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ABSTRACT

Stochastic programming provides mathematical models and algorithms for optimizing decisions under
uncertainty. In formulating a stochastic program we typically assume that the probability distributions
governing the random parameters are independent of the problem’s decisions. Here, we study a multistage
stochastic program with decision-dependent uncertainty. At each stage, binary decisions choose from a
set of probability distributions and can increase the likelihood of favorable outcomes at a certain cost. We
develop a variant of the stochastic dual dynamic programming (SDDP) algorithm to approximately solve
this class of problems, using a convex relaxation of the algorithm’s subproblems. This allows us to handle
a type of large-scale multistage decision-dependent stochastic program, which was previously inaccessible.
We provide computational results for a multi-product newsvendor problem with binary marketing options.

1 INTRODUCTION

Multistage stochastic programming is a mathematical framework used to model an agent making a sequence
of decisions under uncertainty. Unlike complementary approaches in simulation-optimization, Markov
decision processes, and reinforcement learning, the vast majority of the stochastic programming literature
assumes that the problem’s randomness is exogenous, i.e., it assumes that the probability law governing
the problem’s stochastic process is independent of the agent’s actions. In many settings this is reasonable.
In a hydroelectric system, the operator’s decisions regarding releasing water for power generation and
storing water in reservoirs may not affect the random external inflow from precipitation and snow melt.
A small financial investor’s decisions to buy and sell specific assets may not alter the random gains or
losses that those assets incur in the market. On the other hand, agents ranging from advertisers to public
health officials take actions that aim to influence or alter a population’s behavior. In turn, our mathematical
models should alter, for example, the probability distribution governing the demand for a product or service
or the demand for hospital beds.

The literature on stochastic programming with decision-dependent uncertainty can be divided into
two main groups. The first group assumes that the agent’s decisions can alter the probability distribution
governing the problem’s random vector. Ahmed (2000) considers two-stage stochastic programs in which
first-stage design decisions parameterize the probabilities of random outcomes. He reformulates the problem
as a 0-1 fractional program, and proposes a branch-and-bound algorithm. Kopa and Rusỳ (2021) consider
an asset-liability management problem in which the lender’s decision on the interest rate for a loan affects
the customer’s probability of acceptance, defaulting, and prepayment. Hellemo et al. (2018) consider
a two-stage stochastic program in which the parameters of the probability distribution depend on the
first-stage decisions, and we also point to their work for a review of the stochastic programming literature
on decision-dependent uncertainty.

The second group of papers assume the agent’s decisions determine the nature and/or timing of learning
information regarding the distribution of the random parameters. Goel and Grossmann (2004) consider
an offshore gas field investment problem in which information on the gas reserve and on the efficacy of
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potential extraction can be attained only after an initial investment in exploration. They present a disjunctive
problem formulation with decision-dependent nonanticipativity constraints and propose a decomposition
algorithm. Vayanos et al. (2011) consider a similar problem with decision-dependent information discovery
and propose an approximation technique that is also used in robust optimization. Among other work, see
Jonsbråten et al. (1998), Goel and Grossmann (2006), and Apap and Grossmann (2017) for more examples
of decision-dependent information discovery.

Decision-dependent uncertainty is also considered in distributionally robust variants of stochastic
programs. For example, Basciftci et al. (2021), Luo and Mehrotra (2020), and Yu and Shen (2022) study
distributionally robust optimization in which the ambiguity sets—that constrain the choice of the adversarial
probability distribution—are decision-dependent.

Morton et al. (2024) formulate a class of multistage stochastic programs that incorporate modeling
characteristics of Markov decision processes (MDPs). Their formulation captures action-dependent one-step
transition probabilities like those in an MDP and can represent both types of decision-dependent uncertainty
just sketched. Our approach is closely related to that of Morton et al. but rather than altering the one-step
transition probabilities in a policy graph (Dowson 2020), in our model the agent’s actions directly alter the
probability mass function (pmf) governing random realizations of, say, the demand distribution. (Here, we
do not pursue a model in which actions enable information gathering or statistical learning.) In particular,
we use a set of binary decision variables to alter the likelihood of uncertain outcomes, such as a decision
to market a certain product, which can increase the likelihood of a higher demand.

