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ABSTRACT

Systemic enterprise cyber risk typically arises when a single (software) vulnerability common across
many enterprise computing devices across the globe is exploited by adversaries, and results in catastrophic
aggregate cyber-loss consequences to be borne by CRM entities. Examples of such vulnerability exploitation
incidents include the Log4j and SolarWinds cyber-attacks. The important question we ask here is: how hard
is it to discover these ‘single vulnerabilities’ in enterprise information systems? We prove that answering
this question is NP-hard. Alternatively, leave alone humans, even a computer via cyber-attack simulations
might not (in the worst case) discover in finite time such vulnerabilities. Consequently, CRM entities can
only expect and prepare for an inevitable catastrophic systemic cyber-incident in time rather than predict
the likelihood of one. Likewise, we propose the policy implications of our research for the CRM market
stakeholders and elucidate relevant action items for effective systemic enterprise CRM.

1 INTRODUCTION

We are in the pervasively digital age where societal service sectors are getting increasingly driven by IT
and IoT technology. Consequently, with this rapidly growing cyber-terrain the likelihood of cyber-incidents
(henceforth synonymous with cyber-attacks in this paper) increases manifold. A salient characteristic of
ecosystems carved out by societal service sectors is that the sectors are interdependent upon each other.
As an example, industries in the natural gas, electricity, healthcare, air transport, and postal/courier sectors
rely upon one another for business continuity (see Figure 1). A cyber-incident directly impacting business
continuity (BC) of enterprises in a given sector can simultaneously affect the BC in other sectors. To drive
home this point, let us briefly work through four real-world examples of recent such cyber-attacks.

1.1 Examples of Potent Real World Cyber-Attacks on Societal Service Sectors

A single software vulnerability in the Log4j cyber-attack (launched by Chinese cybersecurity researchers
in November, 2021 via exploiting Log4Shell as a zero-day vulnerability in the low-profile Log4j software
utility embedded in billions of enterprise devices) could have caused widening ripples with catastrophic
societal consequences. The Log4j vulnerability that affected approximately 40% of global enterprise devices
allows attackers to remotely control and execute code on vulnerable machines after which they could cause
adverse enterprise impact ranging from minimal to lack of business continuity for days if not weeks.

The SolarWinds cyber-incident of 2020 involved Russian hackers insert (in March 2020) a single
malicious trojan code (Sunburst) into the software update of Orion - an IT performance management
system widely used by private and government enterprises worldwide, to gain access to confidential
business workflow information. More than 18,000 enterprises had applied the Sunburst update globally
and this resulted in an accumulative and irreparable damage worth billions of US dollars.

The Colonial Pipeline cyber-attack was a ransomware cyber-incident launched by DarskSide in May
2021 that forced the company (the largest US pipeline system stretching to about 5500 miles on the
East Coast) to close down business operations and freeze their IT systems. The attack vector has never
been made public but it is certain that it is a single ‘element’ - either an unpatched vulnerability, or an
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Figure 1: Showcasing the chart of complex service dependencies among networked enterprise sectors with
critical cyber infrastructure. [Source: Netherlands Organization for Applied Scientific Research (TNO)].

employee getting phished, or an insider leaking access credentials to hackers. The business disruption
caused consumer panic and many gas stations ran low or out of fuel for about a week hampering the
functioning of multiple segments of the transportation industry (including American Airlines that ran short
on fuel) Colonial Pipeline had to pay out USD 4.4M as ransom payment to resume services.

NotPetya was one of the most potent cyber-attacks (launched by the Russian hacking group Sandworm
in June 2017) in history arising out of cyber-warfare between Russia and Ukraine. NotPetya was a modified
version of Petya, that took advantage of two known exploits in older Windows versions: EternalBlue and
Mimikatz to embed malware into a Kiev-based tax filing software application used by multiple enterprises.
The specialty of NotPetya was that it did not resort to user action as is the case in social engineering
attacks, and was fast in its task of rapidly traveling from system to system accessing admin credentials.
Banks in Ukraine and their transit hubs went non-operational within a span of a minute. On a global
scale, business activities of (a) the global shipping giant Maersk, (b) pharmaceutical giant Merck, and (c)
Cadbury manufacturer Mondelez and (d) courier giant TNT Express, resulted in shutdowns and took days
to resume normal functionality. The total estimated economic impact of the NotPetya cyber-attack has
been estimated to be atleast USD 10 billion.

1.2 The Nature, Structure, and Agency View of Systemic Cyber Risks

Cyber-attacks such as the ones mentioned above fall in the category of systemic cyber risk. These risks,
a subset of the broader category of systemic risk usually arise when a single cyber-trigger event such as
injection of malicious code inside a computer network or a tiny set of vulnerabilities (be it technology or
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human driven) when exploited by adversaries, result in widespread failures (of the type of business disruption
or enterprise security compromise) spanning corporate organizations (enterprises), critical infrastructure,
and/or nations. This is the basic nature of systemic cyber risk.

