.io. 2022) and Shiny for R (shinyapps.io. 2024). The model module using any DES package
(e.g. SimPy (Team SimPy. 2020), Salabim (van der Ham 2018)) can be structured for interchangeable use
with web app software.

Web app software such as Streamlit or Shiny have their own free tier of hosting. For example, Streamlit
Community Cloud is a free hosting service for Streamlit apps which provides a robust and easy way to
share simulation models to healthcare users. It only needs to be given access to a GitHub repository and
it copies the code, builds the app and deploys to a user-customised URL. The relative merits are:

• Provides a graphical interface that is accessible via a web browser, making it easy for non-technical
users to interact with the simulation.

• Users can access the simulation immediately without setting up a development environment.
• Can handle multiple users simultaneously, depending on the hosting setup.
• More complex cloud-based solutions are possible to scale deployment, but require ongoing costs.
• Enables early deployment during the model build process to support validation, design, and devel-

opment decisions by healthcare stakeholders.

The trade-offs are:

• Streamlit apps deployed on Community Cloud can struggle with scaling to handle a high number
of concurrent users. If too many users try to run a Streamlit app simultaneously, it may lead to
performance issues such as slower response times or timeouts due to the server’s limited resources.
This can affect the user experience negatively, making the app appear temporarily less responsive.

• If apps are not used for an extended period then the next user that accesses the URL then faces a
short wait while the app initializes.

• Paralellization may not be possible, for example Streamlit’s community cloud deployment limits
model execution to a single CPU, meaning model run time can be slow.

• Users may not be able to modify the simulation code or parameters beyond what the UI allows.
This typically means that a web app is bespoke to a single service, and is reusable within that
service. However, the source code can be modified and a new bespoke URL can be redeployed.

• Plans for model/app maintenance need to be considered.
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3.3 WebAssembly

Several of the disadvantages of running simulations on the web can be overcome by running a Python
model entirely in the client’s web browser using WebAssembly: a compact, binary instruction language
that runs with near-native performance. A key distribution is Pyodide: the CPython interpreter compiled
to WebAssembly using emscripten. A number of key packages from the Python scientific stack have also
been compiled to WebAssembly and are included in the distribution e.g. NumPy, Pandas, and Matplotlib.
Pure Python packages, (e.g. SimPy or Salabim) can also be installed at runtime and run against Pyodide.

Jupyterlite (Jupyterlite. 2024) is a WebAssembly build of the popular Jupyter IDE and runs in a user’s
browser. It serves static content and uses either the Pyodide or xeus-Python kernels to execute Python
code. This means it is possible to build interactive webpages on sites such as GitHub pages that contain
simulation models in Jupyter notebooks (JupyterLab. 2024). As JupyterLite serves static content and model
computation happens in the client’s web browser, users do not need to rely on limited-capacity or costly
hosting sites. In comparison, server-reliant cloud-based services like mybinder.org can be slow to build
the environment, especially with infrequent access, and have limited resource allocations.

In Jupyterlite, notebooks are downloaded to the local machine from a URL, and are stored in the
browser’s cache. The user can make changes to the model or create new files, and these persist until the
browser cache is cleared. The relative merits are:

• As all the components are on the client side, once all resources are loaded from web servers the
model can run offline.

• Model parameters/data are not sent to any remote servers and are only processed locally within
users’ machines. Without the need to manage servers, the security risks associated with server
vulnerabilities are mitigated. Similarly, files can be downloaded and output data can be safely
exported locally.

• Without the need for server side computation, there are no costs associated with server maintenance
and scaling.

• Unlike environments that require building and launching a server, Jupyterlite has no server startup
time and launches instantly.

• As it runs in the browser, the simulation is accessible on any device without needing specific software
installations. This provides an interactive web application with the computational capabilities of
Python but no need to install Python or any libraries.

• WebAssembly can be potentially suitable for computationally intensive simulations. However, it is
limited by the client’s machine resources (CPU, memory) and the browser’s capabilities.