Our algorithmic approach is rooted in the stochastic dual dynamic programming (SDDP) algorithm,
which originated with Pereira and Pinto (1991). SDDP is typically used to solve large-scale multistage
stochastic convex programs with exogenous uncertainty when the random vectors are interstage independent,
or when the stochastic process satisfies certain types of inter-stage dependence, e.g., De Queiroz and Morton
(2013), Downward et al. (2020), Infanger and Morton (1996), Löhndorf and Shapiro (2019), Rebennack
(2016).

SDDP iteratively refines a piecewise linear convex approximation of the expected cost-to-go function at
each stage by repeating two basic steps: (i) in a forward pass, a sample path is selected from the underlying
stochastic process and the current policy is implemented to provide sequential, stage-wise solutions along
that path; and (ii) in a backward pass, new cuts are generated at each stage’s solution from the forward pass
by solving the modest number of immediate descendant subproblems at each stage and using their dual
variables. In the forward pass, the current piecewise linear convex approximation at each stage specifies
the policy, and those convex approximations are updated by the new cuts computed during the backward
pass.

SDDP was developed for convex multistage stochastic programs, but it is increasingly being used to
approximately solve nonconvex problems. Here, the nonconvex cost-to-go function is approximated by
a cut-based convex function. This cutting-plane approximation again constructs a policy but one that is
now, in general, suboptimal even as the sample size (number of backward passes) used for training the
policy grows large. Importantly, in the forward pass we now solve nonconvex subproblems, which capture
associated operational realities, aided by the convex cost-to-go approximation. When this approximation is
a relaxation, posterior statistical bounds on the optimality gap can be computed. A key idea—and one we
rely on—is to construct the convex approximation via Lagrangian duality as pioneered by Zou et al. (2019)
in the SDDiP algorithm. Nonconvex SDDP algorithms have been developed and applied in a number of
settings, including capacity planning in power systems (Lara et al. 2018; Lara et al. 2020), dispatching
power systems under an AC power flow model (Rosemberg et al. 2022), in using a hidden Markov model
in a multistage stochastic program (Siddig et al. 2021), and in a decision-dependent distributionally robust
multistage problem (Yu and Shen 2022). Our work is most closely related to that of Morton et al. (2024) and
Yu and Shen (2022), in that we propose to apply an SDDP variant to solve a multistage stochastic program
in which the nonconvexities arise via discrete variables associated with decision-dependent uncertainty,
although we do not pursue the distributionally robust formulations of the latter paper.
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The paper is organized as follows. Section 2 introduces our decision-dependent multistage stochastic
program and our assumptions. Section 3 presents the approximations of the cost-to-go function that we use
in the forward and backward passes of our decomposition algorithm. Section 4 describes our SDDP-style
decomposition algorithm. Section 5 provides numerical experiments that assess the algorithm. Finally,
Section 6 concludes and provides future research directions.

2 PROBLEM STATEMENT

We consider the following T -stage stochastic program:

V1(x0,ω1) = min
x1≥0,z1

c1x1 + ∑
k∈K1

zk1

(
fk1 + ∑

ω2∈Ω2

pω2
k2 V2(x1,ω2)

)
,

s.t. A1x1 = B0x0 +b1,

∑
k∈K1

zk1 = 1,

zk1 ∈ {0,1}, k ∈ K1,

where for t = 2, . . . ,T −1,

Vt(xt−1,ωt) = min
xt≥0,zt

cωt
t xt + ∑

k∈Kt

zkt

(
fkt + ∑

ωt+1∈Ωt+1

pωt+1
k,t+1Vt+1(xt ,ωt+1)

)
, (1a)

s.t. Aωt
t xt = Bωt

t−1xt−1 +bωt
t , (1b)

∑
k∈Kt

zkt = 1, (1c)

zkt ∈ {0,1}, k ∈ Kt , (1d)

and where

VT (xT−1,ωT ) = min
xT≥0

cωT
T xT , (2a)

s.t. AωT
T xT = BωT

T−1xT−1 +bωT
T . (2b)

We assume Aωt
t ∈ Rmt×nt and other matrices and vectors are also real-valued and conform in dimension.