In terms of structure, systemic cyber risks broadly take two forms - a chain reaction (a vertical failure)
and contagion effect (horizontal failure) (Forscey et al. 2022). As examples of each, hackers can take down
a single Internet exchange point that will prevent it from providing critical services to multiple end-users
and businesses at the same time in a given geographical locality triggering a cascading chain reaction
effect of global business disruptions reliant on these local businesses. Likewise, a malicious vulnerability
exploit in an operating system (OS) affecting multiple computers (including those in enterprises using the
software) across the globe via a contagion effect can adversely impact the core operations for all users
using the OS. Take note that a contagion effect can lead to a chain reaction.

Finally, what is more important is the size of the systemic cyber risk terrain as viewed by agencies
managing and governing systemic cyber risk. In this regard, there have been multiple (overlapping) notions
of systemic cyber risk put forward by agencies such as Cybersecurity and Infrastructure Security Agency
(CISA), European Systemic Risk Board (ESRB), and big multinational insurance companies (Forscey et al.
2022). While the CISA focuses more on systemic risks on critical infrastructure that span within a nation,
ESRB complements CISA’s notion on systemic risk to include national and international economies that
are formed from enterprise business activities. Whereas, multinational insurance agencies (like Munich
Re) characterize systemic risks to be those that are non-insurable due to accumulative effects of correlated
individual cyber risk spread across clients in different societal service sectors and geographical regions.

1.3 The Causal Factors of Systemic Cyber Risk

One has to understand that a cyber-network of interdependent businesses across societal service sectors is
large and significantly more densely connected than many other societal networks, which amplifies systemic
risk. In a broad sense, there are five main causal factors of systemic cyber risk (Forscey et al. 2022).

1. Risk Concentration, wherein common technologies such as software, OSs; and third-party service
providers create “common vulnerabilities, data bottlenecks and single points of system failure."
that amplify systemic cyber risk and its consequential social and economic impacts.

2. Complexity wherein intricate mutual dependencies on technical, contractual, and financial dimensions
of an interdependent societal network leads to poor visibility of single points of failure.

3. Opacity wherein there is a lack of transparency between managers of enterprise information systems
and the enterprise clients on component specifics of privately owned and operated technology systems.

4. Scale, wherein large scale attacks can be launched by adversaries at a very low marginal cost due
to the fast spreading pathways in dense interconnected networks, and

5. Intelligent Adversaries, wherein the bad actors high in computational, cognitive, and motivational,
and technical resource availability (when compared to some enterprise cyber risk management teams)
can discover simple yet undisclosed vulnerabilities that can cause a chain reaction of cyber-breach
and/or business disruption events in an interdependent societal network.

Subsequently, it is imperative to focus research on discovering vulnerabilities contributing to systemic
cyber risk. To drive home the importance of this point, in the World Economic Forum Annual Meeting
2023 in Davos, Over 93% of cybersecurity experts and 86% of business leaders (surveyed across 300
experts) opined that “a far-reaching, catastrophic cyber event is likely in the next two years”.

1.4 Estimating Systemic Cyber Risk: Data Collection and Simulation Challenges

The most important step to estimate systemic cyber risk involves detecting causal elements (i.e., cyber
vulnerabilities) that can generate systemic cyber risk. There are two broad approaches to this detection
task: data collection, and penetration testing simulations.
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The approach of data collection is loaded with obstacles. Many enterprises do not have a software bill
of materials (SBOMs) and/or hardware inventories for security managers to locate systemic-level points of
failure. This is the intra-organizational opacity between enterprise information system managers and the
software/hardware driven information systems used within the enterprise. Even if one (e.g., cyber-insurance
companies) considers collecting information on the most important software/hardware components within
an enterprise’s information systems, the information set obtained from managers often misses out on
some components generated through external network scans - such is the complexity of the dependencies
between software and hardware components. Add to this, enterprises make a conscious effort not to report
dependencies between information system components, vulnerabilities (unless not mandated by law that
is prevalent in very few countries around the world) to cyber-insurers or in public in the fear of losing
competitive advantage or inviting legal action, and also to remain evasive of exploitative malicious actors.

The approach of penetration testing involves a cyber-attack simulation targeted at discovering and
checking potential vulnerabilities so that they could be patched before real-life adversaries can exploit
them. This approach includes ethical hacking activities. The target range of penetration testing activities
span attempts to breach any number of endpoints or applications, from application protocol interfaces
(APIs) to backend servers of an enterprise. The types of penetration testing include web application testing,
network security testing, social engineering testing, and cloud security testing. Typical market products
include the Powershell Suite, Wireshark, Metasploit, MobSF, and Apktool. However the penetration testing
(pen-testing) approach is not without its share of considerable drawbacks. Pen-testing is inconsistent in the
sense that it is performed by experts whose skill sets and strengths vary substantially. Pen-testing is a costly
and resource intensive effort that is currently deployed by enterprises periodically but only for a constrained
time duration. However, the cyber-threat environment and enterprise security posture is very dynamic that
is likely to leave important undetected vulnerabilities from the pen-testing efforts. Alternative approaches
such as deploying vulnerability scanning systems might alleviate this drawback but these systems don’t
incorporate context, and might result in noisy output that includes lot of issues that are low-risk and should
not be given resolution priority and few issues that are high-risk and should necessarily be given resolution
priority but those that escape the attention of the enterprise management.

