
Proceedings of the 2024 Winter Simulation Conference
H. Lam, E. Azar, D. Batur, S. Gao, W. Xie, S. R. Hunter, and M. D. Rossetti, eds.

ANALYSIS OF THE SVD SCALING ON LARGE SPARSE MATRICES

María de Castro-Sánchez1, José A. Moríñigo2, Filippo Terragni3, and Rafael Mayo-García2

1School of Aerospace Engineering, Technical University of Madrid (UPM), SPAIN
2Dept. of Technology, CIEMAT, Madrid, SPAIN

3Dept. of Mathematics, Universidad Carlos III de Madrid, Leganés, SPAIN

ABSTRACT

There has been great interest in the Singular Value Decomposition (SVD) algorithm over the last years
because of its wide applicability in multiple fields of science and engineering, both standalone and as part
of other computing methods. The advent of the exascale era with massively parallel computers brings
incredible possibilities to deal with very large amounts of data, often stored in a matrix. These advances set
the focus on developing better scaling parallel algorithms: e.g., an improved SVD to efficiently factorize a
matrix. This study assesses the strong scaling of four SVDs of the SLEPc library, plugged into the PETSc
framework to extend its capabilities, via a performance analysis on a population of sparse matrices with up
to 109 degrees of freedom. Among them, there is a randomized SVD with promising performance at scale,
a key aspect in solvers for exascale simulations since communication must be minimized for scalability
success.

1 INTRODUCTION

Computational performance of the SVD has been into focus over the last decades (Dongarra et al. 2018) due
to its instrumental role in many fields of science and engineering (e.g., computational chemistry, astronomy,
finance, plasma and fluid physics, etc.). Presently, with the advent of the big data and exascale computing
revolutions, the availability of an efficient, scalable SVD implementation turns out to be an issue of crucial
concern (even when sometimes the aim is ‘simply’ to fit a huge amount of data into the distributed memory
of the supercomputer, and then apply a parallel SVD). Typically, the SVD acts on a matrix which may
be sparse or dense, tall-skinny or fat-shaped, well-conditioned or very ill-conditioned, to mention some
frequent scenarios that are commonly linked to the specific fields above mentioned.

As an example connected to our group interest, recent promising ideas from the research in numerical
linear algebra point out to use an SVD as part of new preconditioner formulations, to be specific taking
advantage of randomized SVD schemes (Buluc et al. 2021; Martinsson 2018; Halko et al. 2009) because of
their computing economy, which suggests a better convergence of iterative solvers applied to extreme-scale
systems of linear equations. In addition to speeding up time-to-solution, other benefits arise: improved
scalability and resilience (Moríñigo et al. 2022). These metrics are key aspects in the design of state-of-the-art
solvers, as it is the case of communication-avoiding Krylov solvers.

This study delves into an authors’ previous investigation (Ferrero-Roza et al. 2023) on the performance
of several CPU-based SVD versions available in the SLEPc (Scalable Library for Eigenvalue Problem
Computations) library (Román et al. 2022), which extends the capabilities of PETSc (Portable, Extensible
Toolkit for Scientific Computation) framework (Mills et al. 2021). In particular, much larger matrix
dimensions n× n are taken into consideration, up to n ≈ 109, which implies 100x the largest n taken in
(Ferrero-Roza et al. 2023). The chosen population of matrices spans different scenarios of coupling among
the distributed parallel processes over the cluster, then a varying impact on the cluster communications.

The structure of this article is as follows. The next section gives an overview of the PETSc-SLEPc
framework and introduces the generalities of the deterministic and randomized SVD algorithms of SLEPc

2523979-8-3315-3420-2/24/$31.00 ©2024

de Castro-Sánchez, Moríñigo, Terragni, and Mayo-García

applied to the matrices. Section 3 presents the computing framework setup as well as the characteristics
of the sparse matrices used in the benchmarking. Then, it follows the Results section where the strong
scaling tests carried out with two computing clusters at CIEMAT are discussed. Section 5 states the recent
research related to this investigation. To end some conclusions are given.

2 SVD SOLVERS

2.1 PETSc Framework and SLEPc

PETSc is a suite of libraries designed to ease the implementation and customization of large-scale parallel
application codes. A variety of parallel linear and nonlinear solvers (mostly iterative), besides time
integrators, are included as building blocks to simplify the coding. In addition, it provides the functionality
needed within application codes by means of advanced matrix and vector assembly routines that store,
distribute and operate specifically on sparse and dense entities to speed up the computations. PETSc uses
the Message Passing Interface (MPI) standard for all the communications in distributed computing and
recent versions have started to include several GPU-based algorithms (Mills et al. 2021). Optimally, PETSc
interfaces a variety of numerical algebra libraries: among them, SLEPc provides a bunch of parallel SVD
solvers (PETSc’s SVD algorithm is serial, with no parallel counterpart included).