The latter point includes treating vectors multiplying xt as row vectors, such as cωt
t as well as subsequent

Lagrangian dual variables, λt , and cut gradient coefficients, βt .
Realizations of the random parameters (At ,Bt−1,bt ,ct) are denoted (Aωt

t ,Bωt
t−1,b

ωt
t ,cωt

t ), ωt ∈ Ωt , t =
2, . . . ,T . Here, we assume binary decisions, zkt , represent investment decisions that can increase the
likelihood of favorable outcomes and fkt ∈ R represents the corresponding cost of investment options.
Anticipating our numerical example of Section 5, and for simplicity, we will say that the zkt variables
represent marketing options. We assume x0 is given and ω1 is degenerate and suppressed in (A1,B0,b1,c1).
In what follows we let KT = /0 indicate that stage T does not have marketing options. These conventions
allow our entire problem to be represented more compactly, i.e., be represented by recursion (1) for
t = 1, . . . ,T . The candidate pmfs pωt

kt , ωt ∈ Ωt , are indexed by k ∈ Kt because they are selected by the
binary marketing decision, zkt .

We make the following assumptions throughout the paper:

Assumption 1 The sample space at stage t, Ωt , is finite for all t = 1, . . . ,T , and the random parameters
(At ,Bt−1,bt ,ct), t = 1, . . . ,T , are interstage independent.
Assumption 2 The subproblem defining Vt(xt−1,ωt) in recursion (1) is feasible and has a finite optimal
solution for every incoming feasible solution xt−1 and every sample point ωt ∈ Ωt , t = 1, . . . ,T .
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3 CONVEX RELAXATION

We know VT (·,ωT ) is piecewise linear and convex, and hence so is ∑ωT∈ΩT pωT
kT VT (·,ωT ) for each k ∈ KT−1.

The introduction of the marketing decisions zk,T−1 means that VT−1(·,ωT−1) is effectively the minimum
of a collection of convex cost-to-go functions, across k ∈ KT−1, and hence is, in general, nonconvex.
Mathematically we see that the product of zkt and Vt+1(xt ,ωt+1) in recursion (1) introduces nonconvexity
in the cost-to-go function.

We will provide a convex relaxation of Vt(xt−1,ωt) defined in recursion (1). We do so by constructing
a convex, piecewise linear lower bound. The proof that our construction is valid is inductive. The inductive
hypothesis is that the cost-to-go function is bounded below by the maximum of a finite set of affine functions,
i.e., cuts:

Vt+1(xt ,ωt+1)≥ max
ℓ∈L

ωt+1
t+1

[
α

ωt+1
t,ℓ +β

ωt+1
t,ℓ xt

]
. (3)

By using dual extreme points of (2) and forming the corresponding cuts, condition (3) already holds for
VT (xT−1,ωT ) because as just indicated it is piecewise linear and convex in xT−1. Thus, for t = 1, . . . ,T −1,
we propose approximating (1) by:

V L
t (x̄t−1,ωt) = min

xt≥0,zt ,θt ,Θt ,xt−1
cωt

t xt + ∑
k∈Kt

fktzkt +Θt , (4a)

s.t. Aωt
t xt = Bωt

t−1xt−1 +bωt
t , (4b)

Θt ≥ ∑
k∈Kt

zkt ∑
ωt+1∈Ωt+1

pωt+1
k,t+1θ

ωt+1
t , (4c)

θ
ωt+1
t ≥ α

ωt+1
t,ℓ +β

ωt+1
t,ℓ xt , ℓ ∈ Lωt+1

t+1 ,ωt+1 ∈ Ωt+1, (4d)

xt−1 = x̄t−1 [λt ], (4e)

∑
k∈Kt

zkt = 1, (4f)

zkt ∈ {0,1}, k ∈ Kt . (4g)

We use Θt as a proxy for ∑k∈Kt zkt ∑ωt+1∈Ωt+1 pωt+1
k,t+1Vt+1(xt ,ωt+1) and θ

ωt+1
t as a proxy for Vt+1(xt ,ωt+1).

