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ABSTRACT

The electrification of the transportation and heating sector, the so-called sector coupling, is one of the
core elements to achieve independence from fossil fuels. As it highly affects the electricity demand,
especially on the local level, the integrated modeling and simulation of all sectors is a promising approach
for analyzing design decisions or complex control strategies. This paper analyzes the increase in electricity
demand resulting from sector coupling, mainly due to integrating electric vehicles into urban energy systems.
Therefore, we utilize a digital twin of an existing local energy system and extend it with a mobility simulation
model to evaluate the impact of electric vehicles on the distribution grid level. Our findings indicate a
significant rise in annual electricity consumption attributed to electric vehicles, with home charging alone
resulting in a 78% increase. However, we demonstrate that integrating photovoltaic and battery energy
storage systems can effectively mitigate this rise.

1 INTRODUCTION

In recent years, there have been significant advancements in energy systems research, notably in two key
areas: The utilization of digital twins based on smart meter data of energy systems and an increased focus
on analyzing the impacts of sector coupling on the (electrical) energy system. Sector coupling, i.e., the
integration of various sectors like heating and mobility into the energy system, holds global significance for
the pursuit of decarbonization (Brown et al. 2018). Furthermore, beyond decarbonization objectives, sector
coupling presents opportunities to diminish reliance on imported fossil fuels, potentially averting energy
crises like the European gas crisis of 2022 (Mannhardt et al. 2023). In the context of sector coupling,
this paper focuses on integrating electric vehicles (EVs) into the energy system. The integration of EVs
is critical at a local level, especially in cities, as uncontrolled charging behavior can lead to a substantial
increase in the peak demand of the energy system on the local as well as national level. (Strobel et al.
2022).

In the recent past, digital twins have emerged as a powerful technology for addressing queries concerning
the future of urban living, including local energy systems. Even though the concept of digital twins initially
emerged in product lifecycle management, the urban space is currently the most relevant domain for
applying digital twins, according to Botín-Sanabria et al. (2022). While there exist varied interpretations
of the prerequisites for digital twins of energy systems, a common thread is the imperative for these models
to accurately mirror real-world systems based on data extracted from diverse sources (Bhatti et al. 2021).
In the context of energy systems, this could be the combination of smart meter data reflecting the actual
electricity consumption with a high temporal resolution and building-related data like roof areas, enabling
precise modeling of possible future photovoltaic (PV) installations.

However, integrating mobility aspects into an energy system’s digital twin, particularly EV driving and
charging behaviors, poses a unique challenge, as mobility data is required at the level of the individual
buildings in order to comply with the digital twin paradigm. Whereas obtaining smart meter data and
building-related data to build a digital twin of the entire energy system only requires the existence of
smart meters, including the communication infrastructure and a cartography service that many government
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agencies nowadays offer, obtaining the mobility data of all city inhabitants is almost impossible as the
actual movement profiles of all vehicles would be required. Although modern vehicles already record these
data, they are is not publicly available. Therefore, it is infeasible to build a digital twin that reflects the
existing local energy system and the actual mobility needs of citizens. To address this gap, we present a
novel hybrid approach combining a mobility demand simulator (Strobel and Pruckner 2023) and a digital
twin of a city’s energy system (Bayer and Pruckner 2023). We aim to illuminate the crucial role of digital
twins in assessing the complexities of future energy systems. In this paper, we answer the following
research questions: How to process the output of a people-centered mobility demand generator to get
spatial-disaggregated EV driving profiles and how to integrate these EV profiles in a digital twin of a city’s
energy system? To demonstrate the power of the combination of a real energy system’s digital twin with a
mobility demand simulation, we ask which share of EV charging demand can be covered by a residential
rooftop PV installation in a realistic scenario while considering the unique characteristics of each household
assuming that the EVs are only charged at home.

The rest of the paper is organized as follows: The related work is presented in Section 2. In Section 3,
we present the methodology, i.e., combining a digital twin of an energy system with a mobility simulation
on the level of individual citizens. In Section 4, the results of the mobility simulation and the possibility
of using rooftop PV installations to cover the EV charging demands are analyzed at the level of individual
buildings. Finally, we discuss the results and the limitations of the methodology in Section 5 and conclude
the paper in Section 6.

