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ABSTRACT

Direct stochastic simulations of medium to large scale Markovian processes with population dynamics
may have runtimes that are proportional to the population size, if they account for each state transition of
each individual in the population. Several approaches to speed up such simulations have been proposed.
We use a discrete-time, Euler-forward type approximation for state transition functions that simulates all
transitions within a given time step in an effort to improve run times, at the expense of some (potentially
correctable) bias. We illustrate this with a stylized model of COVID-19 social distancing interventions in
the United Arab Emirates. We also adapt the next generation matrix method of Hill and Longini (2003) to a
continuous time, discrete state model. The approach accelerates simulation run times from a linear scaling
of run times in population size to a constant that depends on the number of possible state transitions.

1 INTRODUCTION

This paper addresses the improvement of simulation run times of continuous time Markov chains (CTMCs)
that represent discrete counts of individuals in large populations. This paper also explores connections
between the next-generation method (NGM) for modeling epidemic growth (Hill and Longini 2003), a
discrete-step model that has been useful for optimizing vaccine allocation resources (generation here refers
to each step in a disease transmission chain), the more commonly-used compartmental model framework
that is based on ordinary differential equations (ODE) in continuous time, and to analogous CTMCs.

We do so in the context of a stylized epidemic model created to inform health leaders in a Middle Eastern
country during the Spring of 2020, shortly after the start of the COVID-19 pandemic. The model was
designed to (a) generalize some existing, stylized deterministic models of infectious disease transmission
and control to a stochastic model to account for variability in outcomes, (b) assess the effects of some public
health interventions for social distancing on resource needs for the hospital system, and (c) to provide rapid
run times in a context where long run times would not support dynamic decision making.

Simulation run times for such stochastic models might not scale gracefully as a function of total
population size, depending on the simulation method that is chosen to run the model. One standard method
for simulating CTMCs (Asmussen and Glynn 2007) is to generate the time of the next event, and then to
simulate which type of event has occurred (e.g., a transition of an individual from susceptible to infected, or
from infected to hospitalized). With this method, the number of such events per simulated time unit scales
with the average number of individuals in the population. This is true even if only the counts of individuals
in each state need be monitored – a technique that already can improve simulation run times compared
to a simulation that models each and every individual explicitly, as with a discrete event simulation that
might also allow for non-Markovian dynamics (Brennan et al. 2006).

Methods have been proposed through time to address this issue (e.g, see Ganyani et al. 2021). Several
involved exact or approximate probability transition functions that account for all transitions over a short
time interval, for example over [t, t +∆t), for t on a lattice of times. For example, one might compute the
transition probabilities exactly with Chapman-Kolmogorov equations, but this too might be computationally
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challenging. Or one might use Poisson approximations for the number of transitions of individuals across
each arc, and the error in transition probabilities can be reduced by shrinking ∆t, but this might result in more
exits from a given node than there are individuals to exit it. Another method might be to relax the discrete
space constraint and simulate the process as a Gaussian diffusion process with a state-dependent drift and
covariance for transitions. This can build on research from state-dependent diffusion model simulation
(e.g, see Asmussen and Glynn 2007), but may lose important information if boundaries are not accounted
for properly (to avoid negative population counts), and the diffusion might not be a good representation
when there are small numbers of individuals in some of the nodes/compartments.

Section 2 summarizes an application context that was faced near the start of the COVID-19 pandemic and
that serves as a basis for numerical studies. Section 3 presents a stylized, deterministic model of infectious
disease transmission and vaccination at the start of an epidemic. We then adapt to a deterministic ODE model
for our application with social distancing through an entire outbreak, then link that to a stochastic, Markov
model of infection in several subpopulations with social distancing. Section 4 summarizes several methods
to simulate, exactly or approximately, such stochastic simulations. Section 5 demonstrates speed/bias
tradeoffs for one of those simulation methods for estimating the peak and total number of infections and
the maximum number of resources used. Section 6 summarizes our results.

Although our application is to epidemic control, our intent is to discuss general tradeoffs with approximate
state transition probabilities that improve run times for CTMC simulations of large populations of individuals
but that may introduce biases in estimating means. Linkages between NGM, ODE, and CTMC models
will be discussed mathematically, the run times and biases will be explored numerically in this paper. Our
work focuses on epidemic models (see also Diekmann and Heesterbeek 2000; Pineda-Krch 2008; Allen
2017; Ganyani et al. 2021) but is also related to the rapid simulation of queue networks (Wang et al. 2024)
and of other CTMCs that count populations of individuals undergoing transitions through discrete states,
including birth (or exogenous arrival) and death (or departure) processes.