SLEPc (Román et al. 2022) is a library for the solution of large sparse eigenproblems and other
problems such as the partial SVD of both sparse and dense matrices on parallel computers. It also provides
solvers for the computation of the action of a matrix function on a vector by a Krylov method. SLEPc
is built on top of PETSc and works as a seamless extension (it shares the same programming paradigm
as PETSc). The implemented SVDs are well-suited for sparse matrices derived from the discretization
of partial differential equations. Besides, it interfaces other external software libraries (i.e., ScaLAPACK
(Blackford et al. 1997) and more) to efficiently carry out parallel SVDs on large dense matrices.

2.2 Overview of the SVD

A very brief mathematical description of the SVD is given in what follows. Exhaustive information can
be found elsewhere besides the user’s manual of SLEPc (Trefethen and Bau 1997).

The SVD of an m×n matrix A corresponds to A =UΣV ∗, where U = [u1,u2, ...um] is an m×m unitary
matrix (U∗U = I), whose columns are the left singular vectors; V = [v1,v2, ...vn] is an n×n unitary matrix
(V ∗V = I), whose columns are the right singular vectors; and Σ is an m×n diagonal matrix with real entries
(non-negative, sorted in decreasing order) called singular values of A, that is Σii = σi for i = 1,2, ...min(m,n)
(illustrated in Figure 1a). If A is real, then U and V result to be real and orthogonal (U∗ =UT ,V ∗ =V T).
In the general case of a non-square matrix A with m ≫ n, the resulting factorization (sometimes called thin
SVD) exploits the slenderness of the matrix, then U collapses into an m×n matrix (depicted in Figure 1b),
and the factorization reads A =UnΣnV ∗

n . The n singular triplets correspond to (σi,ui,vi) for i = 1,2, ...n.

2.3 Deterministic SVDs in SLEPc

The computation of the SVD of a matrix can be done with an equivalent eigenvalue problem setup in
SLEPc, recasting the matrix A conveniently to extract its singular triplets:

1. The cross product matrix method builds the matrix A∗A or AA∗.

2. The cyclic matrix method builds the matrix H(A) =
[

0 A
A∗ 0

]
.

The default SVD solver in SLEPc is the one using the cross product matrix (cross). This has several
implications regarding the number of singular values that can be computed because of the size of Σ. Then,
a drawback of this method is that there is a loss of accuracy in computing the smallest singular values. On

2524

de Castro-Sánchez, Moríñigo, Terragni, and Mayo-García

Figure 1: SVD factorization of matrix A: standard SVD (left); and thin SVD (right), done for m ≫ n.

the other hand, the eigendecomposition of H(A) of the cyclic matrix method outputs singular values that
are not squared, then the smallest computed values will be more accurate. The expense of this approach
is more RAM memory and extra computing cost compared to cross. Hence, though the cross product
matrix method tends to be faster and the most memory-efficient approach for the standard SVD, it is only
appropriate when the leading singular values are searched for.

Other specific, robust SVD formulations available in SLEPc are two Lanczos-type solvers: the so-called
Lanczos and the thick-restart (TR) Lanczos. Both are two-stage algorithms. Taking A = PBQ∗ (being P and
Q unitary matrices, and B an m×n upper bidiagonal matrix), the built tridiagonal matrix B∗B is unitarily
similar to A∗A. Hence, expressing the SVD of B as XΣY ∗ immediately leads to state U = PX and V = QY .
Its first stage is iterative and builds the bidiagonalization of A. The TR Lanczos is a variant that exploits
the restarting mechanism and conducts one-sided or two-sided reorthogonalization via iterated Classical
Gram-Schmidt method in the bidiagonalization process. In particular, the TR concept is easier to implement
than the restarting used in the pure Lanczos-based SVD (Hernández et al. 2008; Alvarruíz et al. 2022).

2.4 Randomized SVD in SLEPc

The rSVD uses a low-rank representation of A and exploits randomized linear algebra techniques (Martinsson
2018; Halko et al. 2009). Due to accuracy concerns, the size of the vector basis ncv is set (at least) double
the number of requested singular values nsv (ncv ≥ 2 ·nsv). The implemented rSVD is iterative and stops
when either the prescribed tolerance condition or the maximum number of iterations is reached. Then,
the tolerance should be set with care to balance computing cost and desired accuracy because the iterative
block is a time consuming operation driven by matrix-matrix and matrix-vector multiplications.