• For M&S reuse, a link to a JupyterLite model with all notebooks, datasets and libraries configured
can make it very easy for users to get started without setup barriers.

• Every user accesses the same software environment directly in their browser, ensuring consistency
and reliability.

The trade-offs are:

• JupyterLite kernels (e.g. Pyodide) include a limited set of Python packages compiled to WebAssem-
bly. This means not all Python libraries are available, and not all (but most) of the features of
JupyterLab and Classic Notebooks are supported.

• The simulation’s performance and capability might be limited by the user’s browser and hardware.
• JupyterLite, being browser-based, does not support traditional multithreading due to its architecture.
• Although JupyterLite is currently being developed by core Jupyter developers, the project is still

unofficial as of the time of writing.
• The deployed model in Jupyter notebooks will display a mixture of exposed code, markdown, and

outputs such as results, tables, and charts. Changing parameters will require interacting with code
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directly. The notebooks therefore need to be designed for clarity, interactivity, and aesthetic appeal.
Stlite (Stlite. 2024) offers a user-friendly alternative, with a web app user interface using Streamlit.

3.4 Containerization

Deploying models via containerization robustly overcomes issues of dependency management. Containers
refer to lightweight, portable, self-contained software units that package together an application, such as
a simulation model, and all its software dependencies, including libraries, frameworks, data, and system
tools. Containers provide a consistent and isolated runtime environment for running applications, ensuring
that they behave the same way across different computing environments. Each container operates as a
separate entity, with its own file system, networking, and resources, while sharing the host operating
system’s kernel. Containers enable efficient deployment, scaling, and management of applications, as they
can be easily moved between different computing environments without compatibility issues. Containers
support reproducibility, as the exact same environment is used across all users’ machines. Containerization
provides an excellent solution for deploying interactive applications such as Streamlit and Shiny. Wrapping
everything in a container such as Docker (Docker. 2024) and posting it to a public (or private) container
registry such as DockerHub, reduces the need to recreate the environment and makes the simulation model
more accessible for users (Harper, Monks, and Manzi 2023). The relative merits are:

• Although more complex to set up than Jupyterlite/Pyodide, containerization is more versatile.
• Containers package the application and its environment, ensuring it runs consistently across different

computing environments.
• The software environment is specified at build time eliminating dependency management issues

for a user.
• Containers can be easily scaled and deployed across multiple instances for high availability and load

balancing. This makes them ideal for large-scale deployments where control over the environment
and dependencies is critical. In comparison, WebAssembly is more suitable for educational purposes,
or environments such as healthcare where installation privileges are restricted.

The trade-offs are:

• Requires some technical knowledge to set up and manage containers, and is therefore a less accessible
approach than web apps or WebAssembly.

• Requires users to have a container manager such as Docker installed, which might be a barrier for
those unfamiliar with containerization technologies.

• Docker requires commercial licensing for healthcare organisations.

4 APPLIED EXAMPLE USING WEBASSEMBLY

WebAssembly has potentially wide application in healthcare for model reuse, but we know of no examples in
practice. We detail a demonstration DES model that can be run in a user’s browser using WebAssembly. The
model can be accessed and run via this URL: https://pythonhealthdatascience.github.io/stars-simpy-jupterlite.
The model is tested in Firefox, Chrome, and Chromium-based browsers. Open the notebook file 01_ur-
gent_care_model.ipynb. The Jupyter notebook can be run cell-by-cell, or all at once. Parameters can be
modified in the code. We provide this example as a simplified demonstration model to illustrate approaches
to structuring, sharing, and deploying FOSS models.

4.1 Use Case

1. As part of a research study, a simulation model of complexity typically seen in healthcare DES has
been built using a Python-based simulation package (here, using SimPy).
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Figure 2: Conceptual flow of the DES model, a US-based urgent care centre, from Nelson (2013).