With a full set of cuts in (4d) we have V L
T−1(·,ωT−1) =VT−1(·,ωT−1), but this will not be true for t < T −1.

Constraints (4c) are nonlinear because they involve products of the marketing decisions, zkt , and approximate
cost-to-go variables, θ

ωt+1
t . That said, we can reformulate what we call the forward-pass subproblem (4),

or simply the forward subproblem, as a linear mixed-integer program (MIP) by replacing these bilinear
terms with the standard McCormick inequalities (McCormick 1976). (We do not detail the reformulation.)

We now complete our inductive proof and simultaneously describe a key step towards an implementable
algorithm, i.e., we show that if inequality (3) holds for Vt+1(xt ,ωt+1) then we have a mechanism to produce
cuts that yield that same inequality with t decremented by one. Following Zou et al. (2019), we created
local copies of the xt−1 variables in (4) and we now form the Lagrangian dual of the forward subproblem
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by relaxing the associated fishing constraint (4e) as follows:

¯
V L

t (x̄t−1,ωt) = max
λt

min
xt≥0,zt ,θt ,Θt ,xt−1

cωt
t xt + ∑

k∈Kt

fktzkt +Θt −λt(xt−1 − x̄t−1), (5a)

s.t. Aωt
t xt = Bωt

t−1xt−1 +bωt
t , (5b)

Θt ≥ ∑
k∈Kt

zkt ∑
ωt+1∈Ωt+1

pωt+1
k,t+1θ

ωt+1
t , (5c)

θ
ωt+1
t ≥ α

ωt+1
t,ℓ +β

ωt+1
t,ℓ xt , ℓ ∈ Lωt+1

t+1 ,ωt+1 ∈ Ωt+1, (5d)

∑
k∈Kt

zkt = 1, (5e)

zkt ∈ {0,1}, k ∈ Kt . (5f)

We call relaxation (5) the backward subproblem, and we note that
¯
V L

t (·,ωt) is a piecewise linear convex
function. We will use the relaxed formulation (5) in the backward pass of the SDDP algorithm. We
construct lower-bounding cuts for

¯
V L

t (·,ωt) and hence compute a lower bound for V L
t (·,ωt) and Vt(·,ωt)

using:

β
ωt
t−1,ℓ = λ

ωt
t , (6a)

α
ωt
t−1,ℓ =

¯
V L

t (x̄t−1,ωt)−β
ωt
t−1,ℓ x̄t−1. (6b)

We summarize our development in this section in the following theorem.
Theorem 1 Let Assumptions 1 and 2 hold. Then for t = 2, . . . ,T ,

¯
V L

t (·,ωt) is convex and

Vt(xt−1,ωt)≥V L
t (xt−1,ωt)≥ ¯

V L
t (xt−1,ωt)≥ max

ℓ∈Lωt
t

[
α

ωt
t−1,ℓ+β

ωt
t−1,ℓ xt−1

]
. (7)

The first three terms in (7) are the optimal values of (1), (4), and (5), respectively. The cut coefficients in the
fourth term are computed via equations (6) using dual multipliers, λ

ωt
t , and function values,

¯
V L

t (x̄t−1,ωt),
from the backward subproblem (5).

The final inequality in (7) still holds if we compute cuts by replacing λ
ωt
t and

¯
V L

t (x̄t−1,ωt) with
suboptimal counterparts that fail to “fully” maximize over λt in (5). We now have the ingredients in place
to construct our variant of SDDP to approximately solve (1).