3 BENCHMARKING SETUP AND METHODOLOGY

3.1 Computing Environment

The software framework comprises the library PETSc v3.19.5 and SLEPc v3.19.2. Besides, MPIch v4.1.1
is installed as an external package of PETSc. The installation of SLEPc and MPIch is straightforward
once the PETSc environment has been set since their respective configure scripts inherit the PETSc
setup parameters for optimal performance. Compilation has been done with the GNU compilers (v11.3.1
in ACME and v8.5.0 in XULA clusters), using aggressive -O3 optimization to enhance the acceleration
of executions according to prior performance tests (Ferrero-Roza et al. 2023). All libraries and codes have
been compiled under 64-bit arithmetic, enforced at the configuration stage and required by the size of the
sparse matrices considered in this study. With smaller matrices (Davis and Hu 2011) as the ones analyzed
by the authors in (Ferrero-Roza et al. 2023), the 32-bit arithmetic (default in PETSc) is enough.

Strong scaling tests have been executed in two clusters located at CIEMAT: ACME, which is a research
facility (Rodríguez-Pascual et al. 2019) intended for software development and benchmarking; and XULA,
which is a production facility shared by research groups. Both have the Slurm workload manager installed.

In ACME a homogeneous partition of 10 nodes has been used. Each node comprises 2 Intel Xeon Gold
6138 ’Skylake’ processors (20 cores/CPU) @2.0 GHz, with 192 GB RDIMM memory. Node connection
is done with a 56 Gb/s FDR InfiniBand network. The setup permits MPI-based parallel executions up to
400 ranks (one rank per core; hyperthreading disabled).

2525

de Castro-Sánchez, Moríñigo, Terragni, and Mayo-García

In XULA a homogeneous partition of 64 nodes (denoted Xula3) has been used. Each node comprises
2 Intel Xeon Gold 6342 processors (24 cores/CPU) @2.8 GHz, with 256 GB DDR4 memory. Node
connection is done with a 100 Gb/s Enhanced Data Rate (4X EDR) InfiniBand network. The setup permits
MPI-based parallel executions up to 3,072 ranks (one rank per core; hyperthreading disabled).

Figure 2: Computing nodes architecture of ACME (left) and XULA (right) clusters. Bandwidth corresponds
to RAM read/write operations, intra-node (CPUs) bus, and inter-node communication is indicated.

All tests have been performed with dedicated access to the partition nodes, enforced with theexclusive
command of Slurm. Thus, it is ensured that no interference with other users occurs during MPI executions.
It should be mentioned that benchmarking tests in XULA were completed at its commissioning phase
(before entering production), so network traffic caused by other users was reduced to a minimum.

3.2 Matrices

Two types of square, real, sparse matrices have been built with size n up to order 109 (equivalent to the
degrees of freedom, DoF). Four matrices are derived from solving the Poisson equation in 1D, 2D and
3D domains using 2nd-order stencils to discretize the Laplace operator; in addition a 4th-order stencil has
been implemented for the 3D case. Poisson-like equations appear in many fields of Physics as a member
of the system of governing equations: gyrokinetics of plasmas, materials physics, shallow water dynamics,
to cite some. Besides, their numerical solution may take a major portion of the total computing cost
(e.g., in problems involving incompressible fluid dynamics). The second type corresponds to four banded
matrices (11, 25, 39 and 71 diagonals) filled with Gaussian numbers in [-1,1]. This type of non-symmetric
matrices is representative of many-body complex quantum systems with local interactions (similarly, the
Anderson model matrix provided by the ScaMaC library (Alappat et al. 2020) describes the motion of a
quantum-mechanical particle in a disordered solid). Therefore, in total 8 matrices of up to 109 DoF are
considered (some have been downscaled to a smaller size to explore the sensitivity to having less computing
load per core, see next section). It is noticed that all the analyzed matrices have structured patterns of
non-zero numbers (nnz), see Figure 3, hence there is an almost linear relationship between n and nnz.

3.3 Execution Parameters

Generation of matrices for PETSc SVD-solvers has been accomplished on-the-fly, which facilitates the I/O
operations during tests setup. Relative tolerance is bounded by 10−3 and the leading ten singular values
are requested (no singular vectors) for output. These are stored in the output file for accuracy comparison.