2. A researcher wishes to share a runnable version of the simulation model with their publication.
The code allows others to replicate the simulation results, tables and charts in a paper and allows
others to reuse the model.

3. The researcher wants the model to be immediately usable. Users should not need to install Python,
SimPy or any dependencies.

4. The researcher either wants to reduce load on online open science compute infrastructure (e.g.
mybinder.org) or does not want to rely on it.

5. Users may want to use a version of their own data but due to governance, ethics or other reasons
cannot upload the data to a remote instance of the model.

4.2 Case Study Model

Here we adapt an MIT licensed SimPy (Team SimPy. 2020) terminating DES model of an urgent care
department, adapted from Monks and Harper (2023). The model (Figure 2) is an implementation of a
stylized U.S.-based urgent care department described in Nelson (2013). Patients arrive to the health clinic
between 6am and 12am following a non-stationary Poisson process. A thinning algorithm is employed to
generate inter-arrival times. After 12am arriving patients are diverted elsewhere and remaining work-in-
process is completed. On arrival, all patients sign-in and are triaged. The health clinic expects two types
of patient arrivals: trauma (serious conditions), and non-trauma (minor conditions).

The simulation model provides a framework for decision makers to evaluate the impact of alternative
working processes on queues and other efficiency criteria in the urgent treatment health centre. At
the end of a model run the average waiting times and resource utilisation are calculated for each of
the following activities: (i) Patient triage; (ii) Registration; (iii) Examination (iv) Non-trauma patient
treatment (v) Trauma patient treatment. The model also calculates total time in system separately for
trauma and non-trauma patients. Confidence intervals are generated using multiple replications. Model
logic, baseline model parameters, and details of experimentation and implementation are available here:
https://pythonhealthdatascience.github.io/stars-simpy-example-docs/content/front_page.html. Running the
default model deployed using Jupyterlite to the URL above will run simple scenario analysis with the
following experiments:

• Increasing triage capacity by +1
• Increasing examination capacity by +1
• Increasing non-trauma capacity by +1
• Combining additional triage and additional examination capacity

4.3 Computational Materials

Simulation logic was executed using SimPy v4.1.1 (Team SimPy. 2020) and installed from conda-
forge. Data manipulation and visualisation was conducted using NumPy v1.25.2 (van der Walt et al.
2011), Pandas v2.0.3 (McKinney 2011), MatPlotLib v3.8.4 (Hunter 2007) compiled to WebAssembly, and
installed from emscripten-forge (Empscripten-forge. 2024). The model is runnable through Jupyterlite
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with a xeus-Python kernel running Python 3.11. All code is archived in Zenodo (Monks and Harper
2024b), and a template for automating the creation of new GitHub repositories is available online at
https://github.com/pythonhealthdatascience/stars-simpy-jupterlite.

4.4 Method

The model will run directly in the user’s browser without the need to install any components on the local
machine. This functionality is achieved using WebAssembly technology, specifically JupterLite (Jupyterlite.
2024) and the xeus-Python kernel (Xeus-python. 2024). We chose the xeus-Python kernel over Pyodide
for this implementation as it is simple to install dependencies at build time from conda-forge, providing
robust and straightforward package management.

The first time the URL is clicked, a Jupyter notebook containing the model is downloaded to a user’s
local machine along with all dependencies (i.e. SimPy) that were pre-installed from conda-forge. The
model notebook is stored in the browser’s cache. JuypterLite is loaded as an IDE and a user can make
changes to the model or create new notebooks. Any changes made are saved and persisted within the
browser cache. These stored models and notebooks remain accessible until the browser cache is cleared
by the user, ensuring that all work is retained across sessions.

This approach ensures an efficient user experience, combining local computation with the convenience
of a web-based interface. WebAssembly eliminates the need for users to manage local installations and
dependencies, making advanced healthcare modeling more accessible and user-friendly. Additionally,
ensuring that all computations are performed locally enhances data security by keeping sensitive healthcare
information within the user’s own browser environment.