It is evident that identifying vulnerabilities that cause systemic cyber risk, either via modern data
collection or by pen-testing simulations and vulnerability scanning approaches are imperfect to result in
zero chances of a systemic cyber risk event.

Goal - Our goal in this paper is to study the fundamental question: how difficult (as a formal guarantee)
is it to computationally find/search vulnerabilities that result in negligible or low chances of systemic cyber
risk? Note that computational approaches supersede manual approaches in terms of search effectiveness.
Hence, a computationally difficult task would directly imply manual difficulty but not vice-versa.

1.5 Research Contributions

We make the following research contribution in this paper.

• We first prove using algebraic graph theory that for a set of enterprises represented as nodes connected
through an inter-dependent service network (graph), and each node having a diverse portfolio of
service liabilities spread across its neighbors to whom it provides service, even a small decrease to
the portfolio (due to security mishaps post vulnerability exploitation in the enterprise’s information
systems) on any network edge (i.e., the liability guarantees are affected due to a cyber-attack on the
enterprise node) could significantly impact the service reliability in the network (see Section 3).

• We subsequently prove that, even in the most ideal setting when a cyber risk manager (e.g., a
cyber (re-)insurer) has complete knowledge of every client node’s service liability portfolio across
graph neighbors and client security investment portfolios for assets inside their enterprises, it is
computationally intractable, i.e., NP-hard, to find out the number of enterprise nodes that are
systemically affected post a cyber-breach event - a necessary pre-requisite to optimal systemic
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cyber risk estimation and management at both, an individual enterprise (node), and the ecosystem
(network) level. In other words, leave alone humans, even the most advanced vulnerability detection
simulator software will not be able to detect with 100% accuracy in a finite amount of time, all
vulnerabilities that might result in a systemic cyber-incident (unless P = NP). Here, the notion of an
enterprise being systemically affected implies it being impacted indirectly by a direct cyber-attack
on some upstream enterprise (in the graph), on the lines of compromise by malicious entities and/or
business disruption to provide a given service (or providing service at a significantly low QoS) to
any of its inter-dependent clients downstream. We prove the NP-hardness property by reducing the
Balanced Complete Bipartite Subgraph (BCBS) problem - already known from theoretical computer
science literature to be a NP-hard problem (Garey and Johnson 1979), to our task (see Section 4).

The established computational hardness of optimal systemic cyber risk assessment (and subsequent
estimation) task does not in anyway undermine the existing (steady) success, or periodic volatility (see
Section 4 for details) of cyber-insurance markets. It just establishes, in a formal and foundational manner
for the first time, the inevitable limitations of preventing a systemic cyber-attack in society. Throughout
the rest of the paper, we use the term ’dysfunctional’ and ’systemically affected’ interchangeably for a
network node that is adversely impacted via a systemic cyber-attack event.

2 RELATED WORK

We review related work in this section in a concise and brief manner in the interest of space.
First and foremost, ours is the first work of its kind to investigate into the computational tractability