4 SDDP ALGORITHM

Algorithm 1 details our variant of SDDP. As we have discussed, the algorithm iteratively performs a
forward pass (steps 5-8) and a backward pass (steps 9-15). For each stage t and achievable value of
(x̄t−1,ωt), a policy must specify a stage-t feasible solution x̄t . This is accomplished in the forward pass
by solving the sequence of nonconvex subproblems (4), with the cuts (4d) that have been accumulated
from previous iterations. A single forward pass amounts to solving T − 1 subproblems (4). Knowing
the sequence (x̄t−1,ωt), t = 2, . . . ,T , from the forward pass, the backward pass solves a total of ∑

T
t=2 |Ωt |

subproblems (5) to construct cuts for stages t = T −1,T −2, . . . ,1. Thus a single iteration of Algorithm 1
constitutes linear effort in T . Step 13 indicates that we should add |Ωt | cuts to stage t −1, but in practice,
we only add non-redundant cuts.

Solving both (4) and (5) requires solving linear MIPs. Executing the “maxλt ” in the backward
subproblem (5) can be done using a subgradient algorithm or a bundle method and requires repeatedly
solving the inner minimizing linear MIP (5). Again, we can terminate with a suboptimal λt , although we
tend to solve subproblem (5) precisely in the final iterations of Algorithm 1.

Multiple papers in the literature pre-specify a fixed number of iterations for SDDP algorithms. We could
terminate with such a rule in Algorithm 1’s step 16. Using a heuristic to assess whether, for a sufficient
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number of iterations, growth in the lower bounds
¯
V L

1 (x̄0,ω1) and V L
1 (x̄0,ω1) has stalled, or more generally

only redundant cuts are being generated throughout the stages might be a better option. In Section 5 we
use a fixed number of iterations, but that number is informed by marginal growth in the lower bounds.
As discussed shortly, Algorithm 2 estimates the current policy’s expected cost. For convex models, this
upper-bound estimator and V L

1 (x̄0,ω1) can be combined to guide termination, accounting for sequential
testing with a simulation-based estimator (Bayraksan and Morton 2011; Morton 1998). For nonconvex
problems, we can terminate in the same way only if we recognize that the optimality gap may not shrink
to zero, even as training effort grows large.

Marketing decisions alter problem (1)’s probability mass functions. In extreme cases, in the forward
pass, if we were to sample according to the pmfs specified by the marketing decisions obtained by solving
subproblem (4), then we would not visit parts of the tree. As a result, we could fail to explore the tree
sufficiently, and build weak approximations of the cost-to-go functions. Even in the absence of zero-value
pωt+1

kt masses, small values alter the frequency with which we visit parts of the tree, and again harm cut
construction. For this reason, we sample uniformly from Ωt in step 6 of Algorithm 1. (In our numerical
example in the next section, the uniform distribution corresponds to the “no marketing” decision.) Other
strategies such as alternating between sampling from ∑k∈Kt−1 pωt

kt z̄k,t−1 and sampling uniformly are possible.
Algorithm 2 takes as input the cuts (4d) for t = 1, . . . ,T −1 in the forward subproblem (4); i.e., the

algorithm takes as input the policy that Algorithm 1 gives as output. Algorithm 2 then executes that policy
along n i.i.d. forward sample paths. Because x0 is given and ω1 is degenerate, we only need to solve the
first-stage subproblem once, and we do in step 3. Steps 4-10 execute the n i.i.d. forward paths, and in
step 6 we sample ωt according to the pmf associated with the previous stage’s marketing decision, along
the corresponding sample path. This form of sampling now ensures that the output of Algorithm 2 is an
unbiased estimator associated with Algorithm 1’s policy, which includes specification of zkt .

Algorithm 1 Decision-dependent SDDP

1: Input: x̄0, initial state vector; initialize ℓ= 0
2: Output: Cuts (4d) for t = 1, . . . ,T − 1, which together with forward subproblem (4) form a policy;

lower bound on optimal expected cost, V L
1 (x0,ω1)

3: while termination criterion not met do
4: Let ℓ= ℓ+1
5: for t ∈ {1, . . . ,T −1} do ▷ Forward pass
6: Sample ωt uniformly from Ωt

