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ABSTRACT

Distribution networks are low-voltage electricity grids at the neighborhood level. Within these networks,
failures can occur as rare events, triggered by stochastic loads that push voltage levels beyond safe limits.
To assess the resilience and reliability of these networks, estimating voltage exceedance probabilities is
therefore important. We develop importance-sampling strategies to estimate failure probabilities. We do
so using two components. First, we propose a change of measure, using either the Large Deviations
Principle and linear power flow equations or the Cross-Entropy method to improve sampling efficiency.
Second, we determine feasibility of loads by using our previously developed duality method to overcome
the computational complexity of directly solving nonlinear power flow equations using methods such as
Newton-Raphson and backward-forward sweep algorithms. Experiments on a IEEE-15 bus network show
that this methodology offers a fast and accurate estimation of failure probabilities in distribution networks.

1 INTRODUCTION

In estimating probabilities of rare events, the rare event itself happens infrequently in simulation experiments
when using crude Monte Carlo (MC) simulation. This results in estimation inefficiency and motivates the
use of variance-reduction techniques. Among them, importance sampling (IS) (Tokdar and Kass 2010) is
one of the most popular methods. The idea behind IS involves introducing a change of measure to assign
more weight to critical events. This alternative measure is then utilized to obtain simulation samples, and
the outputs are re-weighted using the likelihood ratio, ensuring the unbiasedness of the estimator.

For distribution networks, the occurrence of rare events plays a significant role in the overall reliability
and resilience of the network. These rare events correspond to infeasible loads (consisting of supply and
demand for power of households) that fall outside the network’s normal operating bounds, contrasting with
feasible loads that comply with safety and operational standards, maintaining acceptable voltage levels and
power flows. These events can occur both through excessive demands (e.g. through charging of electric
vehicles) as well as excessive supply of electricity (e.g. through the production of excessive power through
rooftop solar panels). If not properly managed, these events, not only disrupt the immediate power supply
through a blackout but also include broader consequences including economic costs, compromised public
services, and potential damage to critical infrastructure (Cadini et al. 2017).

In this paper, we develop IS strategies to estimate failure probabilities in distribution networks using
two components: an efficient change of measure and an accurate feasibility check on whether the load
violates the safety standards. We consider an indexed family of rare events {Aγ}γ that represents a set of
loads that lead to undesirable voltage levels (either too high or too low) within the network. The parameter
γ serves as a “rarity parameter”, and as γ → ∞, the event Aγ becomes rarer so that the probability of the
event Aγ tends to zero, i.e., P(Aγ)→ 0. Initially, the network’s safe operating point is chosen to ensure
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safe voltage levels. However, the presence of noise (modeled as Gaussian noise) can push the operating
point into the direction of the unsafe loads in {Aγ}γ .

To apply a change of measure, we view the loads as a random vector with a mean equal to the safe
operating point and shift the mean of this random vector, based on insights by the Large Deviation Principle
(LDP) and linear approximations of the set of infeasible loads or the Cross-Entropy (CE) method. Other
approaches to find efficient change of measures are closely related to instanton methods (Chertkov et al.
2011; Chertkov et al. 2011) and dominating points in large deviation techniques (Verseveldt 2023; Nesti
et al. 2019) in power systems engineering. The main difference between these approaches and our work lies
in their reliance on the simplified linear direct current (DC) model of the electricity network, instead of the
more complex alternating current (AC) model (Molzahn and Hiskens 2019). The widely used DC model
serves as a practical trade-off for computational tractability. However, the DC model assumes constant
voltages magnitudes in the network, making it inadequate for our work as it fails to account for undesirable
high or low voltages, i.e., voltage drop constraints. Instead, we employ the Linearized Distflow (LD)
model and a polyhedral restriction of the feasible region based on the Bus Injection model (Christianen
et al. 2023) to propose a shift in measure. Both models, the LD model and the polyhedral restriction, are
able to deal with voltage drop constraints and represent ways to express the infeasible region through a
union of events defined by linear constraints. The LD model offers an approximation, while the polyhedral
restriction serves an an actual restriction of the feasible region. The approach using the LDP and linear
approximations of the set of infeasible loads comes close to the work in Owen et al. (2019) and Vasmel
(2019). However, there are two main differences. First, the authors consider a mixture IS strategy to
estimate the probability of a union of events in electricity networks. Here, each component of the mixture
corresponds to a shift in the Gaussian distribution’s mean (used to model noise) to increase the likelihood of
a failure. This strategy essentially combines multiple dominating points to increase estimation efficiency.
While it is known that IS using all dominating points is asymptotically efficient, the results in Bai et al.
(2023) highlight that using only the most significant dominating point – thus avoiding a mixture strategy –
does not result in a poor experimental performance, an approach we adopt in our work. Second, Owen et
al. (2019) and Vasmel (2019) use the linear DC model of the electricity network to propose a change of
measure. The other approach, using the CE method (de Boer et al. 2005), has been applied to electricity
networks. However, to the best of our knowledge, there are no studies on undesirable low or high voltages
in the network, as considered in our work.