2 APPLICATION CONTEXT: SOCIAL DISTANCING FOR COVID-19

We applied our method to model COVID-19 dynamics in the United Arab Emirates (UAE), considering the
diverse subpopulations and their adherence to social distancing measures. Specifically, we categorized the
UAE population into four main subpopulations: Emirati, Professional Expats, Blue Collar, and Laborers,
each with varying capacities to observe social distancing. This characterization resulted in eight dimensions
of the state space, reflecting the combination of subpopulation and adherence status. In our model, we
accounted for various disease states, including susceptible, infectious, recovered and dead individuals,
as well as the potential need for medical resources such as hospital beds, Intensive Care Unit (ICU)
beds, ExtraCorporeal Membrane Oxygenation (ECMO), and ventilators. Our primary intervention strategy
focused on social distancing. This approach allows us to capture some of the complexities of COVID-19
transmission dynamics within a large and heterogeneous population like that of the UAE.

3 EPIDEMIC MODEL OF PUBLIC HEALTH INTERVENTIONS IN SUBPOPULATIONS

We adopt a previous study’s model for vaccine allocation (Hill and Longini 2003), adapt it to the context
of COVID-19 and social distancing in the UAE, convert it to an analogous continuous time differential
equation model, then convert it to a continuous-time discrete state Markov model. Instead of vaccination,
we will consider social distancing of susceptible and infected individuals. We discuss some options to
simulate these models in Section 4.

3.1 Next Generation Matrix Model

A previous study (Hill and Longini 2003) developed a model for determining minimal vaccine allocations
within a population of m heterogeneous subgroups to prevent an epidemic by reducing the reproduction
number to 1. Let Ri j be the expected number of secondary infections in unvaccinated individuals in
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Figure 1: SIR compartmental model for one population subgroup (i).

population subgroup i from a single unvaccinated infected individual in population subgroup j in a fully
susceptible population, where i, j ∈ {1, . . . ,m}, fi be the proportion of individuals vaccinated in subgroup
i, 1−θ be the vaccine efficacy for susceptibility (the uninfected vaccinated are less likely to get infected
following exposure), and 1−φ be the vaccine efficacy for infectiousness (the vaccinated are less likely to
transmit to others if they become infected). They model the beginning of the epidemic by counting the
number of infected after each generation, a generation being defined by the number of transmissions since
the index case.

Namely, let yν i(g) be the expected number of secondary infections in population i at generation g,
considering individuals as unvaccinated when ν = 0 and vaccinated when ν = 1. We have

y0i(g+1) =
m

∑
j=1

Ri j(1− f j)y0 j(g)+Ri jφ f jy1 j(g)

y1i(g+1) =
m

∑
j=1

Ri jθ(1− f j)y0 j(g)+Ri jθφ f jy1 j(g)
(1)

We define the vector y(g) = [y01(g),y11(g), . . . ,y0m(g),y1m(g)]T , which allows the system to be a linear
recursion that approximates the epidemic size at the start of an outbreak.

We adapt the previous study’s model for vaccine allocation (Hill and Longini 2003) to the context of
COVID-19 and social distancing (rather than vaccination) in the UAE, with a modification that some who
become infected may also choose to social distance, in addition to those that social distance at time 0. We
model the spread of a disease with an SIR model with m interacting subpopulations. Figure 1 illustrates
the assumed natural history of infection for one of those subpopulations. We include compartments for
susceptible individuals (S), infected individuals (I), recovered individuals who are immune to the disease
(R), and individuals who have died from the disease (D). We separate individuals based on whether they
are social distancing. The subscript n denotes individuals who are not social distancing, and d individuals
who are social distancing. These subgroups correspond to unvaccinated and vaccinated, respectively, in
the model of Hill and Longini (2003). Similar to the impact of vaccination, we assume that individuals
who are social distancing are less likely to become infected or to infect others. We denote by 1−θ and
1−φ the reduction in susceptibility and infectivity for individuals who are social distancing.

Let Ri j be the expected number of secondary infections of individuals in subgroup i from an infected
individual in subgroup j. We further denote by αi the duration of infection for individuals in subgroup i for
i∈ {1, · · ·m} and µi,x the proportion of individuals who die after infection in subgroup (i,x) for i∈ {1, · · ·m}
and x ∈ {n,d}. Here, n and d map to 0 and 1 in (1).