7: With input (x̄t−1,ωt), solve subproblem (4) to find x̄t

8: end for
9: for t ∈ {T, . . . ,2} do ▷ Backward pass

10: for ωt ∈ Ωt do
11: Solve subproblem (5) with input (x̄t−1,ωt)
12: Use equations (6) to calculate cut coefficients (αωt

t−1,ℓ ,β
ωt
t−1,ℓ)

13: Add cuts to the stage t −1 version of subproblems (4) and (5)
14: end for
15: end for
16: Assess termination criteria
17: end while
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Algorithm 2 Decision-dependent SDDP forward simulation for estimating an upper bound

1: Input: n, number of forward simulations; x̄0, initial state; ω1, degenerate first-stage sample point;
cuts (4d) for t = 1, . . . ,T −1, computed from Algorithm 1

2: Output: v̂, upper bound estimator, and ŝ its sample standard deviation
3: With input (x̄0,ω1), solve subproblem (4) for t = 1 to find x̄1 and z̄1
4: for j ∈ {1, . . . ,n} do
5: for t ∈ {2, . . . ,T} do
6: Sample ωt from Ωt according to pmf ∑k∈Kt−1 pωt

kt z̄k,t−1
7: With input (x̄t−1,ωt), solve subproblem (4) to find x̄t and z̄t

8: end for
9: Calculate the sample path’s cost, v j = ∑

T
t=1
[
cωt

t x̄t +∑k∈Kt fkt z̄kt
]

10: end for
11: Calculate upper bound v̂ = 1

n ∑
n
j=1 v j and ŝ2 = 1

n−1 ∑
n
j=1(v j − v̂)2

5 NUMERICAL EXAMPLE

We consider a multistage, multi-product capacitated newsvendor problem with marketing to assess the
performance of the algorithm we have proposed. Table 1 gives the sets, parameters, and decision variables
for our example. In each time period, the agent can buy item i ∈ I at a unit cost of bi, and in the next
period sell it for a unit price of si. Demand is random and “soft,” i.e., the agent can sell up to ωit units
of product i in period t, but demand need not be satisfied. Inventory incurs a unit holding cost of hi. The
agent can invest in marketing for each product type i. We assume the set of marketing options K includes
all product-marketing combinations, i.e., |K|= 2|I|. The marketing cost for option k is fk.

Table 1: Notation for multi-product capacitated newsvendor problem with marketing.

Sets
i ∈ I set of products
k ∈ K set of marketing strategies

(e.g., for |I|= 2, K={don’t market, market product 1, market product 2, market both})
Parameters
bi > 0 unit cost for agent to buy product i
si > 0 unit price when agent sells product i
hi > 0 unit cost of holding inventory of product i
fk cost of marketing strategy k
ωit random demand for product i in period t
pωt

kt probability of observing random demand ωt in period t after choosing marketing
strategy k in period t −1

C total budget for agent’s purchases across all products i ∈ I in each period
Decision variables
xit inventory of product i at the end of period t
us

it amount of product i sold in period t
ub

it amount of product i bought in period t
zkt 1 if agent chooses marketing option k in time period t, 0 otherwise

3294



Arslan, Dowson, and Morton

Model (8) specializes problem (1) for our newsvendor example for t = 1, . . . ,T :

Vt(xt−1,ωt) = min
xt≥0,zt ,
ub

t ,u
s
t≥0

∑
i∈I

(
−sius

it +biub
it +hixit

)
+ ∑

k∈Kt

zkt

(
fk + ∑

ωt+1∈Ωt+1

pωt+1
k,t+1Vt+1(xt ,ωt+1)

)
, (8a)

s.t. us
it ≤ xi,t−1, i ∈ I, (8b)

us
it ≤ ωit , i ∈ I, (8c)

xit = xi,t−1 −us
it +ub

it , i ∈ I, (8d)

∑
i∈I

ub
it ≤C, (8e)

∑
k∈Kt

zkt = 1, (8f)

zkt ∈ {0,1}, k ∈ Kt . (8g)

Constraints (8b)-(8c) limit sales based on available inventory and demand. Constraint (8d) tracks inventory
from one period to the next. Constraint (8e) limits total purchases in each period based on the agent’s budget.
Constraints (8f)-(8g) replicate their form from the general model (1), with the note that for t = 1, . . . ,T −1
we have Kt = K, where K is from Table 1, and KT = /0 precludes marketing in the final time period. The
objective function in (8a) accounts for revenue from sales, the costs from buying, holding, and marketing,
along with the expected cost-to-go. We form vectors in the standard way, e.g., ωt = [ωit ]i∈I and zt = [zkt ]k∈K .