After a change of measure, we sample loads, which consist of consumer supply and demand of power. In
AC models, power has both an active and reactive component; we consider both in our study (Molzahn and
Hiskens 2019). Then, it becomes necessary to check whether a sample of loads from this new distribution
is feasible. In other words, we must verify if a sample satisfies some power flow model equations. In
our work, while the shift in measure is based on an approximation and restriction of the feasible region,
the feasibility check of loads is based on the full feasible region defined by the Bus Injection Model, a
popular nonlinear power flow model (Molzahn and Hiskens 2019). This is in contrast to the work done
in Owen et al. (2019), Vasmel (2019), Chertkov et al. (2011), Verseveldt (2023), and Nesti et al. (2019)
where the feasibility check is done using the linear DC model of the electricity network. When nonlinear
power flow models are used, the Newton-Raphson (NR) method and traditional backward-forward sweep
algorithms are typically used (Montoya et al. 2021). Our proposed duality method is specifically designed
for distribution networks (Christianen et al. 2024). This method, a new backward-forward sweep-based
algorithm, is different from existing methods since it does not require the computation of actual voltages
in the distribution network, offering an improvement in speed over both the NR method and traditional
backward-forward sweep-based algorithms, which are used for solving nonlinear power flow equations,
and thus a valuable alternative for feasibility checks in distribution networks.

The insights of this paper can be summarized as follows. In terms of constructing a change of measure,
our results reveal that using the LDP with our polyhedral restriction tend to produce overly conservative
change of measures, leading to probability estimates of zero. Using either the LDP with the LD model or
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the CE method yield refined estimates with correct magnitudes, with the former offering a faster approach
to estimating rare-event probabilities compared to the latter. For the feasibility check, we show that an
accurate estimation of rare-event probabilities via MC simulations necessitates the use of nonlinear power
flow models in the feasibility check. In other words, using linear approximations or restrictions of the
feasible region lead to rare-event probabilities that are orders of magnitude away from the true values.
Additionally, to check whether the sampled loads satisfy some nonlinear power flow equations, the duality
method is a faster and accurate alternative over the NR method for distribution networks that satisfy several
assumptions, i.e., those with a high resistance-over-reactance ratio and predominance of active over reactive
power in the network (Khatod et al. 2006; Tonso et al. 2005). Conversely, the NR method is also suitable
for networks that do not follow these assumptions. The results of this paper are of potential relevance to
the safe operation of distribution networks (Jang et al. 2024).

This paper is organized as follows. In Section 2, we describe the modeling of distribution networks,
the power flow models and corresponding feasible regions that we use. Section 3 defines the problem.
Sections 4 and 5 are the core of this paper: we design our IS strategies, and provide numerical experiments
to test the validity of our approach on a IEEE 15-bus network. The conclusions can be found in Section 6.

2 DISTRIBUTION NETWORKS AND POWER FLOW MODELS

The distribution network is modeled as a rooted tree G = (V ,E ), with nodes V = {0}∪ {1,2, . . . ,d},
where node 0 represents the generator and the rest represent load nodes. Edges (i,k) ∈ E are characterized
by their impedance zik = rik + ixik, incorporating the network’s resistance (rik) and reactance (xik). Thus,
for the network, we have in matrix form Z = R+ iX representing the impedance bus matrix (Peterson et al.
1989). We denote the generator’s complex voltage, current, and power as V0, I0, and s0, respectively. The
complex voltages, currents, and powers (loads) at the load nodes are represented by the column vectors
V, I, and s, respectively. Each node’s complex power s j = p j + iq j includes active (p j) and reactive (q j)
components; hence, s = p+ iq is the vector of powers. In general, for a complex number w, we use w∗

for its complex conjugate, and for a matrix W, Wi: j,k:l is used to denote the submatrix of W consisting of
rows i through j and columns k through l, and wT and WT denote the transpose of the vector w and W,
respectively. An all-ones column vector, denoted as 1k, is a vector of length k where every element is 1.

In what follows, we introduce three different feasibility regions. First, we present the full nonlinear
feasible region, used to determine the true feasibility of load samples. Second, we introduce a polyhedral
restriction of this feasible region which, in combination with the LDP, is used to find a change of measure.
Third, we define an approximation of the feasible region, derived using the LD model, which is also used
to find a change of measure through the LDP.