We will assume that at time 0, a fraction fi of subgroup i observes social distancing, so that fi =
Si,d(0)/(Si,n(0)+ Si,d(0)) for i ∈ {1, · · ·m}. We assume that no infected individuals initially are social
distancing, such that Ii,d(0) = 0. In contrast with the model of Hill and Longini (2003), we assume that
some susceptible individuals will start to social distance once they become infected. We denote by ξi the
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proportion of newly infected individuals in Si,n who start social distancing and move to compartment Ii,d .
With this adaptation, we modify (1) for our application to:

y0i(g+1) =
m

∑
j=1

(
Ri jy0 j(g)+Ri jφy1 j(g)

)
(1−ξi)

y1i(g+1) =
m

∑
j=1

(
Ri jθy0 j(g)+Ri jθφy1 j(g)

)
+

m

∑
j=1

(
Ri jy0 j(g)+Ri jφy1 j(g)

)
ξi

(2)

where y0i corresponds to Ii,n and y1i corresponds to Ii,d in Figure 1.

3.2 Conversion to an Ordinary Differential Equation Model

We now convert the next generation matrix model of the start of an outbreak for our application in (2)
to a continuous time compartmental model, an ordinary differential equation (ODE) model, of the entire
outbreak. This will allow us to model infection transmission and control dynamics through time.

We visualize the structure of the epidemic model using a network of nodes. The nodes consist of different
combinations of epidemiological states and population subgroups (Si,n, Ii,n,Ri,n,Di,n,Si,d , Ii,d ,Ri,d ,Di,d). The
nodes are connected by arcs, and we define the flow rates for each directed arc in Table 1. There are 7 arcs
connecting the nodes, each representing a type of state transition: i) Si,n→ Ii,n, ii) Si,n→ Ii,d , iii) Si,d→ Ii,d ,
iv) Ii,n→ Ri,n, v) Ii,n→ Di,n, vi) Ii,d → Ri,d and vii) Ii,d → Di,d .

The number of individuals at each node, which is discrete-valued in practice, is approximated by a
real-valued quantity in such compartmental models. In our example, the instantaneous flow rates for the
associated ODE along each directed arc in Figure 1 are given in Table 1. The ODE that determines the
dynamics of the outbreak are defined by adding the flow rates into a given node, and subtracting the sum
of flow rates out of a given node. For example, the node Ii,n that represents the number of infected in
subpopulation i that are not socially distanced, has the following dynamic

dIi,n

dt
= (1−ξi)

Si,n(t)
Ni(t)

m

∑
j=1

(Ri j

α j
I j,n(t)+

Ri j

α j
φ I j,d(t)

)
︸ ︷︷ ︸

flow in

−
(

1−µi,n

αi
Ii,n(t)+

µi,n

αi
Ii,n(t)

)
︸ ︷︷ ︸

flow out

= (1−ξi)
Si,n(t)
Ni(t)

m

∑
j=1

(Ri j

α j
I j,n(t)+

Ri j

α j
φ I j,d(t)

)
− 1

αi
Ii,n(t) (3)

This model spreads out the infections by an individual from subgroup j to individuals in subgroup i by
spreading them out over the duration of infectivity (the division by α j in the ‘flow in’), noting that a fraction
Si,n(t)/Ni(t) of contacts are with susceptible individuals. Simlarly, the ‘flow out’ accounts for the average
duration of infectivity α j. The equations for the other nodes with outbound arcs follow similarly.

For nodes with no outbound arc, only inbound terms are included, e.g., dDi,n/dt = (µi,n/αi)Ii,n(t).
Such nodes are terminal (or sinks) for flows of individuals.

By combining such equations for all nodes, we have a system of (nonlinear) differential equations that
describe the dynamics for the state vector Xt = (Si,n, Ii,n,Ri,n,Di,n,Si,d , Ii,d ,Ri,d ,Di,d)

m
i=1, which monitors

the number if individuals in each compartment/node (one node for each subpopulation, social-distancing
status combination). We write the overall dynamics compactly as:

dXt ,n
dt

= G (Xt , t) (4)

where in this case the rate function vector G (Xt , t) is quadratic in Xt due to the nature of terms like those
in (3). That function is not dependent on t if there is no time-dependent intervention done.
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3.3 Conversion to Continuous Time Discrete State Markov Model

It is known that when ODE epidemic models may be misleading for quantifying average infection levels
or the nature of the best decisions for epidemic control when the large-population limit behind the ODE
is not valid (Koopman et al. 2002). This can happen, for example, when the number of individuals in
some compartments of the model is small. (Colloquially, small might be understood relative to whether a
continuous-time, continuous state diffusion approximation to a CTMC epidemic model ‘hits the boundary
often’ during the simulateions of interest.) Moreover, ODE models do not model stochastic variability
explicitly, and variability may be important for resource allocation decisions regarding care processes.