Computing time corresponds to the SVD-solvers object execution in a strict sense, then neither accounting
for the time invested in matrix building nor other C structures setups or memory de-/allocations. It should
be noticed that an a priori study was carried out with a population of matrices of 107 to 109 DoF in both
clusters to quantify the expected walltime fluctuations in identical executions. This has led to bound the

2526

de Castro-Sánchez, Moríñigo, Terragni, and Mayo-García

Figure 3: Sketch of discretized 3D Laplacian operator of the Poisson equation, corresponding to a 7-point
(left) and 13-point (right) stencils of second and fourth-order accuracy, respectively. Differences in pattern
of non-zero matrix entries (nnz) is shown for a matrix size set to n = 64 (chosen for visualization purposes).

variability margin within ±1.5%, as well as to accept the mean of three consecutive executions as adequate.
Distribution of MPI ranks over the cluster has been enforced with the cyclic Slurm command. Besides,
parameters to control the SVD versions execution have been set following (Román et al. 2022) (specifically,
the singular vectors subspace dimension is triple the number of requested singular values).

4 RESULTS

The numerical experiments correspond to two types of studies: sensitivity and strong scaling tests. The
first one has been completed in cluster ACME because of the much more computing time available. The
second study has been carried out in XULA besides ACME. The computing time available using 64 nodes
of the entire partition of XULA (denoted Xula3 in Figure 2) for benchmarking has been used to test the
strong scaling of three SVD versions: cyclic, cross and rSVD. The TR Lanczos is not included among these
(only tested in ACME) due to the above mentioned usage restriction of partition Xula3.

4.1 Sensitivity Tests

The interplay between SVD scaling and matrix size n has been investigated by building matrices with
increasing size (equivalent to increasing DoF). Strong scaling corresponding to n of order O(107), O(108)
and O(109) for the 1D Poisson problem matrix (Figure 4), 2D Poisson problem matrix (Figure 5) and
banded matrix with 11 diagonals (Figure 6) have been analyzed in ACME. The scenario n ∼ O(1010),
which leads to an nnz 10x larger than its counterpart for n ∼ O(109), results in being unaffordable with
the cluster ACME because of its total RAM constraints. Consequently, it can be stated that n ∼ O(109)
is the largest problem that fits into ACME according to its present day configuration. The plots clearly
show that DoF of O(107) implies a too low computing load per core, as the quicker decay of the speedup
and parallel efficiency indicates. On the contrary, the scaling behaviour improves as DoF tends to O(109)
because nnz is proportional to n, thus the computing load per core increases. It is clearly seen that the
larger the matrix size, the closer the speedup curve to its ideal counterpart results to be, as well as the flat
portion of the parallel efficiency enlarges over a wider range of MPI ranks. Interestingly, all matrices show
that the speedup and parallel efficiency curves get more and more similar to each other, then the scaling
behaviour becomes more insensitive to the SVD algorithm itself. However, the considered SVD versions
significantly in the execution time (see Figure 7), which is a fundamental criterion for taking decisions
about the suitability of a specific SVD method to apply.

In addition, the effect of the nnz pattern on the scaling properties has been analyzed using a sequence of
Poisson equation discretizations in 1D, 2D and 3D computational domains and n ∼ O(109) (see Figure 8).
Typically the increase of the domain dimensionality implies a progressive spreading of non-zero numbers
away from the main diagonal of the matrix. By default PETSc partitions matrices into bands of rather similar
numbers of rows, then these are distributed over the cores. In particular, for the 1D Poisson problem, this
means that all nnz are placed into the diagonal blocks of their respective bands. A priori this concentration

2527

de Castro-Sánchez, Moríñigo, Terragni, and Mayo-García

of non-zeroes makes the communication among the MPI ranks less intensive. The opposite situation arises
for the 3D Poisson problem matrix, whose non-zeroes are located in both diagonal and off-diagonal blocks
for each band. Specifically, when higher-order stencils are involved, the spreading of the nnz may be quite
strong (the matrices given in Figure 3 show the larger spreading of the nnz as a consequence of the stencil
complexity). Precisely the progressive scaling degradation observed for the Poisson problem matrices as
the domain dimensionality increases from 1D to 3D (see Figure 8) can be explained by the much stronger
computation coupling involved. That is, the spreading of non-zeroes across the off-diagonal matrix blocks,
as dimensionality increases, implies more data to communicate among the MPI ranks over the cluster.

4.2 Strong Scaling in XULA

Benchmarking using the partition Xula3 has demonstrated a very good strong scaling, showing a quite
remarkable speedup and parallel efficiency achieved for both 3D Poisson problem (discretized with 7-
and 13-point stencils) and the three banded matrices "BD" (25, 39 and 71 diagonals) up to the maximum
number of MPI ranks tested (2,560 cores). This behaviour is summarized in Figures 9 and 10, respectively.