2.1 Bus Injection Model and its Feasible Region

For the first model, the feasible region is defined by loads that satisfy the nonlinear Bus Injection Model
and the voltage drop constraints. The Bus Injection Model is given by the implicit power flow equation

V =V01d −Zdiag(V∗)−1s∗. (1)

The voltage drop constraints assure that the voltage magnitudes are within a certain range and are made
precise by allowing a ∆×100% voltage deviation from the generator’s voltage V0, denoted by pre-specified
bounds (1−∆)|V0| and (1+∆)|V0|. Therefore, for s = p+ iq, the feasible region, denoted by C , can be
expressed as the collection of all active and reactive powers s such that:

C :=
{(

p
q

)
: V =V01d −Zdiag(V∗)−1s∗, (1−∆)|V0| ≤ |Vj| ≤ (1+∆)|V0|, j ∈ V

}
. (2)

These equations can result in safe regions that are non-convex, making optimization difficult and
potentially intractable from a computational standpoint. Therefore, in the next two sections, we consider
more tractable alternatives.
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2.2 Polyhedral Restriction of the Feasible Region

In Christianen et al. (2023), we developed a procedure to restrict the feasible region of (2) to another set
of equations and inequalities for which we can guarantee a solution to the Bus Injection Model and the
satisfaction of the voltage drop constraints. In the restriction, we distinguish between power consumption sc

j
and generation sg

j at each node j, where s j = sc
j −sg

j , and sc
j,s

g
j are complex, representing active and reactive

components. To compactly represent these across a network, we use vectors pc,qc for consumption, and
pg,qg for generation, incorporated in s̃ =

(
pcT qcT pgT qgT )T . Then, in the procedure, it is necessary

to have the knowledge of a pair (V̂, ŝ) that satisfies the power flow equation in (1) (e.g., the trivial solution)
and that the voltage angle differences between V and V̂ are small. This means that, for ∆ ∈ [0,1), we
define the set of ∆-stable voltage vectors as all vectors that satisfy the constraint |Vk − V̂j| ≤ ∆|V̂j| for all
k, j ∈ V \{0}. Defining V̂min := min j |V̂j|, yields a polyhedral restriction of C in (2) as

CI :=
{(

p
q

)
:
(

p− p̂
q− q̂

)T

(AT +∆BT )1:2d,1:4d ≤
(

∆(1−∆)2V̂ 3
min14d −∆(2B+(1−∆)C)ˆ̃s

)T
}
⊆ C ,

where the inequality is implied such that each element in the (1×4) block matrices on the left-hand side
is compared to the corresponding element in the 4d vector on the right-hand side, and the block matrices
A,B,C ∈ R4d×4d are given by

A =


−(R+X) −(−R+X) R+X −R+X
−(−R+X) −(−R−X) −R+X −R−X
−(R−X) −(R+X) R−X R+X
−(−R−X) −(R−X) −R−X R−X

 , B = J4 ⊗ (R+X), and C = J4 ⊗|Z|,

where J4 is a (4× 4) all-ones matrix and ⊗ denotes the Kronecker-product; see also Christianen et al.
(2023, Theorem 3.1). Then, the complementary set C c

I , containing all infeasible vectors of power according
to the polyhedral restriction, is defined as

C c
I =

{(
p
q

)
: ∃i s.t.

((
p− p̂
q− q̂

)T

(AT +∆BT )1:2d,1:4d

)
i

>
(

∆(1−∆)2V̂ 3
min14d −∆(2B+(1−∆)C)ˆ̃s

)T

i

}
,

(3)

where the inequality is implied again elementwise.

2.3 Approximation of the Feasible Region

Instead of a restriction of the feasible region in (2), in this subsection, we provide an approximation. To do
so, we approximate the voltages in the network by the LD model. When necessary, we denote quantities
related to the LD model by a subscript L. In contrast to the Bus Injection Model, the LD model yields
explicit expressions for the squared voltages on all nodes, represented by (VL)

2, and are calculated as:

(VL)
2 :=V 2

0 1d −2
(
R X

)(p
q

)
. Then, we can approximate the feasible region as

CL :=
{(

p
q

)
: (VL)

2 = V 2
0 1d − 2

(
R X

)(p
q

)
, (1 − ∆)|V0|1d ≤ |VL| ≤ (1 + ∆)|V0|1d

}
≈ C ,

and the complementary set C c
L , containing all infeasible loads, as:

C c
L :=

{(
p
q

)
: ∃i s.t.

(
R X

)
i,1:2d

(
p
q

)
<−|V0|2∆(2+∆)

2
or
(
R X

)
i,1:2d

(
p
q

)
>

|V0|2∆(2−∆)

2

}
. (4)
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With a slight abuse of notation for brevity, we use s to denote that
(
pT qT

)T belongs to a constraint set.
In other words, when we say s is within a constraint set, we are specifically referring to the combined
vector of active and reactive powers.