2 RELATED WORK

In recent years, integrating digital twin technologies has emerged as a promising approach for enhancing
the synergy between mobility and electricity systems. Papyshev and Yarime (2021) address the challenge of
generating synthetic mobility data within a digital twin framework to mitigate privacy concerns associated
with real data usage. Wang et al. (2022) present a digital twin for representing mobility systems,
encompassing both vehicles and human beings within a cloud-based environment. Their focus lies on real-
time applicability. The construction of an urban digital twin, including mobility data, is also presented by
Lee et al. (2022). They also integrate dynamic mobility data, but in contrast to the previous paper, focusing
on vehicle and pedestrian detection. White et al. (2021) conceptualize urban digital twins as multi-layered
constructs, incorporating diverse urban information to facilitate holistic simulations and optimizations.
Their proposed use cases, including mobility demand optimization and long-term planning, highlight the
versatility and utility of digital twin technologies across various urban domains. A conceptual novelty
of White et al. (2021) is the understanding of a digital twin as the uppermost layer of a multi-layered
virtual representation of the urban area ranging from the level of the buildings, over the infrastructure and
mobility up to the digital layer on top. Moreover, digital twins can also be utilized to visualize and analyze
urban traffic dynamics, offering valuable insights into their implications for air quality, as demonstrated by
Bachechi (2022). In the transportation sector, digital twins hold promise for optimizing fuel consumption
and enhancing transportation efficiency, as emphasized by Kajba et al. (2023). Their research underscores
the potential of digital twin applications in addressing key challenges facing modern transportation systems,
such as energy consumption and environmental sustainability.

Based on the results of Munkhammar et al. (2013), we conclude that the analysis of fulfilling the EV
charging demand by a residential PV installation is a vital topic to analyze, especially on a building-resolved
level, as one of their findings is that the EV charging demand may not necessarily temporarily coincide
with the PV generation. For instance, Martin et al. (2022) analyze the ratio of the EV electricity demand
that can be covered by an individual rooftop PV installation in Switzerland, reporting that only 15% of
the EV electricity consumption can be covered with PV generation using immediate (i.e., uncontrolled)
charging. Changing the charging strategy is one way to increase the usable PV generation for EV charging.
For instance, Benz and Pruckner (2024) compare such an immediate EV charging strategy with more
sophisticated smart charging strategies based on linear optimization for a corporate parking garage. When
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only focusing on immediate charging, increasing the PV generation used for EV charging seems easier in
parking garages than for home charging. For instance, Sing et al. (2022) present that even without smart
charging over 60% of PV generation can be used for direct EV charging for a parking garage in California.
This is a notably higher proportion compared to home charging (Martin et al. 2022). Meanwhile, a seasonal
analysis by Cieslik et al. (2021) presents that PV generation is sufficient to cover most of the EV charging
demand at home between April and August in an exemplary European country. Despite the potential
benefits of utilizing rooftop PV installations for EV charging, concerns regarding the peak load increase
persist. In this context, Strobel et al. (2022) note that the question of overloads highly depends on the used
control strategy for EV charging. Finally, Paevere et al. (2013) consider the EV charging demand and its
impacts on the peak loads of the buildings for a town in Australia using a fine-grained, spatially resolved
model presenting notable impacts on the peak load on the building level.

2.1 Research Gap

Existing literature predominantly focuses on the development of digital twins with a focus on real-time
applications such as those demonstrated by Wang et al. (2022) or Lee et al. (2022), or they aim to visualize
mobility patterns (Bachechi 2022). While these papers address questions pertinent to short-term scenarios,
White et al. (2021) focus on using urban digital twins, including a representation of mobility for long-term
planning. Nevertheless, all cited papers require mobility data, which is hard to obtain on the level of all
city residents. Therefore, combining an energy system’s digital twin with a mobility simulation on the
individual level seems promising and fast to implement. Thus, we first present a methodology for combining
these two concepts, which is required for various use cases. Thereupon, we evaluate such an use case,
which is evaluating the possibility of covering EV home-charging demand by a rooftop PV installation
over all existing buildings in a city incorporating the building-related circumstances. These include the
roof areas and shapes limiting the addable PV installation size or the existing electricity consumption of
the residential buildings as it reduces the available PV generation for EV charging. This is important as
existing analyses that do not rely on digital twins, like Martin et al. (2022), do not consider the existing
electricity consumption of the buildings where EVs and PV installations are added.