The 3D Poisson problem matrix discretized with a 7-point stencil has been benchmarked in both
clusters ACME (right column in Figure 8) and XULA (upper row in Figure 9), thus the comparison of
the scaling behaviour deserves attention as qualitative differences are visible. First, it should be noted that
fewer nodes are available in ACME, which favours a quicker concentration of MPI ranks per node over
the cluster compared to XULA (which has 32 nodes set for this case and 64 for the BD matrices). Said
that, it is reasonable to expect heavier memory contention issues to appear earlier in ACME than in the
second cluster, hence a worse SVD scaling is expected. In addition, ACME’s InfiniBand has half XULA’s
bandwidth, so internode communication is slower. Lastly, all tests in ACME have been designed to fill
100% of the CPUs’ cores (400 MPI ranks in total). On the contrary, XULA’s filling is 67% of the CPUs’
cores (1,024 ranks of 1,536 in total, with the same ratio in those tests carried out with the BD matrices).
This much lower filling ratio seems beneficial to reduce the memory contention issues. Their effects are
visible in Figure 11 by comparing the attained speedup with the BD25 and BD71 matrices using 32 and 64
nodes and the same cluster architecture (Xula3). It can be seen that at 1024 MPI ranks the corresponding
speedup with 64 nodes is better because of the lower CPUs filling (33% vs. 66% with 32 nodes). Therefore,
cluster XULA offers a better scenario to attain higher performance than ACME for SVD benchmarking.
Precisely this point is confirmed by the much better scaling obtained with the entire population of matrices.

The comparison of the SVD versions (cyclic, cross and rSVD) in XULA shows that rSVD provides very
competitive execution time (see the central column in Figures 9 and 10): while for BD matrices it shows
quite similar execution time compared to the cross version, the rSVD applied to the 3D Poisson mroblems
matrices clearly outperforms the quickest cross. An explanation for this behaviour is that randomized
algebra typically implies asymptotic savings in the cluster communications. Then, it turns out to be more
efficient at dealing with the nnz pattern of the 3D Poisson discretizations, which yield many non-zeroes
spread across several off-diagonal matrix blocks. Consequently, it is more communication-intensive. This
finding is a rather promising property at scale which demands further benchmarking with a wider set of
matrices (in terms of larger n and nnz pattern variation).

5 RELATED WORK

A major concern regarding the parallel SVD algorithm is driven by the difficulty in overcoming its memory
contention and communication constraints at scale. At present, systematic benchmarking of available
SVD implementations is scarce and summarized in few works. In (Dongarra et al. 2018) a review of
state-of-the-art SVD implementations for dense matrix computations with CPUs and GPUs is provided.
Systematic tests on a multicore machine (in-node performance) and a distributed computing platform have
been carried out with the SVD of ScaLAPACK in a distributed-memory computer. Albeit they quantify
the attained relative speedup with a reference SVD in distributed computing for increasing matrix size, no

2528

de Castro-Sánchez, Moríñigo, Terragni, and Mayo-García

analysis of the absolute speedup is provided, nor do they discuss techniques for solving SVD problems
with sparse linear systems. Interestingly, both square and very-tall dense matrices scenarios are compared
and they show that the tallest matrices exhibit an improved speedup attributed to caché issues.

The SVD scaling has been analyzed in (Blanchard et al. 2019), where recent formulations tuned for the
full computing capabilities of some novel architectures are investigated. In particular, the one-stage SVD
polar decomposition has shown its improved scaling compared with well established numerical libraries
as ScaLAPACK and others on pure CPU distributed-memory computers and hybrid CPU-GPU platforms.

In (Schmidt 2020) three MPI-based SVD solvers corresponding to the normal-equations, QR-based
and randomized-SVD formulations are analyzed and executed on the Summit supercomputer (USA). These
implementations are tested with a group of tall/skinny matrices and their performance is compared.

In (Hernández et al. 2008) the authors conduct some strong scaling tests using the PETSc-SLEPc
framework on a reduced set of sparse matrices, hence to test the scaling properties of the SVD solver
based on the restart Lanczos bidiagonalization. Their results are extended in various presentations delivered
by the same authors, focused on strong and weak scaling attained with some SVD versions of SLEPc.
However, a systematic benchmarking is missing.