3 PROBLEM DESCRIPTION

For distribution network reliability, deterministic models often fail to capture uncertainties and fluctuations
in real-world power systems. As a result, the use of stochastic models is necessary to address the stochastic
nature of loads. However, this brings the risk of violating the network’s voltage drop constraints. Therefore,
we consider the events Aγ = {s ∈ C c}, where the set C c represents all infeasible loads (see Section 2.1).
Additionally, the loads s capture the network’s stochasticity, characterized by a safe operating point and
stochastic fluctuations around this point. The safe operating point is given by the vector µµµ , partitioned as
µµµ =

(
µµµT

p µµµT
q
)T

where µµµp and µµµq denote the safe operating levels of active and reactive power, respectively.
The stochastic fluctuations around the safe operating point are modeled as Gaussian noise with a mean of
zero and a scaled covariance matrix ΣΣΣ/γ . It captures the variability and correlation between active and
reactive power fluctuations. Here, the covariance matrix ΣΣΣ is also partitioned according to p and q, i.e.,

ΣΣΣ =

(
ΣΣΣpp ΣΣΣpq
ΣΣΣqp ΣΣΣqq

)
,

where the submatrices of ΣΣΣ detail the variability in noise and dependencies between these components. By
scaling the noise with 1/γ , we adjust the impact of stochastic fluctuations on the network. Larger values of
γ correspond to rarer events, as the variance of the distribution decreases with increasing γ: s ∼N (µµµ,ΣΣΣ/γ).
The goal is to estimate

pγ = P(Aγ) = P(s ∈ C c)→ 0 as γ → ∞. (5)

Having discussed the power flow models and their feasible regions, we proceed with the IS strategies,
which consists of two components: a change of measure and a feasibility check. In the following section, we
focus on the change of measure, because the feasibility check uses previous developed methods. Specifically,
the duality method has been covered in Christianen et al. (2024), and NR methods and backward-forward
sweep-based algorithms are well-known; see e.g. Montoya et al. (2021).

4 CHANGE OF MEASURE

The goal of this section is to introduce the way we change measure. We first focus on changes of measure
directly informed by the LDP which yields a change of measure through the solution of a constrained
optimization problem. The optimization problem’s constraints are defined by the feasible regions derived
from power flow models. Here, we use linear models, which simplify the feasible regions to unions of
half-spaces as described in the polyhedral restriction in Section 2.2 and the LD model in Section 2.3.
Consequently, we have two options: the LDP with the polyhedral restriction and the LDP with the LD
model. In the other direction, we introduce the CE method as an alternative way to change measure. The
traditional CE method for distribution network reliability involves explicit computations of voltages in the
network. Here, we use the duality method developed in previous work Christianen et al. (2024) which
avoids this step. We adapt the CE method to be able to use duality. Alternatively, we use the CE method
and compute explicitly the voltages in the network by the NR method. In this direction, we also have two
options to change measure: the CE method using duality and the CE method using the NR method.

4.1 Change of Measure using the LDP and Linear Power Flow Equations

The LDP is a classical theory on the asymptotic behavior of sequences of probability distributions (Dembo
and Zeitouni 1998). The LDP states that the most likely point in the rare event set C c is important in
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estimating the probability of rare events, pγ . For loads following a multivariate Gaussian distribution
N (µµµ,ΣΣΣ), the most likely point, s∗, is the solution of the constrained optimization problem:

inf
s

(s−µµµ)T
ΣΣΣ
−1(s−µµµ) s.t. s ∈ C c. (6)

Thus, a reasonable IS strategy is to shift the mean of the loads to s∗. To get an approximation of a solution
of (6), which is constrained by the region C c defined by the Bus Injection Model’s nonlinear equations,
we simplify by replacing C c with a union of m half-spaces

⋃m
i=1(s− µµµ)T ξξξ i ≥ bi approximating the two

model-specific sets: C c
I in (3) from the polyhedral restriction and C c

L in (4) from the LD model. Such a
union involves vectors ξξξ i and scalars bi, i = 1, . . . ,m, leading to a more tractable optimization problem

inf
s

(s−µµµ)T
ΣΣΣ
−1(s−µµµ) s.t.

m⋃
i=1

(s−µµµ)T
ξξξ i ≥ bi, (7)

where infs(s−µµµ)T ΣΣΣ
−1(s−µµµ)> 0 since µµµ corresponds to the safe operating point.

To solve the overall optimization problem in (7), we decouple the optimization problem into separate
subproblems corresponding to each linear constraint, solve them individually using Lemma 1, and then
select the minimum among all solutions according to Lemma 2.