We therefore convert this model to a continuous time discrete state Markov model (CTMC). The
model will account for each individual state transition of any individual from one node to another – that
is, each recover and infection and death event will be modeled. This is stochastic, and discrete vector-
valued (unlike the deterministic, continuous space ODE model). For our specific application, we start
with the same initial state as the ODE model. For the dynamics, the overall flow rates from the ODE
model in Table 1 become instantaneous transition probabilities for the associated CTMC. For example,
the instantaneous transition probability for a given state Xt = (Si,n, Ii,n,Ri,n,Di,n,Si,d , Ii,d ,Ri,d ,Di,d)

m
i=1 to a

state Xt = (Si,n−1, Ii,n +1,Ri,n,Di,n,Si,d , Ii,d ,Ri,d ,Di,d)
m
i=1, meaning an infection of a non-social distanced

individual who remains non social distanced, is the rate in the first row of Table 1. Such a transition is
associated with the directed arc (Si,n, Ii,n), and the probability that this happens in time interval [t, t +∆t) is

Prob(Si,n→ Ii,n | Xt) = ∆trSi,n,Ii,n +o(∆t) = ∆t(1− fi)
Si,n(t)
Ni(t)

m

∑
j=1

(Ri j

α j
I j,n(t)+

Ri j

α j
φ I j,d(t)

)
+o(∆t), (5)

where r j,ℓ is the infinitesimal transmission probability / flow rate on the directed arc from node j to node
ℓ, and o(∆t) is a function such that lim∆t→0 o(∆t)/∆t = 0.

More generally, let N be the set of nodes for our CTMC representing population flows (compartments
in an epidemic model, or nodes in a queue network). We let N also contain a special node nb which can
generate new arrivals (births) to the system, and/or a special node nd to represent system departures.

We let A denote the set of directed arcs with possible flows. One way to model births to a given node
j ∈N is to create a flow from node nb that does not depend on the capacity of nb at a given rate rnb, j.
The value of rnb, j might be constant if there is a constant stream of arrivals, might be proportional to the
sum of some of the dimensions of Xt if this is a birth process, or might (implicitly) depend on t if there
is a time-varying arrival process. Departures might be explicitly modeled by absorbing node(s), as do the
2m death compartments Di,· in our model, or by allowing nd to serve as the model’s sole absorbing node.

We let G = (N ,A ) denote the digraph of such a model, and let r = (ra)a∈A be the vector of its
transition probabilities (or flow rates). Similarly, we let rn′,· be the flow rates associated with set of directed
arcs that start from node n′, and we let r·,n be the flow rates associated with set of directed arcs that
terminate at node n. It will be useful to refer to the sum of elements of a vector, and we use the 1-norm
to do so, e.g., ∥ r·,n ∥1 is the sum of flow rates into node n. These flow rates may be time dependent and
state dependent (a function of the state vector X = (Xn)n∈N ).

We note that such a G ,r combination can also determine a deterministic ODE model, as in Section 3.2,
in addition to a CTMC, as here in Section 3.3. Such ODE models can be large-population limits, in some
sense, of the CTMC model, given technical conditions (Kurtz 1971; Diekmann and Heesterbeek 2000).
We will compare simulation algorithms and results for these models in the coming sections.

In what follows, it will be useful to refer to the specific dimension of the state vector for node n by
number. Therefore, we will also write Xt = (X1,X2, . . . ,X|N |) and refer to the count of individuals in node
n by Xn, rather than referring to the names of the nodes in 1. The t is implicit in the notation.
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Table 1: Transition rates for arcs in the simplified COVID-19 model of Figure 1.