Another fundamental aspect has to do with the matrix generation and its input to the SVD solver.
Benchmarking of SVD libraries requires sparse and dense matrices of increasing dimension. There exist
well known sparse matrices repositories such as the Suite Sparse Matrix Collection (Davis and Hu 2011),
which provides a variety of matrices of size n ≤ 108. When larger sparse matrices are needed, one option is
the usage of the ScaMaC library (Alappat et al. 2020), a scalable matrix generation framework for a broad
set of physics problems, which permits acting on the size of the problem matrix, as well as controlling its
sparsity pattern by modifying a few involved parameters, then designing both strong and weak scaling tests.
It comes with an example template for PETSc to help with the implementation of the on-the-fly matrix
building and partitioning. In addition, the generation of large dense matrices with prescribed singular values
and condition numbers can be efficiently done according to (Fasi and Higham 2021). This work describes
a methodology suitable for scaling tests with extreme-scale matrices in petascale computers and beyond.

The present investigation extends the strong scaling results provided in (Ferrero-Roza et al. 2023) with
systematic benchmarking of sparse matrices up to 109 DoF and using the most promising parallel SVD
solvers coded in the PETSc-SLEPc framework. Their analysis at scale leads to a better knowledge of their
potential, both standalone and as a building block of a solver which exploits an SVD factorization.

6 CONCLUSIONS

The strong scaling of four SVD versions (three deterministic plus one randomized) implemented in SLEPc
has been analyzed using two classes of sparse matrices: Poisson-derived and banded, both up to size n∼ 109.
The tests performed in cluster XULA, which has a more upgraded architecture and quicker InfiniBand
network with respect to ACME, show that all matrices with 109 DoF exhibit a very good speedup within
the tested range of MPI ranks (1,024 ranks for Poisson matrices; 2,560 ranks for BD matrices).

Interestingly, the execution time of the randomized SVD shows promising behaviour compared to
the quickest deterministic SVD version (cross) at scale. This is specially remarkable for the 3D Poisson
matrices (where the nnz pattern leads to a much stronger coupling among the MPI ranks than for the BD
matrices) since the rSV D clearly outperforms cross. This result suggests the benefit of the randomization
concept in the SVD implementation as it seems to drive communication reduction over the cluster nodes,
which means a better strong scaling. This issue results to be of key importance in solvers for exascale
simulations, since communication must be minimized for scalability success. Finally, it is worth mentioning
that our group plans to conduct further research with parallel executions of at least O(104) MPI ranks with
a broader range of sparsity patterns to deepen into this behaviour in the next future, also by including
additional metrics to better quantify the involved communication overhead and memory contention.

2529

de Castro-Sánchez, Moríñigo, Terragni, and Mayo-García

Figure 4: Speedup and parallel efficiency attained with four SVD algorithms applied to the 1D Poisson
problem matrix with a 3-point stencil discretization, solved in cluster ACME. Columns correspond to matrix
DoFs equal to order 107 (left), 108 (center) and 109 (right).

Figure 5: Speedup and parallel efficiency attained with four SVD algorithms applied to the 2D Poisson
problem matrix with a 5-point stencil discretization, solved in cluster ACME. Columns correspond to matrix
DoFs equal to order 107 (left), 108 (center) and 109 (right).

ACKNOWLEDGMENTS

CIEMAT contribution was partially funded by EuroHPC project EoCoE3 (Grant ID: 101144014) and EC
H2020 project EU LAC ResInfra Plus (Grant ID: 101131703), and led within the SciTrack group tasks

2530

de Castro-Sánchez, Moríñigo, Terragni, and Mayo-García

Figure 6: Speedup and parallel efficiency attained with four SVD algorithms applied to banded matrix
BD11 of 11 diagonals (main plus 5 diagonals on either side filled with Gaussian numbers), solved in cluster
ACME. Columns correspond to matrix DoFs of order 107 (left), 108 (center) and 109 (right).

Figure 7: Execution time with four SVD algorithms applied to Poisson 1D (left), 2D Poisson (center) and
BD11 (right) matrices, solved in cluster ACME. All cases correspond to matrix DoFs of order 109.

towards exascale computing. F. Terragni (UC3M) was supported by the ERDF Spanish Ministry of Science,
Innovation, and Universities under grant PID2020-112796RB-C22. The authors acknowledge access to
cluster ACME and thank XULA’s administrator A. Alberto-Morrillas for her kind support.

REFERENCES
Alappat, C. L., A. Alvermann, A. Basermann, H. Fehske, Y. Futamura, M. Galgon, , , , , , , , , , , et al. 2020. “ESSEX:

Equipping Sparse Solvers For Exascale”. In Software for Exascale Computing - SPPEXA 2016-2019, edited by H.-J.
Bungartz, S. Reiz, B. Uekermann, P. Neumann, and W. E. Nagel, 143–187. Cham: Springer International Publishing.