Lemma 1 addresses the specific case of the constrained quadratic minimization problem where there is
only one linear constraint. The lemma shows that a solution to the problem can be found in a closed form.
Lemma 1 Consider the constrained minimization problem in (7) where we include only one of the m linear
constraints into the problem, indexed by i0, so that (s−µµµ)T ξξξ i0 ≥ bi0 . Then, the solution of this problem

is given by s = µµµ +
bi0

ξξξ
T
i0

ΣΣΣξξξ i0

ΣΣΣξξξ i0 .

Proof. The Lagrangian for this problem, including the inequality constraint, is L (s,λ )= (s−µµµ)T ΣΣΣ
−1(s−

µµµ)+λ (bi0 − (s− µµµ)T ξξξ i0). The KKT conditions are as follows: by stationarity, ∇sL (s,λ ) = 2ΣΣΣ
−1(s−

µµµ)− λξξξ i0 = 0, by primal feasibility, (s− µµµ)T ξξξ i0 ≥ bi0 , by dual feasibility, λ ≥ 0, and complementary
slackness, λ (bi0 − (s−µµµ)T ξξξ i0) = 0. Now, solving the stationary condition 2ΣΣΣ

−1(s−µµµ)−λξξξ i0 = 0, yields
ΣΣΣ
−1(s−µµµ) = λ

2 ξξξ i0 . Multiplying both sides by ΣΣΣ and rearranging, we get: s−µµµ = λ

2 ΣΣΣξξξ i0 . Now, substituting
this into the complementary slackness condition and rearranging: λ (bi0 − λ

2 ξξξ
T
i0ΣΣΣξξξ i0) = 0. Since λ ≥ 0, this

implies that either λ = 0 or bi0 =
λ

2 ξξξ
T
i0ΣΣΣξξξ i0 . If λ = 0, then from the stationary condition, s = µµµ , which

is not feasible due to the inequality constraint. Therefore, we must have bi0 =
λ

2 ξξξ
T
i0ΣΣΣξξξ i0 . Substituting

s−µµµ = λ

2 ΣΣΣξξξ i0 back into the primal feasibility constraints: (s−µµµ)T ξξξ i0 = (λ

2 ΣΣΣξξξ i0)
T ξξξ i0 =

λ

2 ξξξ
T
i0ΣΣΣξξξ i0 = bi0 ,

shows that the solution of this optimization problem is actually attained at equality. Finally, solving for λ

2

yields λ

2 =
bi0

ξξξ
T
i0

ΣΣΣξξξ i0

, and substituting back into the stationary condition gives s = µµµ +
bi0

ξξξ
T
i0

ΣΣΣξξξ i0

ΣΣΣξξξ i0 .

Lemma 2 describes the setting of finding the infimum constrained by a union of half-spaces. The lemma
asserts that a solution to the constrained quadratic minimization problem in (7) is given by considering the
set of minimizers corresponding to each individual constraint.
Lemma 2 A solution of (7) is given by a minimizer of the set{

µµµ +
bi

ξξξ
T
i ΣΣΣξξξ i

ΣΣΣξξξ i, i = 1, . . . ,m
}
. (8)
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Proof. Suppose, for the sake of contradiction, that there exists a solution s∗ that is not a minimizer of
the set (8). Then, there are two options. The first option is that there is another member of the set (8) that
minimizes the expression in (7), leading to a direct contradiction with the the minimality assumption. The
second option is that there is a minimizer that lies in the interior of the infeasible region. In other words, there
exists a minimizer s∗ that is not a member of the set (8), such that at least for one constraint i, we have the
strict inequality (s∗−µµµ)T ξξξ i > bi. However, by convexity of the objective function (s∗−µµµ)T ΣΣΣ

−1(s∗−µµµ),
we can locally improve the objective by moving from s∗ towards µµµ; hence, it contradictions with the
minimality assumption.

4.2 Change of Measure using the CE Method

Building upon the work of de Boer et al. (2005), our study applies the CE method to achieve an efficient
change of measure for rare-event simulation. The CE method aims to minimize the Kullback-Leibler
(KL) divergence between the optimal IS distribution, which ensures a zero-variance IS estimator, and a
Gaussian distribution characterized by a mean ν∗. This optimization is done by a multi-level algorithm.
The algorithm constructs a sequence of reference parameters {ννν t , t ≥ 0} for the mean of the loads and
a sequence of tolerance levels {∆t , t ≥ 1} for the voltage drop constraint, and iterates in both ∆t and ννν t ,
leading to a mean of the loads ννν∗ in the final iteration.