Directed Arc Flow (or Transition) Rate Meaning

Si,n→ Ii,n (1−ξi)
Si,n(t)
Ni(t) ∑

m
j=1

(
Ri j
α j

I j,n(t)+
Ri j
α j

φ I j,d(t)
) Infection of non social distanced individual

who remains non social distanced

Si,n→ Ii,d ξi
Si,n(t)
Ni(t) ∑

m
j=1

(
Ri j
α j

I j,n(t)+
Ri j
α j

φ I j,d(t)
) Infection of non social distanced individual

who starts social distancing

Si,d → Ii,d θ
Si,d(t)
Ni(t) ∑

m
j=1

(
Ri j
α j

I j,n(t)+
Ri j
α j

φ I j,d(t)
) Infection of social distanced individual who

keeps social distancing

Ii,n→ Ri,n
1−µi,n

αi
Ii,n(t) Recovery of non social distanced individual

Ii,n→ Di,n
µi,n
αi

Ii,n(t) Death of non social distanced individual

Ii,d → Ri,d
1−µi,d

αi
Ii,d(t) Recovery of social distanced individual

Ii,d → Di,d
µi,d
αi

Ii,d(t) Death of social distanced individual

4 SOME OPTIONS FOR SIMULATING THE EPIDEMIC MODEL

We recall some algorithms to simulate a general epidemic model, be it the CTMC version, G ,r, in Section 3.3
or its ODE analog in Section 3.2. Some but not all of these models (the Euler-multinomial method below),
are discussed in an instructive tutorial by Allen (2017). That work also discusses other models and an
illustration with malaria, rather than our use of a running example of COVID-19.
Example 1 In our COVID-19 social distancing application, N has 32 nodes, which represent the 8 nodes
in Figure 1 per subpopulation i = 1,2,3,4, A has 28 directed arcs, which represent the 7 directed arcs
in Figure 1 for each i = 1,2,3,4, and rℓ1,ℓ2 is specified in Table 1 for each (ℓ1, ℓ2) ∈ A . An enhanced
version of the model would have additional nodes to account for infected individual’s transitions into states
requiring added resources (hospital beds, ICU care, ventilators, or ECMO machines).

4.1 Deterministic ODE Model Simulation

The ODE model of Section 3.2 and specified in (4) is often simulated with Euler-forward or higher-order
approximations that can give even better numerical accuracy (Press et al. 1992). We will use an Euler-
forward approach, which essentially computes the state vector Xt for a lattice of times t = i∆t, where ∆t > 0
is a small time step, T is a time horizon of interest, and i = 0,1,2, . . . ,⌊T/∆t⌋, with

X(i+1)∆t = Xi∆t +G (Xi∆t , i∆t)∆t. (6)

Naive application of this Euler-forward algorithm may allow for the contents of a compartment to become
negative. Therefore, we have adapted this approach so that the time step ∆t is dynamically shrunk on a
given iteration of the algorithm so as to prevent the contents of any compartment from becoming negative.

4.2 Stochastic CTMC Model Simulation

4.2.1 Exact Simulation Methods

Two methods for simulating CTMC epidemic models formulated as in Section 3.3 are to simulate every
state transition, or to use an Euler-forward type approach with Chapman-Kolmogorov forward equations
to determine the exact transition functions over a given time of duration ∆t.

Simulating every state transition can be done with standard CTMC algorithms (Asmussen and Glynn
2007). In epidemiology, this is also known as the Gillespie algorithm (Ganyani et al. 2021). See Algorithm 1.
It proceeds by computing the time to the next event, which is exponentially distributed with rate equal
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the sum of flow rates of all arcs in the graph. It then determines which arc is activated, by sampling
from a multinomial distribution with one trial (one transition) over all arcs, with probabilities proportional
to the flow rates of each arc. The resulting outcome, called arcflow, has all zeros except for one 1 that
corresponds to the directed arc that is activated. We let arcnum(arcflow) identify that directed arc. The
transition associated with that arc is processed, the clock is updated, and the process repeats.

Chapman-Kolmogorov (CK) equations can be used to compute the probability transmission matrix
which contains transition probabilities from all states Xt at time t to all states Xt+∆t at time t +∆t (Ross
1983). Although this gives exact transmission probabilities over intervals [t, t +∆t], and can account for
multiple state transitions of individuals over that time interval, we choose not to simulate with this method
– it would involve solving a high-dimensional matrix ODE for the transition probabilities at each time step.

4.2.2 Approximate Simulation Methods

The Poisson Method combines the time step of the Euler forward method, and the characterization of
the Poisson distribution as a certain limit of Bernoulli random variables. Colloquially, suppose that the
flow rate rn,n′ does not vary much over the time interval [t, t +∆t). From (5) and the characterization of
the Poisson distribution as a certain limit of Bernoulli random variables, one expects that the number of
transitions from node n to node n′ on arc (n,n′) during time interval [t, t +∆t) would have (approximately)
a Poisson distribution with mean rn,n′∆t.

An algorithm to implement this approximation could iterate at each time t on the lattice 0,∆t,2∆t, . . .
and sample independent Poisson random variables for each arc, with mean according to ∆t and the flow
rate, then each flow would be executed, with state updates made for the next time step.

The Gaussian Diffusion Method is similar to the Poisson method, except that the dimensions of the
state vector are no longer required to be integers. They can be continuous-valued. Rather than using Poisson
increments, each arc can have a normally distributed flow with the same mean and standard deviation as the
Poisson increment (both are rn,n′∆t, here). The resulting continuous-time continuous state (CTCS) process
can be simulated on a lattice of times, as with the Euler forward for ODEs or the Poisson method, but the
state is continuous, as with the ODE. This model does account for variability, which is a benefit beyond
the ODE, and this can be useful when ther are multiple subpopulations with very different rates for each
subpopulations (such as the counts of viruses in an environment on the one hand, and numbers of infected
individuals on the other hand, e.g., see Chick et al. 2004). These types of simulations are regularly used
in financial modeling, among other areas, and there are tools to control the error as a function of the time
step (e.g., see Whitt 2002; Asmussen and Glynn 2007). The resulting CTCS process can be represented by
a stochastic differential equation (SDE), and the diffusion model is a discretization of the continuous-time
SDE to facilitate numerical simulations.