aspects of optimal systemic cyber risk estimation in an inter-dependent service network post a cyber-
breach event - a necessary pre-requisite for effective CRM. In recent related efforts Pal et al. (2021), Pal
et al. (2023), the authors show the optimal cyber risk diversification problem (a related variant of the
optimal systemic cyber risk estimation problem as optimal risk diversification relies upon optimal systemic
cyber risk estimation as a problem instance) in service networks to be NP-hard for residual cyber risk
managers. The diversification problem assumes that accurate knowledge of security investment portfolios
of organizations is an information asymmetry (IA) challenge, and show that it is NP-hard to design optimal
cyber (re-)insurance contracts under the IA challenge. In contrast, we in this paper show that even in the best
case, when a cyber risk manager (e.g., (re-)insurer) has complete knowledge of every client (organization)
node’s service liability and security investment portfolios, it is computationally intractable, i.e., NP-hard,
to find out the number of dysfunctional (systemically affected) organizational nodes after a cyber-incident.
Irrespective of the hardness of estimating systemic cyber risk, policies in practice to manage cyber risk,
systemic or otherwise, through cyber (re-)insurance solutions has been active since the last decade and a
half. The proven potential of cyber-insurance to improve cybersecurity has been mathematically shown
in seminal papers Shetty et al. (2010), Hofmann (2007), Pal and Golubchik (2010), Pal et al. (2014),
Naghizadeh and Liu (2014), Pal et al. (2018), Pal et al. (2011), though without reaching market efficiency.
However, this has not completely discouraged cyber-insurance providers from increasing their supply of
solution products, that is steadily seeing an increase over the years. The current advent of cyber re-insurance
solutions is fuelled (since 2017) by the recent massive cyber-attack impacts caused by large-scale DoS
(Mirai) and ransomware (WannaCry, Petya) attacks that have led to cascading and aggregate supply-chain
organizational claims upon insurers. To this end, recent theoretical efforts have zoomed in to the statistical
nature of loss impact distributions, and their influence on the feasibility (if not optimal profitability) of
cyber re-insurance markets. More specifically, in a series of efforts Pal et al. (2020), Pal et al. (2020),
Pal et al. (2020), Pal et al. (2021), Pal et al. (2020), the authors have proved that spreading catastrophic
heavy-tailed cyber risks that are identical and independently distributed (i.i.d.), i.e., not tail-dependent,
is not an effective practice for cyber re-insurers, whereas spreading i.i.d. heavy-tailed cyber risks that
are not catastrophic is. While this latter point has long been believed and empirically validated in the
cyber-insurance research literature, the former point is a surprising new facet that the authors unravel
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via theory. In addition, spreading catastrophic and curtailed heavy-tailed cyber risks that are (non) i.i.d.,
i.e., not tail-dependent, is not an effective practice for cyber-reinsurers. Orthogonal to investigating the
statistical (and economic) sustainability of cyber re-insurance markets, we investigate on the computational
feasibility of underwriting optimal cyber-insurance contracts for managing systemic cyber risk.

3 SENSITIVITY OF SERVICE NETWORK RELIABILITY TO A SYSTEMIC CYBER-ATTACK

Even before we answer the question on how hard it is to computationally estimate systemic cyber risk,
we should first provably demonstrate the importance of this problem by emphasizing to what degree a
cyber-attack of the least systemic potency on a single enterprise node affects the reliability of the entire
interdependent service network ecosystem. This is a sensitivity analysis task in the jargon of operations
research. Subsequently, we will first mathematically demonstrate that even a small decrease in the liability
portfolio (due to security mishaps) between any two enterprises in a service network can have a large
externality-induced impact on the service reliability in the overall network. We will then prove in Section
4 that the systemic cyber risk estimation problem is NP-hard.

3.1 System Model

We assume n organizations/enterprises in a smart city setting and networked together via service relationships.
Each organization invests in m security-enhancing instruments (SEIs) [e.g., antivirus, firewalls, security
software updates], that contribute to the overall security strength (SS), i.e., reflects the cyber-security posture,
of the organization. Each SEI instrument k has a weight of ssk indicating the security strength/effectiveness
of the instrument. As a conservative assumption (to strengthen the reality behind the theory claims we
will make in this paper), we let ssk to be the same for all organizations for any given k. This could
pathologically happen if for example every organization buys the same commercial antivirus package, or
all their IT systems use the same OS whose manufacturer releases a common security patch at a given
time. Also note here that by analysing this pathological example we are implying that if the sensitivity is
high for this case, then a major direct cyber-attack on a source enterprise that hits the QoS of the latter
significantly can have a massive systemic impact on the networked enterprise ecosystem.

Each organization i is assumed to allocate a normalized portfolio proportion of Dik ∈ [0,1] to SEI k.
A Dik value of 1 indicates i harnessing the full power of SEI k, and a Dik value of 0 either indicates
i not buying SEI k, or not using/deactivating it post purchase/download. The n×m matrix is denoted
by D = (Dik). We define C = (Ci j) to be the n× n matrix indicating the portfolio of strength of service
liabilities between organizations in a service network. Thus, organization i is liable upon organization j
for Ci j fraction of its service needs. As an example j could be a public cloud provider like Amazon (e.g.,
AWS) selling compute and storage instances, and i could be a start-up relying on a significant amount of
such resources for their daily operations. C carves out a directed network (graph) with n nodes representing
the organizations, and an edge from organization i to j of weight Ci j > 0 (Cii = 0 for all i). Now, ∑ j Ci j
is the fraction of organization i’s service needs that are met by organizations (enterprises) external to i.
The remainder needs of i, denoted by Ĉii = 1−∑ j Ci j, is met through its self-owned resources. The matrix
Ĉ is a diagonal matrix with Ĉii on the diagonal. The valuation of the total security strength gained by
organization i (as being part of the service network) is then given by

Vi = ∑
k

Dikssk︸ ︷︷ ︸
Valuation due to SEIs of i

+ ∑
j

Ci jVj︸ ︷︷ ︸
Valuation due to SEIs of nodes ‘feeding’ i

, (1)

where Vi is the sum of the security strength gained by organization i on its SEIs, together with the liability
proportion induced sum of the security strength gained by organizations on which i depends for its service
(the out-degree neighbors of i in the service graph) for providing service to their customers. Without loss of
generality we assume that Vi is linearly separable for analytical tractability purposes. The rationale behind
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this leveraged formulation (in line with Hemenway and Khanna (2016)) is simply the communication-
theoretic fact that cyber-security strength is both, a function of the service provider side and also the service
receiver side (illustrating the network externality effect).