3 METHODOLOGY

In this section, we first describe the methodology of sampling the population of a given city based on
building-related parameters. Thereupon, we describe the processing of the output of a mobility demand
simulation on the individual person level and how to aggregate them to vehicle usage profiles, incorporating
a mode choice model. In a second step, we present how we extend an existing implementation of a digital
twin to include the driving profiles, assuming the sampled vehicles would be EVs. A general overview of
the presented methodology and the general scope of this paper is illustrated in Figure 1.

3.1 Structure of the Digital Twin

This paper utilizes a digital twin of an energy system of a town in Southern Germany that is described
in detail in Bayer and Pruckner (2023). This digital twin accurately replicates the current energy system
down to individual buildings, encompassing substations, the individual buildings including their electricity
consumption based on smart meter data and additional building-related information like their volumes,
locations or shapes. Its primary focus is the integration of diverse data sources to realistically model future
scenarios, particularly those involving increased sector coupling. These scenarios include increasing rooftop
PV penetration, additional battery energy storage systems (BESSs), and the adoption of heat pumps.
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Figure 1: Methodology and scope of this paper.

3.2 Used Dataset

We obtained the smart meter time series on the building level and the topology of the distribution system
from the local utility company of Haßfurt, Germany. The dataset contains the smart meter data with an
hourly resolution from multiple years, including 2021, which will be the basis of the later analysis. They
are combined with cadastral data including roof shapes and orientations for the simulation of new PV
installations. Moreover, we have additional information about the existing PV installations and BESS,
including PV generation profiles with an hourly resolution.

In order to combine the existing building and energy data with information on mobility behavior, the
paper includes additional survey data. Firstly, we conducted a survey in which we invited all households
in Haßfurt to participate. Details on the questions and the results can be found in Section 3.2.1. Secondly,
we use the results of the Mobility in Germany (MiD) dataset, which is a travel survey with data collected
in 2017 (Infas and the Federal Ministry of Transport and Digital Infrastructure of Germany 2017). Finally,
over 150,000 households participated. The MiD basically asks the residents of all participating households
to report all their trips on a randomly chosen day. For each trip, the means of transport used, the departure
and arrival time, as well as the reason for the trip are recorded.

3.2.1 Survey Details

We conducted a survey among all residential customers/households of the utility company with a response rate
of 17% (n = 1101). For the validation of the survey, we compare two different building-related parameters
of the buildings from which we have survey results with all residential buildings in the considered town.
Regarding the building volume as the first tested parameter, the null hypothesis of the t-test of different
means cannot be rejected (t(5824) =−0.36, p = 0.72,d =−0.01). For the second comparison, we use the
building type (detached or semi-detached building, townhouse or other) of all residential buildings in the
considered area as given in the latest available census with the answers as given in the survey. The null
hypothesis of the chi-squared test on equal relative frequencies of the building types cannot be rejected
(χ2(3,1101) = 0.023, p > 0.99).

In the survey, we asked, among other things, about the number of apartments in the building, the number
of adults and children, and the number of vehicles in the questioned household. For every vehicle per
household, we asked for the average number of days per week when the vehicle is used and the estimated
daily vehicle driving distance (only for the days with vehicle usage). Moreover, we included questions on
the charging behavior of EV users. Therefore, we asked how often the EV is connected to the charging
station when the driver arrives at home. The results indicate that almost 50% of the EVs are only connected
every fourth time the EV arrives at home.
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3.3 Population Synthesis

Since the existing digital twin does not include information about how many flats are present per building,
or how many people live there, or how many vehicles they have, we have to estimate this information
based on the available data and our conducted survey. Therefore, we use a two-stage approach: First,
we train a decision tree to predict the building type (i.e., single-family building, two-family building or
apartment tower) based on the survey results as ground truth. The input parameters for the decision tree
are the number of installed electricity meters per building, its volume and a binary variable indicating the
presence of a PV installation or a heat pump. For the single- and two-family buildings, the number of
flats is apparent. For the apartment towers, we estimate the exact number of flats based on the number of
electricity meters placed in a given tower in a second step. We calibrate the results with the latest available
census for Germany from 2011 and current data on the number of people living in the considered town.