One important problem with these Poisson and Gaussian diffusion approaches is that the computed
outflow from a given node at a given time step may exceed the contents of the node. This results in

Algorithm 1: Gillespie method for exactly simulating a CTMC epidemic model.
Input: N ,A ,r,T
Set time t = 0
while t < T do

Compute duration of time to next event, τ ←− ln(U)/∑a∈A ra.
Determine which arc is active in that event: arcflow∼Multinomial(1,rt/∑a′∈A ra′)
Find nodes of that arc: (ℓ1, ℓ2)← arcnum(arcflow)
Action the transition for that arc: decrement ℓ1 by 1 and increment ℓ2 by 1
t← t + τ

end
Report simulation results

389



Rao, and Chick

Algorithm 2: Euler-multinomial method for approximately simulating an epidemic model with
nodes N and transition arcs A , and transition rates r, with time step ∆t > 0.

Input: N ,A ,r,∆t,T
Set time t = 0
while t < T do

Let h←min(∆t,1/(maxn ∥ rn,· ∥1)) (shrink time step if needed)
for n ∈N do

Let Xn be the number of individuals at node n at time t
Compute flows on arcs leaving n: outflown←Multinomial(Xn, [hrn,·,1−h∥ rn,· ∥1])

end
Update the simulated time, t← t +h
for each arc (n,n′) ∈A do

Decrement Xn by outflown(n′), and increment Xn′ by outflown(n′)
end

end

nonfeasible flows on some sample paths. The probability of such nonfeasible flows can be made smaller
by choosing ∆t > 0 smaller, but the probability is not zero. Moreover, a smaller ∆t implies a longer run
time (more iterations until the time horizon is reached).

The Euler-multinomial method operates on a time grid, like the Euler forward method, but allows
for stochastic flows of discrete counts of individuals, like the Poisson method. Unlike the Poisson method,
which may allow computed flows to exceed the amount that is able to flow from a node, this method uses
a multinomial distribution to ensure that computed flows do not violate mass conservation constraints. See
also related binomial model proposals (Pineda-Krch 2008; Allen 2017; Ganyani et al. 2021).

It does this, for each node n with contents Xn at time t, by computing a multinomial random variable,
with parameter Xn for the number of items to categorize into bins, one bin for each arc leaving n and one
bin to allow contents of the node to remain in node n for the next ∆t > 0 units of time. The probabilities
for the flow on each arc are proportional to the flow rates of each arc leaving n and are also proportional
to ∆t. The probability of remaining in node n is 1 less the sum of those outflow probabilities. This gives
the first for loop in Algorithm 2. Then, simulated time is incremented by ∆t, so that outflows that are
computed at time t result in state changes ∆t time units later. Those state changes are computed, arc by
arc, in the second for loop of Algorithm 2.

For Algorithm 2 to be feasible, ∆t > 0 must be chosen sufficiently small so that all calls to the
Multinomial distribution have feasible probabilities: namely, the probability of flowing out of arc n at each
time t for each possible state must be less than one, ∆t∥ rn,· ∥1 ≤ 1. For applications where the maximum
(of the time dependent) flow rates are computable for every possible state, ∆t can be chosen to be 1
over the sum of the maximum of all such rates for all nodes at each time. In practice, however, we will
allow ∆t to be somewhat bigger than that, and we may dynamically shrink the time step if needed, with
h← 1/(maxn ∥ rn,· ∥1) taking the role of ∆t.

4.3 Issues with Approximate Simulation Methods

For each of the simulation methods in this section, except for the exact/Gillespie method, the choice of
the time step parameter ∆t plays an important role. This is true for both the deterministic and stochastic
simulations. A smaller time step ∆t > 0 means that more time steps are required to simulate the process
to a time horizon T . This causes a longer run time. A smaller time step ∆t > 0 may also result in a more
accurate approximation to the underlying process. The choice of ∆t, therefore, has implications for the
tradeoff between computational speed and biases in estimated quantities of interest.

390



Rao, and Chick

Table 2: Values for model parameters for a UAE-like population near start of the COVID-19 pandemic.