Moreover, the sum total of the security strength gained by organizations as being part of the service
network is significantly higher than the sum of the security strength of the SEI components, i.e., ||V ||1 ≥ ||s⃗s||1
they individually invest in, due to positive network externalities. In matrix notation, Equation (1) becomes
V = Ds⃗s+CV which implies V = (I −C)−1Ds⃗s. The matrix I −C is invertible because we assume that
Ĉ j j > 0, hence the column sums of C are all strictly less than one. In fact, the matrix I −C is an M-
Matrix (Poole and Boullion 1974), and consequently (I−C)−1 is an inverse M-Matrix (Willoughby 1977;
Johnson 1982). In order to evaluate an organization i’s non-leveraged security quotient with respect to
Vi - its leveraged security strength gained through network externality effects, we must scale the latter
quantity by the fraction of security requirements i does not offload (as in SECaaS business models) to
other organizations, and takes it upon itself by investing in SEIs. The resultant quantity is i’s contribution
to the total amount of positive externality generated in the service network through SEI investments made
by all organizations. Specifically, the individual security quotient of organization i w.r.t. V is vi = ĈiiVi.
The vector of individual security quotient values are the solution to the following system of equations:

v = ĈV = Ĉ(I −C)−1Ds⃗s. (2)

The matrix C is column sub-stochastic because column i sums to 1−Ĉii. Thus, in strongly inter-sector
coupled smart societies, the SEI-induced security quotient of organizations is heavily dependent on the
weights C in the service network.

3.2 What is the Reliability Cost of a Service Edge Going ‘Down’ on a Cyber-Attack?

In this section we will study the impact of a small hit on the security strength of a single enterprise
(organization) to the overall hit in security strength of the interdependent service network. In high-level
terms we term this impact to be the reliability cost (to be formally explained below).

Although Vi for any enterprise i is useful information for an audit agency partnering an under-writing
residual cyber risk management (RCRM) firm (e.g, cyber-insurer, cyber re-insurer), what matters most in
assessing systemic cyber risk and the subsequent pricing of RCRM contracts is the security quotient of i.
Higher the quotient (signaling increased positive intent to take more control of services security, than to
offload it) higher the pricing confidence of under-writers to assess systemic cyber risk and fairly price i.
Consider an example simplistic scenario where a single organization (e.g., a cloud provider) that serves
10% of the business needs of a start-up (the customer) i is hit by a cyber-attack (e.g., type of Sunburst
APT hacks that enable hackers to slip malware into software updates of SolarWinds’ Orion software
widely used by organizations in multiple service sectors) that allows it to only service 7% of i’s needs till
breach-management is successful. Consequently, ε = (10−7) = 3% is the negative service liability impact
on i due to the cyber-attack on the cloud provider (in reality the cyber-attack will simultaneously affect
many organizations reliant on the cloud provider with different magnitudes of ε). In addition, assume in
the above example that the customer is small enough to contribute only ri = 5% of its business and security
needs through its own resources (e.g., virtual machines, SEIs), and relies on other organizations (as in
SECaaS business models) for the remaining 95%.

Clearly, organizations reliant on i for service availability such as in the above example will be vulnerable
to low QoS despite the positive externalities in relation to security enhancement i may receive from its
‘feeder’ peer organizations. After all, it only takes to compromise the ‘feeder’ organizations - occurrences
that are frequently on the rise, especially in the COVID and work-from-home (WFH) era. Hence with
the thought of systemic cyber risk in mind, i is likely an unattractive candidate to sell marketable RCRM
policies (e.g., inexpensive premiums, low deductibles), despite the demand from the latter. On the contrary,
RCRM contract sellers would not want to incur high opportunity costs in missing out on providing service
to the pervasive IT-reliant small and medium businesses (SMBs), as the latter presents a huge market scope.
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In order to resolve this dilemma, a question RCRM contract sellers would ask is: what is the maximum
negative impact of a particular ε incurred upon a single outgoing edge from any given i on vi (derived
from Equation (2))? - customer i’s SEI-induced security quotient. For the remainder of the paper, we term
this impact as the reliability cost of a service edge going ‘down’ (hit by a cyber-attack and incapable
of working at full strength). The reason - a drop in the security quotient of a organization node i will
proportionally adversely affect the reliability of downstream services to other organizations sourced at i.