On the one hand, for a fixed ννν t−1, let ∆t be a (1− ρ)-quantile under ννν t−1. That is, ∆t satisfies
Pννν t−1 (s ∈ C c)≥ ρ , and Pννν t−1 (s ∈ C )≥ 1−ρ, where the samples s’s are drawn from a Gaussian distribution
with mean ννν t−1. Notice that the set C c depends on the voltage drop parameter ∆, yet the algorithm uses
the parameter ∆t at each iteration, slightly adjusting the criteria defining C c. To do the quantile estimation,
we use an estimator ∆̂t of ∆t that can be obtained by drawing N random samples s1, . . . ,sN from a Gaussian
distribution with mean ννν t−1, and a binary search strategy. This involves setting an interval [a,b] = [0,∆],
where the quantile estimate is presumed to reside, alongside establishing a tolerance level ε for the
precision of the estimate and a target quantile level ρ . Then, the process iterates, narrowing the interval
based on the midpoint c = (a+b)/2. At each iteration, the probability Pvt−1 (s ∈ C c) is approximated by
p̂∆t =

1
N ∑

N
i=11{s ∈ C c}, with the interval updated to [c,b] if p̂∆t > ρ or to [a,c] if p̂∆t ≤ ρ . This process

repeats until the interval width b−a is less than or equal to ε , at which point the midpoint of the interval
is taken as the estimate for the (1−ρ)-quantile.

On the other hand, for fixed ∆t and ννν t−1, update ννν t according to (for details, see de Boer et al. (2005)):

ννν t =
∑

N
i=11{si ∈ C c}W (si; µµµ,ννν t−1)si

∑
N
i=11{si ∈ C c}W (si; µµµ,ννν t−1)

, (9)

where W (si; µµµ,ννν t−1) is the likelihood ratio at si between a Gaussian distribution with means µµµ and ννν t−1.
In other words, we initialize the algorithm by choosing a not very small ρ , say ρ = 10−2, a small

level ε , such as ε = 10−4, and by defining ννν0 = µµµ . Next, the level ∆1 is updated to make the target event
artificially less rare, i.e., we let ∆1(∆1 < ∆) be such that, under the original distribution N (µµµ,ΣΣΣ/γ), for
fixed γ , the probability p∆1 = Pµµµ (s ∈ C c) is at least ρ . We then update ννν1 according to (9). The algorithm
iteratively repeats these two steps: updating ∆t and ννν t . It terminates when at some iteration t a level is
reached which is at least ∆ and thus the original value of ∆ can be used without getting too few rare samples.

5 SIMULATION RESULTS

In this section, we focus on IS strategies for an IEEE 15-node network to estimate failure probabilities.
These strategies include a change of measure: the LDP with the LD model, the LDP with the polyhedral
restriction and the CE method with either the duality or the NR method. Observe that in the CE method,
see e.g. (9), in order to apply this method we continuously check whether a sample is in the feasible
region or not, which we do by either the duality or the NR method. As a result, the feasibility check is
integrated with the change of measure. In contrast, for the LDP with the LD model and for the LDP with
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the polyhedral restriction, we first change the measure, and then verify whether a sample from this new
distribution is in the feasible region or not, and we do so by either using the duality or the NR method.
Thus, we consider different IS strategies: the first type is based on a change of measure based on the LDP
with either the LD model or the polyhedral restriction, which is followed by a feasibility check using the
duality or the NR method, and the second type is based on the CE method with an integrated feasibility
check done by either the duality or the NR method.

5.1 Description of IEEE 15-node Network

We employ the IEEE 15-node tree network from the MATPOWER package Zimmerman et al. (2011), as
depicted in Figure 1. We modify the network’s parameters such that they closely follow the assumptions
required for the duality method, which focuses on small x/r ratios and minimal reactive power magnitudes.
To achieve this, we make specific adjustments to the original data from Zimmerman et al. (2011). We
scale down both reactances and reactive power magnitudes to 10% of their initial values, and define a safe
operating point (µµµp and µµµq) which yields corresponding voltage levels (V) within a 10% deviation from
the generator node’s voltage, standardized as V0 = 1. These modifications are detailed in Table 1.

0

1

2 3 4

5 6

7 8

9

10 11 12 13

14

Figure 1: IEEE-15 node tree network showing the
node numbers and connections. Node 0 is the gen-
erator node.