After the synthesis of the flats, we randomly attribute a family type to every sampled flat according to
their relative frequency as they occur in Haßfurt. The available family types are based on the census classes
from Germany and include one-person households, couples without children, single parents, couples with
children, and multi-person households without nuclear family. Once we have assigned a family type, we
estimate the number of family members. To account for the fact that families with adult children are also
classified as families in the German census, we separate the people per household into those with an age
of 18 or older and those below 18 based on an estimate of the share of children above 18 years that still
live at home. Knowing the age of the children is crucial for the following, as in Germany only people aged
18 and over are allowed to drive a vehicle. Finally, we have a sampled population of the considered town,
including age groups and attributions of the individuals to existing buildings.

In the last step, we attribute the vehicles with combustion engines among the sampled flats/households.
The total number of vehicles in Haßfurt is taken from the regionalized statistics on the distribution of
vehicles from the Federal Motor Transport Authority of Germany (2022), excluding historic or special-
purpose cars. Based on the results of our survey, we can determine the distribution of the number of
vehicles per household based on the number of adults living in that household. Using this distribution,
we randomly add vehicles to the households according to their number of adults. If the sampling results
in fewer vehicles per household than there are adults, some adults have to share a vehicle. Using this
sampling approach, we sample 9 397 vehicles with a combustion engine for 2021.

3.4 Mobility Demand Generation

3.4.1 Mode Choice Model for Vehicle Usage

The mode choice model indicates which means of transportation is used to complete a trip. In this paper,
we use a model that returns the probability Pcar(dtrip,scar) of utilizing a vehicle as a driver based on the
distance of the trip dtrip and a binary variable scar indicating whether the vehicle is available for the full day
for a given driver or if the driver must share the vehicle among other household members. We extract the
probabilities from the MiD survey results, selecting only results from rural counties in Southern Germany
as both mode choice and travel distance are strongly influenced by the type of region (i.e., rural or urban)
(Scheiner 2010). In Figure 2, we compare our MiD-based mode choice model for vehicle usage to related
work, analyzing the mode choice for a similar rural region in Austria that is close to our considered area
(Ashrafi and Neumann 2017). The comparison is only visualized for the distance groups that merge with
our analysis, i.e., up to a trip distance of 50 km.

In this paper, we focus on home-centered tours. A home-centered tour is a set of trips where the first
trip departs from home and the last trip of the tour arrives at home. For the sake of clarity, we assume
that the complete tour is executed with the same mode, i.e., intermodal tours are not considered. For a
given tour, we determine the mode by sampling with the probability Pcar(dtrip,scar) obtained from the mode
choice model using the length of the longest trip of the tour as dtrip and the information if another person
already uses the vehicle. In the literature, we also find other models like logit models based on computing
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Figure 2: Visualization of the mode choice model that is extracted from the MiD dependent on the vehicle
sharing type, i.e., vehicle shared between household members (lime) or vehicle exclusively attributed to
one person (dark green), including a reference from the literature (gray).

utilities of using different means of transport for a given trip or tour (Ben-Akiva and Lerman 1974; Hillel
et al. 2021).

3.4.2 Assignment and Processing of Mobility Demand from OMOD to Sampled People

We generate spatially resolved individual mobility demand profiles using OMOD, the OpenStreetMap
Mobility Demand Generator (Strobel and Pruckner 2023). OMOD is an open-source tool designed to
generate detailed daily activity schedules for a population of agents based on an agent-based simulation
calibrated with the MiD. It provides disaggregated temporal and spatial information at the individual
building level, facilitating the easy creation of realistic mobility demand for various applications, including
energy systems modeling. We apply OMOD to the considered region using a buffer area of 55 km and
sample over 10,000 adults for one week. For every sampled person, OMOD outputs a daily list of trips,
including the trip distance, start and arrival time.

The generated individual mobility demand profiles, i.e., the list of trips per person, are postprocessed
in multiple steps. First, we generate a set of home-centered tours out of the list of trips. Therefore, we
iterate over the chronologically sorted list of trips starting at home and merge all trips until we reach the
home place again. To apply the above-described mode choice model, we additionally note the length of
the longest trip in every tour. Thereupon, we remove all overlapping tours, which happens in some cases
as trips of the previous day are not finished on the next day.