The answer to the question has significant CRM pricing and regulatory importance simply because
(a) appropriately scaling this impact showcases a loose bound on the aggregate system reliability costs
incurred in the entire network if multiple service edges were impacted, and (b) the effect of liability-induced
negative network externalities (post cyber-attack events) emanating from the ‘central’ service providers
(e.g., a cloud provider) or SMBs on their own customer nodes (i being only one of them) could decide the
seller investment portfolios, premium pricing, and deductible structures in the RCRM business. We have the
following result inspired by existing research Hemenway and Khanna (2016) in financial service networks
characterizing the reliability cost when a service edge in a network goes ‘down’ due to a cyber-attack.
Theorem 1 For any given service network inducing a directed graph (that might include cyclic liabilities
dependencies) if ∥C−C̃∥1 < ε , then ∥⃗v− ˜⃗v∥1 <

ε

r ∥Ds⃗s∥1, where ε reflects the liability performance hit on a

given service edge post a cyber-attack; ∥⃗v− ˜⃗v∥1 is the reliability cost due to the ε hit; and r = mini(
˜̂Cii,Ĉii)

is the minimum value of ri (fraction of non-offloaded business/security needs) for any enterprise i. In
addition, it always holds that ∥⃗v− ˜⃗v∥1 ≤ 2∥Ds⃗s∥1, thus resulting in

∥⃗v− ˜⃗v∥1

∥Ds⃗s∥1
≤ min{ε

r
,2}.

Moreover, if the service network is acyclic, and if ||C−C̃||1 < ε , then ||⃗v− ˜⃗v||1 < ε||s⃗s||1.
Proof Sketch - Using the principle of mathematical induction on the individual levels (for acyclic

graphs), we see that the sum of the security strength values on the outgoing edges from level i in the graph
is at most ||s⃗s||1. Since each organization i’s Vi value is at most ||s⃗s||1, an ε change in the QoS of any edge
corresponds to an absolute change of at most ε||s⃗s||1 - thereby proving the theorem. For the case of cyclic
graphs, the application of the triangle inequality via algebraic manipulation results in the theorem proof.

Theorem Implications in Practice - The theorem implies that the reliability cost, i.e., the maximum
amount of hit to the security quotient, induced by a liability performance degradation on even a single
edge could be very high if the service network graph is cyclic, but is bounded by ε||s⃗s||1 if the network
is acyclic. Simply put, negative externalities amplify in cyclic graphs. For the example above, when ri =
5%, the reliability cost could shoot upto atmost 20ε for a given ε value if the underlying service graph is
allowed to have cycles - leave alone how aggregate reliability costs would be incurred if liability guarantees
on multiple edges degraded simultaneously. In a service network design context, inter-dependency cycles
should be avoided if and when possible. On the other hand for acyclic service graphs the reliability cost
can go as low as 5ε for the above example. From a policy design viewpoint, it is fair to say that measures
to modify graphical liability structures between organizations (e.g., promoting acyclic liability graphs) to
reduce reliability costs is a distant reality - however, information disclosure regulations could be made
stronger for organizations to be able to report the ε’s, the r values (the ε’s and the r enabling a public
accountability of organizational cyber-security posture along with the degree of self-liability undertaken),
and their liability relationships for RCRM contract providers to effectively estimate systemic cyber risk
and subsequently price CRM contracts appropriately. In addition, there should be regulations in effect that
mandate the existence of threshold security controls to be enforced upon IoT device manufacturers prior
to packaging for sale. This would reduces chances of hits to security quotient values.
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4 SYSTEMIC CYBER RISK ESTIMATION IS COMPUTATIONALLY INTRACTABLE

Thus far, we showcased the importance of organizational reliability costs to RCRM solution providers
and showed that they could be very high in a service network under the effect of externalities. In this
section, we show (along with a discussion on practical and policy implications) that even in the ideal
(information symmetric) scenario where there is perfect knowledge to a RCRM contract underwriter of
(a) reliability costs, (b) the service network, and (c) the individual organizational investments in SEIs, it is
computationally hard, post a cyber-breach event(s) in any part of the network, to estimate the number of
dysfunctional organizations who either cannot provide a given service to their customers or provide them
at very low QoS. In other words it is computationally hard to accurately estimate the systemic effects of
a cyber-incident. For the purpose of this paper, we have termed this number as a proxy but proportional
estimate of systemic cyber risk post a cyber-breach event(s) and is a very important input in the interests of
scalable RCRM businesses. More specifically, we address the following question under an ideal information
symmetry scenario: given an inter-dependent service network, if the total security strength of the SEIs drop
(either on a single instrument or in combination) by some small amount d (due to budget-induced poor
cyber-hygiene) for any organization and it becomes a successful target to a cyber-security breach w.r.t. a
given service, what is the maximum number of organization nodes that will become dysfunctional w.r.t. to
any corresponding service, due to the inter-dependent nature of the network?