Parameter Description Emirati White Collar Blue Collar Laborers
Sn(0) Starting susceptible population (non social distancing) 493800 483924 1037071 4956288
Sd(0) Starting susceptible population (social distancing) 494500 484610 692300 1240206
In(0) Starting infected population (non social distancing) 700 686 1379 4536
Id(0) Starting infected population (social distancing) 0 0 0 0
Rn(0) Starting recovered population (non social distancing) 0 0 0 0
Rd(0) Starting recovered population (social distancing) 0 0 0 0
Dn(0) Starting dead population (non social distancing) 0 0 0 0
Dd(0) Starting dead population (social distancing) 0 0 0 0

f Fraction of susceptibles who initially social distance 0.5 0.5 0.4 0.2
ξ Fraction of newly infected that switch to social distancing 0.1 0.1 0.1 0.1
α Average duration of infection (days) 14 14 14 14
µ Fraction of infected who die 0.01 0.01 0.01 0.01
h Fraction of infected that require hospitalization 0.47 0.2 0.16 0.06
dh Average number of hospitalization days 12.7 12.5 12. 12.8
i Fraction of infected that require ICU 0.13 0.08 0.06 0.02
di Average number of ICU days 12.8 12.7 12.5 19.4
v Fraction of infected in ICU that require ventilators 0.45 0.45 0.40 0.42
dv Average number of days on ventilators 16 10 14 23
e Fraction of infected in ICU that require ECMO machines 0.03 0.05 0.04 0.1
de Average number of days on ECMO machines 15 15 12 38

5 ILLUSTRATIVE NUMERICAL EXPERIMENTS

In Section 5.1 we describe data for the UAE social distancing application introduced in Section 2. We assess
speed-bias tradeoffs for simulated estimates as a function of the simulation time step ∆t and population
size in Section 5.2. Section 5.3 presents histograms for resource requirements during simulated outbreaks.

5.1 Data for the Model

We extended the model depicted in Figure 1 to account for four interacting subpopulations. The sub
population cohort data was obtained from UAE census data from 2018. We used initial transmission data
from March 2020 to estimate the Ri j values for each sub population in (1).

R =


1.70 0.07 0.05 0.01
0.20 1.91 0.05 0.10
0.20 0.07 2.53 0.10
0.02 0.07 0.05 5.00

 .

In addition, that model was extended to account for the chance that infected individuals might need
hospitalization, or ICU care, or other resources (ventilators, ECMO machines) in the ICU. The capacity of
these resources was initially ignored – one hope for the model was to learn the evolution of the outbreak,
assuming sufficient capacity. Parameters related to resources were also determined based on hospitalized
COVID-19 patients from March 2020, data available at the time, or expert guidance.

The model was then simulated for a range of values for fraction that social distance vs non-social
distance and φ and θ values. Table 2 summarizes the model parameter values for the numerical experiments.
We show the results for θ = 1, φ = 0.25.

5.2 Experiments that Explore Speed-Bias Tradeoffs

To illustrate the COVID example using the Gillespie algorithm, we scale down the starting population size
in Table 2 by a factor of 100, rounding to the nearest integer. We will refer to this population as the smaller
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(a) Mean peak number of infections. (b) Mean total number of infections.

Figure 2: Estimated mean peak and mean total number of infections for Euler forward ODE, stochastic
Euler-multinomial and Gillespie simulations as function of time step ∆t. In the legend, “COVID example”
refers to the example as described in Table 2, while the others refer to the smaller population size.

population. We compare some choices of ∆t, and discuss the estimated bias of the Euler-multinomial in
several estimates of interesting metrics (e.g. max infected and total infected). We compare expected output
for range of ∆ts and total population sizes, and compare with the associated limiting ODE, Euler forward
ODE and CTMC Gillespie mean.

We consider two population sizes: the original COVID example population (as detailed in Table 2)
and the smaller population. For Gillespie, Euler forward and the ODE, we simulate only with the smaller
population. For Euler-multinomial, we simulate with both population sizes, and scale down the outcomes
with the COVID example by 100. Figure 2 compares the mean peak and total number of infections
for all five different scenarios. We vary ∆t between 0.1 and 1 with increments of 0.1. We iterate our
Euler-multinomial and the Gillespie method 250 times for each ∆t. The solid lines represent the mean of
the outcomes, and the shaded bands represent the 95% confidence intervals.

Bias. We find that for both the peak and total number of infections, the difference in outcomes between
the Euler-multinomial (with both population sizes) and Gillespie algorithms increases roughly proportional
to ∆t for small ∆t. The Euler-multinomial algorithm with the (larger) COVID example population follows
the same trend as the Euler-multinomial algorithm with the smaller population, but the confidence interval
is 10 times smaller, which might be expected with large population limits for such scaled population
dynamics models. The bias associated with the time step has a greater influence in this example than the
bias associated with scaling the population size by a factor of 100 in this example.