In our numerical experiments, we consider T ∈ {10,15,20,25}, |I| ∈ {1,2,3}, bi = 2 for all i ∈ I,
s = [8,10,12] for the three products, and hi = 0.1 for all i ∈ I. Marketing costs 5 units for each product,
so fk = 10 if option k markets two products. Demand for each product has two realizations, low and high,
which have equal probability if the agent does not market. Marketing a product increases its marginal
probability of high demand by 0.05. Low and high demand values are 20 and 50 for product 1, 10 and 60 for
product 2, and 5 and 65 for product 3. Contingent on the marketing decision, the probability distributions
for demand are the same in each period.

The budget, C, plays a key role in model (8). When the budget is sufficiently large, the problem is
relatively easy to solve and the solution mimics that of a collection of single-product problems. Similarly,
if C is sufficiently small then the optimal policy is to restrict orders and marketing to the product with the
highest profit margin. We observed that a budget, C, which corresponds to roughly the 75th percentile of
aggregate demand when we do not market, yields interesting and challenging test problems.

Assumption 1 is satisfied given that the demand has a finite distribution that is independent across the
periods. For a given feasible inventory level xt−1 ≥ 0, and random demand ωit ≥ 0, we can always set the
marketing decision zt = (zkt)k∈K to any unit vector, and let ub

it = 0, us
it = min{xi,t−1,ωit}, and xit = xi,t−1−us

it
for i ∈ I implying that Assumption 2 is satisfied. Thus the conditions for Theorem 1 hold.

The subproblems (4) and (5) in Algorithms 1 and 2 are solved using Gurobi 11.0.1 (Gurobi Optimization,
LLC. 2024). The Lagrangian dual problem associated with subproblem (5) is solved with a subgradient
algorithm. The experiments were conducted on a macOS laptop with 2.3 GHz Quad-Core Intel Core i7
processor with 16 GB of RAM, and the algorithms were implemented using Python 3.9.

We ran Algorithm 1 for a fixed number of 50 iterations, which was large enough so that subsequent
iterations would change the cost-to-go approximations only marginally. We then ran Algorithm 2 for
n = 1000 i.i.d. forward paths, and Figure 1 shows results for six example problems (one repeats across the
subfigures). The boxes correspond to the 25th and 75th percentile of the realized cost (and the whiskers
cover about 99% of the simulated samples). Figure 1a shows results for a single-product example as
the number of stages, T , grows. While the spread of the distribution of v j values, j = 1, . . . ,1000 (see
Algorithm 2), grows with T , the deterministically valid lower bound V L

1 (x0,ω1) from Algorithm 1 and the
Monte Carlo upper bound v̂ from Algorithm 2 are close, despite our algorithm using a convex relaxation of
a nonconvex problem. Figure 1b shows that as the number of products grows the spread of the distribution
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again grows, and for |I|= 3 products, the gap between the upper and lower bounds is substantial. Figure 1’s
box plots depict the spread in the distribution of the sample population, i.e., the v j values, j = 1, . . . ,n.

Another point of interest is the uncertainty associated with the estimator v̂ from Algorithm 2. The
standard errors, i.e., ŝ/

√
n, associated with the first set of examples from Figure 1a are 8, 9, 11, and 12,

respectively. Similarly, for the second set of examples from Figure 1b, the standard errors are 8 (repeated),
20, and 33, respectively. With these sampling errors, we can construct confidence intervals for the upper
bound and the optimality gap. As percentage of the upper bound, a 95% confidence intervals on the
optimality gap range from 0.7% to 1.4% for the first five examples and then jump to 21% for the sixth
instance. Preliminary experiments with more sophisticated Lagrangian methods, which are not reported
here, reduced the gap in the final instance by more than half.