This is one of the most fundamental questions in systemic cyber risk management when it comes to
judging the feasibility of cyber risk aggregation by third-party risk managers, simply because an ‘unaccounted
for’ dysfunctional node of central importance in the service network could contribute to a heavy-tailed
aggregate cyber risk distribution that might render RCRM infeasible (see Pal et al. (2020), Pal et al. (2021),
Pal et al. (2020), Pal et al. (2020) for a detailed theory). In addition, it is often the case in real practice that
many IT and cyber-physical driven organizations, irrespective of their sizes and reputation, do cut their costs
with respect to investing in appropriate amounts of back-end cyber-security in favor of boosting/re-aligning
their investments in other front-end ventures (Blau 2017). The primary reason behind this enigmatic trend
is that the digital threat landscape changes constantly, and it’s very difficult for the C-suite of enterprises
to know the probability of any given cyber-attack succeeding — or how big the potential losses might
be. Consequently, this adversely affects their judgement of the ROI on cyber-security investments, i.e.,
investments in SEIs. Insights from behavioral economics and psychology show that human judgment is
often biased in predictably problematic ways. In the case of cybersecurity, some decision makers use the
wrong mental models to help them determine how much investment is necessary and where to invest. As
an example, some CEOs think that SEI instruments that create a fortified castle is all that’s needed to keep
a company safe, and cut costs on critical SEI components such as hiring specialist vulnerability testing
engineers. As a result, the goals of a financial decision maker will always be oriented toward cyber risk
mitigation instead of cyber risk management.

The fact that we show that answering the aforementioned fundamental question is NP-hard even for ideal
information symmetric scenarios, renders the question NP-hard even for practical information asymmetric
scenarios. Our hardness result is based on the computational hardness of the Balanced Complete Bipartite
Subgraph (BCBS) problem that involves finding a maximum balanced clique in a bipartite graph. The
problem is formally defined as follows (see Garey and Johnson (1979)).
Definition 1 (BCBS) Given a bipartite graph G = (V1,V2,E) with |V1|= |V2|= n, find the largest integer
K such that there exists sets C1 ⊂V1 and C2 ⊂V2 with the properties that |C1|= |C2|= K, and the induced
graph on C1 ∪C2 is a complete bipartite subgraph of G.

It is well known from the theoretical computer science literature that the BCBS problem is NP-hard
(Garey and Johnson 1979). In practical terms, this implies that there is no scalable algorithm (unless P
= NP) that can compute the size of the maximum balanced clique in a bipartite graph in a reasonable
(polynomial in n) amount of time. As a matter of fact, the problem is so computationally difficult that
even approximating the size of the largest balanced clique is hard. More specifically, according to seminal
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results in Feige (2002), Feige and Kogan (2004) for some δ > 0 (i) it is Random 3-SAT hard to approximate
BCBS to within a factor of nδ , and (ii) provided the optimal solution to BCBS can be approximated to
within a factor of 2(logn)δ

for every δ > 0, 3-SAT can be solved in time 2n3/4+ε for every ε > 0, and (iii)
there exists no polytime algorithm that will approximate BCBS to within a factor of nδ (unless P = NP).

We now state our main result, adapted for cyber-settings from financial network settings (Hemenway
and Khanna 2016), elucidating the computational complexity of estimating systemic cyber risk that in our
paper is equivalent to estimating the maximum number of dysfunctional (with respect to a given service)
organization (enterprise) nodes in an inter-dependent service network post a cyber-breach event on a single
node due to a C-suite induced reduction of d units of investment (information unknown to an RCRM
solution provider) in cyber-hygiene by the said organization.
Theorem 2 For every bipartite graph G on 2n nodes, and every ε > 0, there is an acyclic inter-dependent
service network with Ω(n) organizations (enterprises), and a d > 0 such that computing the maximum
number of organizations that could become dysfunctional with respect to a given service (as a proxy to
computing an estimate of systemic cyber risk), following a cyber-breach event on a given organization due
to a reduction of dε units of investment in SEIs, is as hard as solving the BCBS problem in G. In other
words, estimating systemic cyber risk in interdependent service networks is NP-hard.

Proof Sketch - The proof sketch involves a brief explanation of a reduction and construction logic.
Let l > 0 be any integer. Note that for an n×n balanced bipartite graph G, it is a computationally hard
problem (i.e., NP-hard problem) to decide whether the largest balanced bipartite clique size in G is at least
K ×K or at most K

g × K
g for some arbitrary gap function g. Given G, we will construct a inter-dependent

service network with (2+ l)n enterprises in a manner such that if G has a balanced bipartite subgraph of
size k, then a drop in security investments on SEI by a networked organization (enterprise) by an amount
Kε can cause at least (2+ l)K enterprises to become dysfunctional in a systemic fashion. On the other
hand, if the largest balanced bipartite subgraph of G is of size K

g , a drop in the security investments on
SEI instruments by K can cause at most K+ K