Speed and Bias. Suppose that ∆t is a sufficiently small value for the time step ∆t so that the time
step h is typically not shrunk in the Euler-multinomial method of Algorithm 2. Further cutting ∆t in half
would double the time steps, and therefore double the number of iterations of the while loop in Algorithm 2.
Heuristically speaking, then, for sufficiently small ∆t, the bias in estimated means is cut in half when ∆t
but the run time is doubled (ignoring the fixed setup costs of the simulation run). We see this in Table 3,
where we show iterations as run times are mostly proportional to iterations. We note that a rigorous proof
of the monotonic increase of the bias in ∆t is beyond the scope of this work.

Table 3: Average speed and estimated bias for several values of ∆t for the Euler-multinomial algorithm in
estimating the mean total number of infections.

Time step ∆t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Iterations 250000 125000 83500 62500 50000 41750 35750 31250 28000 25000

Bias 27.7 50.9 66.0 109.3 145.6 192.6 211.9 283.1 344.0 293.0
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(a) Maximum number of hospitalized patients. (b) Maximum number of ECMO machines in use.

Figure 3: Histogram of the maximum resource usage during outbreak for Euler-multinomial (∆t = 0.1).
Vertical lines represent the mean values from the Gillespie, Euler forward and Euler-multinomial algorithms.

For small to medium ∆t, then, one might try to estimate the Gillespie mean at time t, which may require
a lot of computation for large populations, with two Euler-multinomial runs with time steps ∆t and 2∆t, with
outputs µ̂∆t and µ̂2∆t , respectively, then reduce what appears to be first order bias by estimating the Gillespie
mean with an arbitrarily small time step by limε→0 µ̂t+ε ≈ 2µ̂t+∆t− µ̂t+2∆t . This estimates the mean of the
exact Gillespie algorithm, with a first-order Taylor-series type bias correction and two Euler-multinomial
runs with approximate transition probabilities. This can be useful if the Euler-multinomial simulations can
be run much more quickly. A more careful analysis of this heuristic correction is warranted.

If ∆t is too large, then the time step in Algorithm 2 will be dynamically shrunk from ∆t to some smaller
h, if needed, so that flows can be computed with a multinomial distribution (probabilities of outflows on
each arc must not sum to more than 1). When ∆t is large, simulated clock time will pass more quickly when
there is no need to shrink ∆t, but when the rates of outflows is high for a given state and time, the simulated
clock time will automatically be advanced in increments h smaller than ∆t. This would suggest that the
bias would not be linear for larger ∆t even if the true underlying bias only had first-order Taylor-expansion
bias terms. However, it is worth nothing that ∆t only starts to shrink for values higher than 6.8 days. At
this threshold, the bias of the Euler-multinomial algorithm would become very high.

5.3 Experiments to Explore Resource Needs

We now explore the volatility in resource needs under the assumption that the available equipment can
sufficiently accommodate the demand. We run 1500 iterations of the Euler-multinomial and Gillespie
algorithm with the smaller population example. Figure 3 shows the distribution of maximum resource
needs for number of hospital beds and ECMO machines. In this example, the standard deviations are
approximately the square root of the estimated mean, which would be expected if data were Poisson
distributed. Our analysis shows that the distributions for all four considered resources generated with
the Gillespie and Euler-multinomial algorithms closely align. The percentage difference between the
mean and standard deviation is less than 5%. For example, for the number of hospitalizations, we
have (X̄ , σ̂) = (2302.2,51.08) with Gillespie, compared to (2302.7,49.62) with Euler-multinomial. These
findings highlight the usefulness of the Euler-multinomial algorithm in capturing essential characteristics
of the epidemic dynamics while being computationally more efficient. This can be a guide for assessing
the overage or underage costs at peak loading during the outbreak.
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6 DISCUSSION AND CONCLUSIONS

Simulations of epidemic models can be accelerated by the use of approximate simulation methods. It is
known that a larger ∆t for either the Euler-forward method for simulated deterministic ODE improves
run times but may increase error in estimating maximums on disease trajectories or cumulative number
infected during an entire outbreak. We observed a similar phenomenon for the stochastic Euler-multinomial
approach presented above and applied to an epidemic control model: cutting ∆t in half cut the bias for
such estimates in half, but cuts run time in half (heuristically speaking). If one runs with two values of ∆t,
one might get fast run times with an ability to reverse engineer the means predicted for very small values
of ∆t with modest computational cost, using first-order bias reduction techniques.
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