3.5 Vehicle Tour Sampling and Application of the Mode Choice Model

The sampling procedure from Section 3.4.2 returns home-centered tours per person. As our target is to
obtain home-centered tours of the vehicles driven by these people, we apply the mode choice model from
Section 3.4.1 to every tour per person to identify the tours executed by vehicle. If a vehicle is shared, the
first user is considered to be the primary vehicle user, and his vehicle-based tours are sampled at first using
the mode choice model for non-shared vehicles (dark green bars in Figure 2). For the other users attributed
to the vehicle, we use the mode choice model, assuming the vehicle is shared (lime bars in Figure 2). If
this vehicle usage sampling strategy results in overlapping tours, we exclude one of the overlapping tours.
Also, other papers like Miller et al. (2005) remove one of the overlapping tours to resolve the problem of
multiple vehicle users simultaneously, as rescheduling activities lies out of the scope of this paper.

3.6 Modeling of the EVs Inside the Digital Twin

Within the digital twin, we need the following aspects of EV mobility: The charging profile, the connection
state to the home charging station, and the question of whether the EV is currently parked at home.
Therefore, we model the EVs as a finite-state machine having the states that an EV is either driving or
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parked at home. In the latter case, it can be connected to the charging station or it may park at home
disconnected. Changes between the driving and the parking states happen based on the sampled profiles
from Section 3.4.2. If an EV is parked once, the connection state cannot change anymore. The connection
state is determined directly after the EV has arrived based on the random choice model obtained from the
survey (see Section 3.2.1). If the battery state is below 35%, the EV is always connected to the charging
station. If the EV is parked and connected, the following sub-states describing the charging possibilities
are possible: Either the battery is fully charged, so no additional charging is possible. If the battery can still
be charged, we distinguish two cases. Either the EV must be charged so that the next tour can be finished
without additional charging during the tour, or charging is possible but not mandatory. The complete state
diagram, including all possible transitions as described above, is depicted in Figure 3. Additionally, we
assume that the vehicles require 20 kWh/100 km, which is the upper value reported by Simon and Hola
(2019).

Driving Parking at home - Disconnected

Parking at home - Connected to charing station

Charging possible

Charging required

Charging not possibleBattery is full

else

else

Charging required?

Next tour starts
Tour finished

Next tour starts immediatelyNext
tour

starts SOC
below
35%

else Random
choice with pelse

Figure 3: Modeling of the EVs inside the digital twin as finite-state machine.

3.7 Possible Addition of Rooftop PV Installations and BESS

To analyze the self-consumption potential of rooftop PV generation for charging an EV, we size the PV
installations according to the available roof area, as this is an inherent feature of the applied digital twin.
We assume that it is possible to install 0.172 kWp/m2 of roof area, with an upper limit of 30 kWp as
defined by the German tax legislation. The used profiles are extracted from already existing, individually
metered PV installations grouped according to their orientation in the area under consideration.

For the simulation of added residential BESSs, we use a power-energy model (Vykhodtsev et al.
2022) with a round-trip efficiency of 90% and no self-discharge. The simulated battery’s kWh capacity
matches the building’s annual electricity usage in MWh (excluding EVs), capped at a maximum of 20 kWh.
A rule-based control strategy governs the charging or discharging of the added BESS to optimize PV
self-consumption (see Bayer and Pruckner (2023) for details).

3.8 Internal Logic of the Digital Twin and Analyzed Metrics

For the analysis of the share of EV charging demand that can be covered by a residential rooftop PV
installation, we analyze the metrics described below. For this analysis, we assume that the residential
electricity demand has priority for the PV self-consumption and that there is no additional charging other
than at the home of the EV. The main focus is on the analysis of the self-consumption rate (SCR) and the
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self-sufficiency rate (SSR) that are defined according to Nyholm et al. (2016) for a building c by

SCR =
Sum of self-consumed PV energy

Sum of total PV generation
=

∑t∈T Pself cons.
c (t)

∑t∈T PPV
c (t)

(1)

SSR =
Sum of self-consumed PV energy

Sum of total demand
=

∑t∈T Pself cons.
c (t)

∑t∈T Pbuild
c (t)+PCS

c (t)
(2)

where Pbuild
c (t) denotes the residential electricity demand of the building at time step t, PPV

c (t) is the PV
generation at t, PCS

c (t) is the demand of the charging station at t and Pself cons.
c (t) denotes the self-consumed

power at time step t. For the computation of the self-consumed power Pself cons.
c (t) at a given time step t

and a building c, we extend the computation as presented in Bayer and Pruckner (2023) by the power of
the residential EV charging station:

Pself cons.
c (t) = min{ Pbuild

c (t)+PCS
c (t)︸ ︷︷ ︸

Local demand

, PPV
c (t)−PBat

act,c(t)︸ ︷︷ ︸
Local production

} (3)

Please note that PPV
c (t)−PBat

act,c(t)≥ 0 holds always following as argued in Bayer and Pruckner (2023).