g (l+1) organizations to become dysfunctional in a systemic
fashion. The implication here is that estimating the maximum number of dysfunctional organization nodes
(w. r. t. to a given service) induced by a fixed reduction in SEI investments is at least as hard as estimating
the size of the maximum balanced bipartite clique. Now when g = nδ , choosing l = poly(n) gives us a gap
of ((l +2)n)δ ′

for δ ′ < δ and with the help of additional algebraic manipulations, we prove Theorem 2.
Theorem Implications in Practice - Apart from the evident fact that systemic cyber risk estimation

in an inter-dependent service network is NP-hard, the theorem showcases multiple practical insights.
First, the result is true for acyclic bipartite interdependent service networks - in practice, service networks

are likely to be cyclic making systemic cyber risk estimation in such networks even more computationally
challenging. Second, in the presence of information asymmetry about reliability costs, network topology,
vulnerability information sharing in public, etc., cyber risk terrain estimation is computationally hard. Third,
it is computationally intractable to have an accurate estimate of cyber risk aggregated at an organizational
node post a cyber-breach event - a strong counter-force to the foundational principle of RCRM solution
providers who seek to attempt to identify the important “sources of aggregation” which if exploited or
disrupted, have the potential to negatively impact many organizations, endpoint devices or individual
persons. In practice, systemic cyber risk estimation is one of the most difficult aspects to managing cyber
risk for any insurer or reinsurer. because of the “limitless” that could be imagined, and these constantly
evolve over time with advancements in technology and threat actor capabilities. Fourth, either, the RCRM
business will be difficult to scale for smart societies, or there should be significant capital influx from
regulatory/financial authorities to RCRM solution providers in addition to the establishment of strong
information disclosure laws by policy makers enforced upon RCRM clients. Finally, self-insurance will
and should remain a major investment by enterprises for two reasons: (a) to ‘insure’ for risk categories
that are either usually excluded by RCRM solution providers or are weakly covered, and (b) to sustain a
threshold level of cyber risk management during periods of volatile RCRM markets. As an example of
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(a), the current cyber-insurance market has excluded “infrastructure failure” (e.g., failure of energy and
telecommunication networks) and “cyber war” between nation states as coverage areas due to them being
failures that lead to “unmanageable aggregation risk”. This is a big exclusion as such cyber-attacks are on
the rise and leading organizations to rely on self-insurance and technology solutions to manage cyber risk.

5 POLICY RECOMMENDATIONS TO IMPROVE SYSTEMIC CYBER RISK ESTIMATION

We layout three policy making ideas that can improve the effectiveness of estimating systemic cyber risk.
Boost Capability to Recognize Software Dependencies - There should be significant effort by cyber risk

managers of liability networked enterprises to understand software supply chains, given a recent published
list by the US National Institute of Standards and Technology (NIST) identifying critical software categories
such as operating systems and web browsers that are common across global enterprises. A way forward in
this direction is the sharing of Biden-administration backed NIST-recommended Software Bill of Materials
(SBOMs) that will allow vendors to transparently communicate contents of their software with enterprise
management. Other complementary solutions include identifying elements of open source code that can
be systemically critical (e.g., solutions innovated by the Linux Foundation and Google).

Identify Systemically Critical Enterprises in an Interdependent Network - Like post the case
of the financial crisis of 2008 where the Financial Stability Board (FSB) designates global banks and
insurance companies in financial networks as systemically important, a similar thing needs to be done by
a regulatory agency for interdependent societal networks of enterprises. As precedence, a 2021 bill in US
House of Representatives allows CISA to designate subset of systemically important critical enterprises.
These are enterprises that are at most risk of triggering, propagating and/or suffering the adverse impact
of systemic cyber risk events. Regulated platforms should be there in place for such enterprises to share
among themselves systemic catalysis pointers. Agencies like the International Telecommunication Union
(ITU) should set aside geopolitical considerations and work with tech companies to mitigate challenges to
effective systemic cyber risk management in enterprise ecosystems.

Facilitate Collaborative and Modular Systemic Cyber Risk Assessment - It is necessary to convene
global and disparate multi-stakeholder working groups where each stakeholder can focus on particular
concentrated areas of systemic cyber risk (e.g., cloud, open source software), and then come together to
share and combine insights that result in non-optimal but very effective estimates of systemic cyber risk
across an interdependent societal network of enterprises. The Internet Security Research Group (ISRG)
and the US National Security Telecommunications Advisory Committee (NSTAC) are examples of such
working groups that can work with cyber-insurance companies for effective systemic cyber risk estimation.

6 SUMMARY

We proved that optimal systemic cyber risk management is computationally intractable, i.e., NP-hard,
signifying the fact that optimal RCRM is utopic to achieve for worst case threat environments but should
not be a deterrent to scaling cyber (re-)insurance markets. We proposed policy actions for improving
management of space-time adverse impact of inevitable systemic (and worst case) cyber risk events.
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