Alvarruíz, F., C. Campos, and J. E. Román. 2022. “Thick-restarted Joint Lanczos Bidiagonalization for the GSVD”. ArXiv:1–25.
Blackford, L. S., J. Choi, A. Cleary, E. D’Azeuedo, J. Demmel, I. Dhillon, , , , , , et al. 1997. ScaLAPACK User’s Guide.

USA: Society for Industrial and Applied Mathematics.

2531

de Castro-Sánchez, Moríñigo, Terragni, and Mayo-García

Figure 8: Speedup and parallel efficiency attained with four SVD algorithms applied to the 1D, 2D and
3D discretization of the Poisson equation. Columns correspond to Poisson 1D with 3-point stencil (left);
Poisson 2D with 5-point stencil (center); and Poisson 3D with 7-point stencil (right), solved in cluster
ACME. Matrix size is for 1D: n=1,000,000,000; 2D: 1,000,014,129; 3D: 1,073,741,824.

Figure 9: Speedup, execution time and parallel efficiency attained with three SVD algorithms applied to the
3D Poisson matrix computed in partition Xula3 with 32 dedicated nodes. Matrix size is n=1,073,741,824
and discretization has been done with a 7-point (upper row) and 13-point (lower row) stencil.

2532

de Castro-Sánchez, Moríñigo, Terragni, and Mayo-García

Figure 10: Speedup, execution time and parallel efficiency attained with three SVD algorithms applied to
the banded matrices of 25, 39 and 71 diagonals filled with Gaussian numbers (BD25, BD39 and BD71,
respectively, n =1,000,000,000), computed in partition Xula3 with 64 dedicated nodes.

Figure 11: Speedup variation when distributing the MPI ranks over 32 and 64 nodes of Xula3, shown for
the banded matrices BD25 (left) and BD71 (right).

2533

de Castro-Sánchez, Moríñigo, Terragni, and Mayo-García

Blanchard, P., M. Zounon, J. Dongarra, and N. Higham. 2019. “Novel SVD Algorithm - Deliverable D2.9”. Technical Report
H2020-FETHPC-2014:GA671633.

Buluc, A., T. Kolda, S. Wild, M. Anitescu, A. Degennaro, J. Jakeman, , , , , , , , , , , , et al. 2021, July. Randomized Algorithms
for Scientific Computing (RASC) https://doi.org/10.2172/1807223.

Davis, T. A. and Y. Hu. 2011. “The University of Florida Sparse Matrix Collection”. ACM Transactions on Mathematical
Software 38(1):1–25 https://doi.org/10.1145/2049662.2049663.

Dongarra, J., M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov et al. 2018. “The Singular Value Decomposition: Anatomy
of Optimizing an Algorithm for Extreme Scale”. SIAM Review 60(4):808–865 https://doi.org/10.1137/17M1117732.

Fasi, M. and N. J. Higham. 2021. “Generating Extreme-Scale Matrices With Specified Singular Values or Condition Number”.
SIAM Journal on Scientific Computing 43(1):A663–A684 https://doi.org/10.1137/20M1327938.

Ferrero-Roza, P., J. A. Moríñigo, and F. Terragni. 2023. “Strong Scaling of the SVD Algorithm for HPC Science: A PETSc-Based
Approach”. In Proceedings of the Winter Simulation Conference, WSC ’23, 2872–2883: IEEE Press.

Halko, N., P.-G. Martinsson, and J. A. Tropp. 2009. “Finding Structure with Randomness: Probabilistic Algorithms for
Constructing Approximate Matrix Decompositions”. ArXiv https://doi.org/10.48550/ARXIV.0909.4061.

Hernández, V., J. E. Román, and A. Tomás. 2008. “A Robust and Efficient Parallel SVD Solver Based on Restarted Lanczos
Bidiagonalization”. ETNA. Electronic Transactions on Numerical Analysis [electronic only] 31:68–85.