4 RESULTS

In this section, we first present the aggregated results of the generation of vehicle usage profiles. To be able
to use these profiles for the computation of EV charging profiles assuming immediate charging when the
EV arrives at home and no charging on the way, we need to verify that the sampled vehicle profiles correctly
represent the vehicle usage behavior. Therefore, we compare our results to other sources or questions of
our survey that have not been used in the methodology.

4.1 Results and Validation of the Vehicle Usage Sampling

To justify that our sampled vehicle usage profiles represent the usage patterns of vehicles within a weekday,
we first compare the share of vehicles parking at home in our sample (blue line in Figure 4) with a travel
survey from the United Kingdom, as analyzed by Crozier et al. (2018) (dashed gray line). The comparison
shows that our sample and the reference exhibit the same trend over the Tuesday as an exemplary day
of the week. Nevertheless, as we consider another region as the reference, a direct comparison of the
percentage of vehicles parked at home is impossible. In Figure 4, we also include the daily departure and
arrival times of vehicles at their home place. Even though we cannot find a survey that evaluates these
times in a European country, these histograms seem to be plausible. In the morning, most vehicles depart
between 6 a.m. and 9 a.m., and in the evening, most vehicles arrive between 15 a.m. and 16 a.m., which
reflects a typical workday usage. This leads to the conclusion that our methodology is capable of correctly
simulating vehicle usage within a day.

To verify that the weekly vehicle usage is correctly represented, we compare the number of days a
week the vehicle is used at least one time that day between our sampled profiles (blue line in the rightmost
plot from Figure 4) and the survey results from our conducted survey (orange line). Most vehicles in our
simulation are used five times a week (29%). However, the survey suggests that most vehicles are used
daily (21%). On the other hand, our simulation shows that there are hardly any vehicles with less than two
days of use per week (less than 5%), which was indicated in the survey in over 17% of cases. Nevertheless,
the average number of vehicle usage days per week for all vehicles is 4.6 in the survey and 4.8 in our
sample. This leads to the conclusion that our sampled vehicle usage profiles represent the average vehicle
usage, but do not perfectly cover the complete range of diverse vehicle usage.
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Figure 4: Aggregated output of the mobility demand processing. The blue line in the leftmost plot shows
the percentage of vehicles parking at home for an exemplary weekday (Tuesday) as simulated. The two
plots in the center visualize the histogram of the departure and arrival times of all vehicle tours over the
complete sampled week. The rightmost plot shows the number of days a vehicle is used per week.

4.2 Analysis of PV Self-Consumption for Residential EV Charging

To analyze the PV self-consumption for residential EV charging, we consider all residential buildings in
Haßfurt that have neither a PV installation nor an EV. In total, these are 3 353 residential buildings. We
define the following scenarios that are evaluated using PV generation and smart meter data from 2021 in
our existing digital twin (Bayer and Pruckner 2023) with an hourly resolution:

• CS: Baseline scenario, i.e., the current state without additional components like EV charging stations
of PV installations

• EV: All residential buildings are equipped with an EV charging station
• PV: All residential buildings are equipped with a PV installation
• PV+BS: All residential buildings are equipped with a PV installation and a BESS
• EV+PV: Combination of scenario EV and PV
• EV+PV+BS: Combination of scenario EV, PV+BS

The main reason for including the scenarios PV and PV+BS is to show the additional effect of the EVs.
All added PV installations and BESSs are sized as stated in Section 3.7.

The results show that self-sufficiency is massively reduced in the presence of EVs compared to a
scenario without EVs (see leftmost plot in Figure 5). The average SSR reduces from 46% in Scenario
PV to 38% in Scenario EV+PV. On the other hand, the annually self-consumed electricity increases in
the presence of EVs. The average SCR increases from 13% in Scenario PV to 18% in Scenario EV+PV.
Similar changes in the values of SSR and SCR occur in the presence of BESSs.