Table 1: IEEE-15 node network data.
Line number Bus From Bus To r (p.u.) x (p.u.) µµµp µµµq V

1 0 1 1.1183 0.1094 44.1 4.50 0.9858
2 1 2 2.1134 0.1426 140.0 14.28 0.9786
3 1 3 0.9671 0.0946 70.0 7.14 0.9758
4 1 4 1.6638 0.1122 70.0 7.14 0.9652
5 2 5 1.0341 0.0698 70.0 7.14 0.9782
6 2 6 0.8993 0.0607 140.0 14.28 0.9769
7 3 7 1.4839 0.1001 140.0 14.28 0.9775
8 3 8 0.6951 0.0680 140.0 14.28 0.9839
9 4 9 1.3940 0.0940 44.1 4.50 0.9832
10 7 10 2.0235 0.1365 70.0 7.14 0.9747
11 8 11 0.9893 0.0667 140.0 14.28 0.9723
12 8 12 1.2591 0.0849 44.1 4.50 0.9716
13 8 13 1.8436 0.1244 70.0 7.14 0.9745
14 10 14 1.6638 0.1122 44.1 4.50 0.9744

We assume that the loads s are Gaussian distributed with mean µµµ =
(
µµµT

p µµµT
q
)T

as in Table 1. Each
component has a variance given by the square of each element in µµµ , divided by the rarity parameter γ ,
denoted as µµµ2/γ and there is zero correlation between any two different components, i.e., corr(si;s j) = 0
for any i, j with i ̸= j. Consequently, the covariance matrix ΣΣΣ is a diagonal matrix, with the variances µµµ2/γ

on its diagonal and zeroes elsewhere. The rarity parameter γ is adjusted between 1 and 5 to control the
frequency of the occurence of rare events. Our objective is to estimate the probability described in (5).

5.2 Change of Measure

This section compares different changes of measure. We identify those vectors of active and reactive power
that are most likely to violate the voltage drop constraints, thus finding the most probable scenarios for
constraint violation. The changes in mean for active and reactive power for all nodes, as suggested by each
method, are depicted in Figure 2a for active power and Figure 2b for reactive power. In both figures, the
powers at each node are according to the LDP with the LD model (yellow), the LDP with the polyhedral
restriction (red), and the CE method based on the duality method (purple), against the original mean (blue).
The powers according to the CE method based on the NR method are not shown in the figures, as they
were identical to those of the CE method based on the duality method.

The proposed changes of measure by the LDP with the LD model and the CE method based on the
duality method use a significant increase in active power, with relatively minor changes in reactive power
compared to the original mean that corresponds to the safe operating point. This behavior deviates from the
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(a) Proposed mean in active power for each node. (b) Proposed mean in reactive power for each node.

Original mean Restriction LD model CE method

Figure 2: Changes of measure proposed by the LDP with LD model (yellow), the LDP with the polyhedral
restriction (orange), and the CE method using the duality method (purple), and the original mean (blue).

behavior of the polyhedral restriction, which demonstrates only a slight increase in active power while a
significant increase in reactive powers. Examining the active power, there is a clear difference between the
LDP with the LD model and the LDP with the polyhedral restriction. The LDP with the LD model proposes
higher active powers than the more pessimistic approach by the LDP with the polyhedral restriction. This
can be explained as follows: by using a restriction, we effectively narrow the feasible region. As a result,
the estimated active powers under the polyhedral restriction are typically lower, reflecting a conservative
estimation of what the system can reliably handle. Therefore, we exclude the approach using the LDP with
the polyhedral restriction from our subsequent numerical experiments.

5.3 Feasibility Check

In this section, we focus on the other important component of our IS strategy: checking feasibility. In
principle, in order to check feasibility, one needs to select a power flow model and verify whether a sample of
loads satisfies the model’s equations. In our numerical experiments, we have conducted extensive numerical
experiments using the duality method, the NR method, backward-forward sweep-based algorithms, all of
which rely on nonlinear power flow models. We have also tested the feasibility checks using the simpler,
linear models and feasible regions provided by the LD model and the polyhedral restriction; see Sections
2.2 and 2.3. It was immediately clear that checking feasibility based on linearized models led to inaccurate
results. Consequently, in this section, we focus on the feasibility checks using nonlinear models, which
adhere more closely to the actual power flow equations. Specifically, we compare the efficacy of the
duality-based approach in comparison with the NR method.

To check the limitations of the assumptions in checking feasibility using the duality-based approach,
we compare the accuracy, sensitivity, and precision of the duality-based method with the NR method. Here,
accuracy measures the correctness of the classification, considering both true positives (correctly identified
feasible loads) and true negatives (correctly identified infeasible loads). Precision assesses the accuracy
of the methods when they predict an infeasible load, measuring the proportion of true positives relative to
all predicted positives, while sensitivity, in this context, focuses on the ability of the method to correctly
identify feasible loads (true positives) relative to all actual feasible loads.

In our experiments, we increase the rarity parameter from 1 to 5, employing a change of measure
determined by either the LDP with the LD model or the CE method based on the duality method. For
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each rarity parameter, we generate 104 samples using these changes of measure and check their feasibility
using both the duality method and NR methods to compare the performance of these approaches.

(a) Performance values using the LDP with the LD model
as a change of measure.