Martinsson, P. 2018. Randomized Methods for Matrix Computations, 187–230. American Mathematical Society.
Mills, R. T., M. F. Adams, S. Balay, J. Brown, A. Dener, M. Knepley, , , , , , , et al. 2021. “Toward Performance-portable PETSc for

GPU-based Exascale Systems”. Parallel Computing 108:102831 https://doi.org/https://doi.org/10.1016/j.parco.2021.102831.
Moríñigo, J. A., A. Bustos, and R. Mayo-García. 2022. “Error Resilience of Three GMRES Implementations under Fault

Injection”. J. Supercomputing 78(5):7158–7185 https://doi.org/10.1007/s11227-021-04148-x.
Rodríguez-Pascual, M., J. A. Moríñigo, and R. Mayo-García. 2019. “Effect of MPI Tasks Location on Cluster Throughput

Using NAS”. Cluster Computing 22(4):1187–1198 https://doi.org/10.1007/s10586-018-02898-7.
Román, J. E., C. Campos, L. Dalcin, E. Romero and A. Tomas. 2022. “SLEPc Users Manual”. Technical Report DSIC-II/24/02.
Schmidt, D. 2020. “A Survey of Singular Value Decomposition Methods for Distributed Tall/Skinny Data”. In 2020 IEEE/ACM

11th Workshop ScalA, 27–34: IEEE Computer Society https://doi.org/10.1109/ScalA51936.2020.00009.
Trefethen, L. N. and D. Bau. 1997. Numerical Linear Algebra. SIAM: Society for Industrial and Applied Mathematics.

AUTHOR BIOGRAPHIES
MARÍA DE CASTRO-SÁNCHEZ earned her MSc in Industrial Mathematics at the Technical University of Madrid (Spain)
and holds a degree in Aerospace Engineering. Her interests are linked to Mathematics and its application to problem solving
in industry. Recently she conducted applied research in high performance computing in the context of her MSc thesis, carried
out in the Department of Technology of CIEMAT. Her email address is mariadecastro2000@gmail.com.

JOSÉ A. MORÍÑIGO is a senior researcher at the Department of Technology of the Centre for Energy, Environmental
and Technological Research (CIEMAT). He earned his PhD in Aeronautical Engineering from Universidad Politécnica de
Madrid (2004). His research interests include the development of scalable, resilient solvers of PDEs and numerical algebra
for supercomputers and their application to fluid dynamics. He has a long experience in simulation of turbulent compressible
flow, mostly applied to aerospace propulsion. He is a lecturer of space propulsion at the School of Industrial Engineering of
Bilbao. His e-mail is josea.morinigo@ciemat.es and his research group website is http://rdgroups.ciemat.es/web/sci-track.

FILIPPO TERRAGNI is an associate professor in Applied Mathematics at the Mathematics Department of the Universidad
Carlos III de Madrid. His research interests include reduced order models based on modal expansions and data-processing for
problems involving fluid dynamics, pattern-forming systems, and transport phenomena. On the other hand, he is also working
on modeling and numerical simulation of biological processes, like the angiogenesis. He is a lecturer in the Interuniversity Mas-
ter in Industrial Mathematics (Spain). His email is fterragn@ing.uc3m.es and his research group website is https://scala.uc3m.es/.

RAFAEL MAYO-GARCÍA is a senior researcher at CIEMAT, Harvard University Fellow, and coordinator of the European
EERA Joint Programme ’Digitalisation for Energy’. He earned his PhD in Physics from Universidad Complutense de Madrid
(2004). He has been involved in many experiments in the US, Bulgaria, Sweden, and Ireland (funded, among others, by the
European Commission with a Marie Curie Action). He has also obtained a postdoctoral fellowship in the Spanish Juan de
la Cierva Programme. He authored more than 160 scientific articles. He has participated in 64 projects (being PI in 9 out
of them) and has been involved in several European and National initiatives working on HPC & BD scientific developments.
He also has served several institutions as an evaluator for their competitive Calls, European Commission included and has
supervised 8 theses. His email is rafael.mayo@ciemat.es.

2534

https://doi.org/10.2172/1807223
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1137/17M1117732
https://doi.org/10.1137/20M1327938
https://doi.org/10.48550/ARXIV.0909.4061
https://doi.org/https://doi.org/10.1016/j.parco.2021.102831
https://doi.org/10.1007/s11227-021-04148-x
https://doi.org/10.1007/s10586-018-02898-7
https://doi.org/10.1109/ScalA51936.2020.00009
mailto://mariadecastro2000@gmail.com
mailto://josea.morinigo@ciemat.es
http://rdgroups.ciemat.es/web/sci-track
mailto://fterragn@ing.uc3m.es
https://scala.uc3m.es/
mailto://rafael.mayo@ciemat.es

	INTRODUCTION
	SVD SOLVERS
	PETSc Framework and SLEPc
	Overview of the SVD
	Deterministic SVDs in SLEPc
	Randomized SVD in SLEPc

	Benchmarking Setup and Methodology
	Computing Environment
	Matrices
	Execution Parameters

	Results
	Sensitivity Tests
	Strong Scaling in XULA

	Related Work
	CONCLUSIONS