4.5 Results: A Reproducible Pipeline

The notebook included in our method can be used as a reproducible pipeline. For example, if all cells
in the notebook are run in sequence the final cell generates the latex used in Table 1 to report the mean
waiting time results (in minutes) of six urgent care activities across five experiments.

Table 1: Simulation results that can be verified by our example reproducible pipeline.

Mean waiting time (mins) base triage+1 exam+1 treat+1 triage+exam
Triage 32.56 1.26 32.56 32.56 1.26
Registation 104.69 131.82 104.69 104.69 131.82
Examination 23.36 24.44 0.14 23.36 0.14
Non-trauma treatment 130.73 133.09 144.50 2.15 147.81
Trauma stabilisation 166.98 189.67 166.98 166.98 189.67
Trauma treatment 14.39 14.77 14.39 14.39 14.77

5 CONCLUSION

In this paper, we have examined current technologies to enhance the deployment of healthcare DES models
developed in Python, aiming to enhance functionality and usability. Different hybrid methods present
opportunities and limitations for reuse by healthcare services. For models intended for light use, developing
a front-end user interface in Streamlit, deployed to Streamlit Community Cloud (or other tools such as
Shiny), provides high usability. This method allows models to be easily accessible via a URL, and is
particular beneficial for small teams without extensive technical support. More costly cloud-based servers
can also be considered.

For applications where consistency, long-term usage, or large user bases are anticipated, containerization
could be considered. This method ensures reproducibility across different computing environments, and
simplifies updates and maintenance. It may suit larger teams that require stable, scalable deployment.
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Where data security is an issue, such as handling sensitive patient data, local model deployment may
be required. Using conda environments allows for a controlled setup that maintains dependencies without
complex configuration, though users require some technical ability to install and set up. WebAssembly
implementation also facilitates local processing, mitigating the risk of data breaches by avoiding server-based
computations, and eliminates the need for complex software installation processes. JupyterLite notebooks
load and become operational nearly instantly, as they don’t require server-side interaction. This also removes
the need for ongoing server costs, which can be advantageous for organizations with limited budgets. We
have demonstrated how Jupyter notebooks can provide a reproducible pipeline; this consistency is important
to ensure model credibility with users, and reliable, valid decision-support for healthcare service planning.

JupyterLite additionally supports the use of interactive widgets, allowing users to easily manipulate
simulation parameters. For streamlined, interactive user interfaces, Stlite (Stlite. 2024) is a stripped-
down version of Streamlit which is an alternative to Jupyterlite. This can be particularly suitable for
rapid prototyping or where ease-of-use is prioritised over extensive functionality. Additionally, healthcare
professionals can access JupyterLite or Stlite from any device that has a web browser via a URL.

By adhering to the ‘essential’ components specified in Monks et al. (2024), M&S researchers are
employing principles of open science such as transparency and scrutiny, increasing the rigor of their work,
longevity of their models, and trust in their results. By considering model reuse for a wide audience base,
such as those directly impacted by the results of the research, the potential to increase the societal impact
of the work increases (Munafò et al. 2017; UNESCO. 2021). The choice of deployment method should
be tailored to fit the specific needs of stakeholders and the user-base within a project. For healthcare M&S
researchers, a long-standing challenge is translating model results into real-world practice. While many
factors contribute to successful model uptake and reuse, each of the hybrid methods described overcomes
some of the barriers to model reuse in healthcare by enabling decision-makers to access and use the model.
While we have focused on the specific needs of healthcare users, these methods are widely applicable to
other domains where knowledge transfer, model reuse and usability are priorities (Kogler and Rauch 2020).

Our applied example provides educational resources to support capacity building in M&S, by providing
open, documented code of our demonstration model, and a template to automate the creation of new GitHub
repositories using WebAssembly. Future work will expand the approach to other methods and tools, and
will investigate the barriers and challenges to the use of WebAssembly in practice for healthcare end users.
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