Summed over all buildings, adding EVs to all considered buildings leads to an increase in the annual
electricity consumption from 18.5 GWh to 33.0 GWh, corresponding to an increase of 78% (see rightmost
plot in Figure 5). With the addition of a rooftop PV installation to all buildings, we can reduce the
annual electricity consumed from the grid by 31.2% to 22.5 GWh. When further adding a BESS (Scenario
EV+PV+BS), the summed annual grid consumption reduces to a value of 18.4 GWh, which is even 0.1 GWh
less than the current state (CS). This means that we can eliminate the added annual consumption of the
EVs by adding rooftop PV installations and BESSs to all buildings. Nevertheless, the comparison to a
scenario where no EVs are integrated reveals that the charging of the simulated EVs still requires grid
demand as the total consumption from the grid of all buildings without EVs is much lower (11.6 GWh in
Scenario PV and 7.9 GWh in Scenario PV+BS). The monthly peak demand accumulated over all buildings
is highly affected by adding EVs (see center plot in Figure 5). The peak increases from 4.9 GW in the
current state to 7.9 GW. The addition of PV installations can reduce this peak during most of the summer
months by around 1 GW. However, most of the peaks can be reduced using additional BESSs, especially
from April until September.
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Figure 5: Distribution of SSR and SCR (left plots) over all considered buildings with added EVs in the
scenarios with EV-addition. Center plot: Maximum residential demand per month for different scenarios.
Rightmost plot: Sum of annual electricity consumption over all considered buildings, separated by the
actual electricity consumed from the local grid (green) and the consumption covered by the local rooftop
PV installation (light blue).

5 DISCUSSION AND LIMITATIONS

The validation of the vehicle usage profiles, as shown in Section 4.1, shows that our presented methodology
is capable of generating realistic vehicle driving profiles. Regarding the results for the second research
question, we can highlight that combining an EV with a PV installation and BESS for every considered
building yields a substantial reduction in the annual building electricity consumption, nearly matching the
current state without additional EVs, PV installations, or BESS. This integrated approach demonstrates
significant potential for enhancing energy efficiency and sustainability within the transportation sector
while leveraging renewable energy sources to offset traditional grid reliance. Compared to existing papers
analyzing the SCR of rooftop PV installations in Germany, which resulted in values between 26% and 38%
(without storage) (Hassan 2022), most of the analyzed buildings in our situation show lower SCR values.
This is due to the fact that the PV systems considered in our case sized according to the available roof
area are considerably larger (21 kWp in the mean) than in the considered paper (between 1.1 and 6 kWp).

A methodological limitation of our paper is the sampling process. Existing literature, such as Eisenmann
and Buehler (2018), reports that people usually use the same means of transportation for repeating activities,
like going to work or the same shopping location. In the current implementation, we sample the means
of transport for every occurrence of a possibly repeating tour again. This suggests that the simulation
incorrectly estimates the use of the vehicle for repeated trips over a week. Nevertheless, the estimation of
the average vehicle usage days per week represents the vehicle usage correctly (see Section 4.1). Moreover,
our results are limited to the area considered, including the local weather conditions, in this case, Southern
Germany.

6 CONCLUSION

This paper presents a novel combination of a local energy system’s digital twin and a mobility simulation to
evaluate the impact of higher EV penetration rates in future energy system states. To integrate the mobility
simulation, we incorporated results from an additional survey. We verify the presented methodology for
generating vehicle mobility profiles from sampled human mobility demands by comparing the weekly
and intra-day vehicle usage patterns to other publications or additional survey results. As an example
of application-level results, we evaluate the possibility of compensating for the additional electricity
consumption caused by EVs in the private sector.
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Our results offer multiple insights at various levels. On a methodological level, we prove that it
is possible to combine a real-world digital twin with a mobility simulation on an individual level if
additional information about the structure of the households (number of adults/children per household), the
households/flats per building and the vehicles per household are present. As these data are not fully covered
by existing surveys or data from the statistical offices, we added survey information from a survey we
conducted. At the application level, the results show that adding EVs increases the total annual electricity
consumption across all considered residential buildings by 78% with home charging only. By adding
PV systems and BESSs to all buildings under consideration, the annual electricity consumption of these
buildings can be reduced back to the current level without EVs, PV systems or BESSs. Similarly, the
demand peaks caused by EV charging can be almost entirely prevented by the addition of PV systems and
BESSs in the summer months. All in all, the negative effects of increasing EV penetration on the energy
system can only really be mitigated by additional BESSs. As both systems, BESSs and smart charging
infrastructure can be costly, it is promising to compare the Scenario EV+PV using additional smart charging
with Scenario EV+PV+BS from a financial point of view for future research.
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