(b) Performance values using the CE method based on
the duality method as a change of measure.

Accuracy Sensitivity Precision

Figure 3: Comparative metrics: accuracy (blue), sensitivity (orange), and precision (yellow) of feasibility
checks based on the duality method against the NR method across rarity parameters.

Increasing the rarity parameter under these conditions leads to even better performance due to a reduction
in variance, which diminishes the likelihood of encountering negative power consumption and increases
the probability of meeting the duality method’s assumptions. Notably, for the LDP with the LD model, the
sensitivity remains consistently at 1, and the accuracy increases from 0.83 at rarity parameter equal to 1 to
0.97 at rarity parameter equal to 5. Similarly, for the CE method based on the duality method, the accuracy
rises from 0.87 at rarity parameter equal to 1 to 0.98 at rarity parameter equal to 5. In terms of precision,
the LDP with the LD model shows an increase from 0.66 at rarity parameter equal to 1 to 0.90 at rarity
parameter equal to 5, while the CE method based on the duality method sees a rise from 0.76 at rarity
parameter equal to 1 to 0.94 at rarity parameter equal to 5. For checking feasibility, the duality method is
effective and performs best when combined with the CE method, as compared to its combination with the
change of measure by the LDP with the LD model, under typical distribution network parameter settings.

5.4 Rare-event Probability Estimates

In this section, we estimate rare-event probabilities using IS strategies that employ a change of measure
using either the LDP with the LD model or the CE method. We generate 104 samples using these measures,
which are then checked by either the duality method or the NR method. The outputs are re-weighted using
the likelihood ratio to ensure the unbiasedness of the estimators when using the NR method. To provide a
detailed overview on the estimates derived from these four different combinations, we present the results
in Table 2. The table shows point estimates along with their 95% confidence intervals (CI) for varying
values of the rarity parameter, increasing from 1 to 5. In our experiments, we consider the NR method as
the baseline for true probability estimates and compare it to the duality method. The estimates obtained
by using either the LDP with the LD model or the CE method consistently result in estimates within the
same order of magnitude as the true rare-event probabilities across this range.

3599



Christianen, Lam, Vlasiou, and Zwart

Table 2: Point estimates and 95% CI for rare-event probabilities using IS for rarity parameters γ .

LDP with the LD model CE method
γ Duality NR Duality NR
1 2.1553(±0.1536)×10−13 4.1793(±0.2441)×10−13 0.6795(±0.9652)×10−13 3.9788(±0.4528)×10−13

2 1.2097(±0.0918)×10−24 2.0062(±0.1459)×10−24 0.7504(±0.1936)×10−24 1.6092(±0.3185)×10−24

3 0.5752(±0.0494)×10−35 1.1917(±0.0994)×10−35 1.2448(±1.1489)×10−35 1.1249(±0.3288)×10−35

4 3.1496(±0.2969)×10−47 6.9342(±0.6523)×10−47 1.7911(±0.7657)×10−47 0.5035(±0.4204)×10−47

5 1.4758(±0.1589)×10−58 4.7229(±0.4859)×10−58 1.4493(±0.4397)×10−58 4.0357(±1.7105)×10−58

5.5 Computational Effort

To distinguish between these combinations, we measure the time required to obtain estimates for rare-event
probabilities while increasing the rarity parameter from 1 to 5. The recorded times for all four combinations
reveal two observations. First, using duality as a feasibility check instead of NR substantially reduces
computational time by a factor of 3, regardless of the change of measure employed. Second, utilizing the
LDP with the LD model as a change of measure instead of the CE method based on either the duality or
the NR method results in a time reduction by a factor of 2. This difference arises from the iterative nature
of the CE method, whereas the LDP with the LD model requires only a single step to compute the change
of measure. Hence, adopting duality as the feasibility check instead of NR and utilizing the LDP with the
LD model as the change of measure instead of the CE method allows for a significant reduction in total
computational time, achieving a factor of 6 improvement compared to the base reference case using NR
as a feasibility check and the CE method based on the NR method to find a change of measure.

6 CONCLUSION

We have proposed IS strategies to estimate failure probabilities. Within these IS strategies, we have used
a change of measure informed by two types of approaches: using the LDP or the CE method. Empirical
studies have shown the effectiveness of combining a change measure, as proposed by either the LDP with
the LD model or the CE method based on the duality method, with an accurate feasibility check based
on nonlinear models. Regarding the feasibility check, the use of linear approximations in the feasibility
check has resulted in large under or overestimates of the true probabilities. To overcome this issue, we
have proposed the duality method as a fast alternative for the classical NR method in checking feasibility.
Consequently, combining either the LDP with the LD model with the duality method or the CE method
based on the duality method has resulted in faster and accurate rare-event probability estimation strategies.
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