Figure 2 shows the inventory levels and marketing decisions based on an optimized policy over a
single simulated sample path. Figure 2a depicts results of the policy for a single-product example with
T = 25, which indicates that the agent should market when the inventory level exceeds approximately 40
units. Figure 2b shows a similar policy for a two-product example with T = 10. The product with higher
profit margin is prioritized, has higher inventory level, and is always marketed. For the second product,
marketing is limited to periods when the inventory level is high enough.

(a) |I|= 1 (b) T = 10

Figure 1: Box plots of the cost (objective function) incurred for n = 1000 simulations from Algorithm 2.
The blue dots represent the lower bound, V L

1 (x0,ω1), calculated using Algorithm 1. The green triangles
represent v̂, the estimated expected cost calculated using n = 1000 sample path simulations. Part 1a shows
results for T = 10,15,20,25 periods for a family of single-product instances. Part 1b shows similar results
for |I|= 1,2,3 products when T = 10.

6 CONCLUSION

In this paper, we studied a multistage stochastic program with decision-dependent uncertainty. We assumed
an agent can choose from a set of probability distributions at each time period to increase the likelihood
of favorable outcomes with a corresponding cost. We solved our problem with an SDDP-style algorithm
that relies on a convex relaxation of the subproblems, and yet forms an unbiased Monte Carlo estimator
of the cost associated with the policy that our SDDP algorithm constructs for the nonconvex problem.
We provided computational results for a multistage, multi-product capacitated newsvendor problem with
marketing.

We described and implemented cutting planes for the cost-to-go function that are derived from a
relatively straightforward Lagrangian relaxation of the state variable’s fishing constraint. Our subgradient
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(a) |I|= 1 (b) |I|= 2

Figure 2: Inventory levels and marketing decisions according to Algorithm 1’s optimized policy on a single
simulated sample path. Black lines shows the inventory level for each product in each time period. The red
stars represent the decision to not market a product, and the green dots represent the decision to market.
Part 2a shows results for a single-product example over 25 periods. Part 2b shows results for a two-product
example over 10 periods.

algorithm is also relatively simple and sub-optimizes over the dual multiplier. We empirically observed
that the nested nature of cut computation over multiple stages can amplify weakness in cuts. Future work
should include pursuing more sophisticated methods for generating cuts via the Lagrangian dual.

In our numerical results we did not compare the algorithm that we propose against competitors because
we do not know how else to approximately solve the problem while producing reasonable lower bounds.
To our knowledge, other approaches to stochastic programs with decision-dependent uncertainty, including
those that we review in Section 1, are not meant to scale to problems with more than a few stages. We
can imagine different types of convex relaxations that include a trade-off between requisite computational
effort and tightness, and this is a possible direction for future work.

We sampled uniformly from Ωt in step 6 of Algorithm 1, as opposed to sampling from ∑k∈Kt−1 pωt
kt z̄k,t−1.

This choice helps us explore the scenario tree and helps to generate cuts at a richer set of values of the
inventory state variable, xt , at each stage. However, even with this uniform sampling scheme, marketing
decisions still influence our cost-to-go approximation. For example, in the problem of Section 5 an agent
who markets makes more aggressive product purchases, leading to larger inventory levels. An alternative
for the forward pass of Algorithm 1 would be to sample a random marketing decision—instead of using an
optimized decision—and then solve the forward subproblem (4) with that marketing decision. This should
enable greater exploration, and may be particularly important in the early iterations of the algorithm.

We assumed that marketing decisions can change the probability distribution of random outcomes in
a way that is known a priori to the agent. In many settings the agent will learn the effect of marketing
based on demand realizations. Thus an important future extension of our work is to simultaneously model
decision-dependent uncertainty and statistical learning. Ensuring the forward pass of an SDDP algorithm
sufficiently explores the state space at each stage will grow in importance in such a setting.
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