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ABSTRACT 

This article proposes new methods for teaching Discrete Event Simulation (DES) in manufacturing systems. 
Over the last four decades, numerous books have offered methods for teaching DES as what-if analysis 
tools for addressing stochastic problems. However, the emergence of the Digital Twin (DT) concept has 
posed challenges for such traditionally designed DES models. These models often struggle to evolve 

effectively into Real-Time Simulators (RTS). RTS are connected DES models embedded as kernels in the 
DT framework and synchronized based on real-time sensor data streams. Thus, the objective of this work 
is to introduce teaching methods that provide deeper insights into designing the needed high-fidelity DES 
models capable of evolving into RTS. It also illustrates how the Immersive Learning approach is employed 
to immerse students in a manufacturing environment through Virtual Reality (VR) experiences, allowing 
them to grasp key concepts such as granularity levels and synchronization challenges in deploying a DT. 

 

1 INTRODUCTION 

In recent years, the manufacturing industry has witnessed a transformative shift propelled by the integration 
of sensors and the Internet of Things. These advancements have revolutionized traditional manufacturing 
processes by enabling real-time data collection, analysis, and decision-making. As manufacturing systems 
become increasingly complex and interconnected, the need for Digital Twins (DT) of production systems 

has become imperative (Cimino et al. 2019). Specifically, in the context of production planning and control 
it becomes highly desired to embed Intelligent DTs based on Discrete Event Simulation (DES) models 
capable of monitoring and optimizing complex systems in real-time (Matta and Lugaresi 2023). For that 
purpose, many research works have focalized on proposing new frameworks that can be used to embed 
such Intelligent DT. The first works goes back to (Negri et al. 2020) and was based on parametric 
simulation-based optimization. More recently, to circumvent latency (Jaoua et al.  2024) opted to use the 

simulation-based control optimization by proposing a DT framework based on the Reinforcement Learning 
(RL). This framework is composed of two DES models. The first DES model is used for classic prediction 
during offline training of the RL algorithms. The second is a Real-Time Simulation model (RTS) which is 
a synchronized DES model evolving concurrently with the real manufacturing system. As stated by 
(Lugaresi and Matta 2018; Lugaresi et al. 2023) developing such RTS relies heavily on the accuracy of the 
designed DES model. Any discrepancy between the real and virtual environments can significantly degrade 

the DT real-time decision-making capabilities.  
 In order to be able to use DT in manufacturing company environments, research efforts should be 
directed not only at technological development, proof of concepts and implementation of the DT, but also 
at the proper training and skills development to have the people ready and able to use them. Until now, 
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teaching in simulation is very much oriented to traditional what-if simulation (Lugaresi et al. 2023). It is 
lacking appropriate methodology to train for the DT design, RTS development and use in Industry.   
 Thus, the objective of this paper is to offer new developments on teaching methods for implementing 

high-fidelity DES models towards Intelligent DT for real-time decision in manufacturing environments. 
Specifically, the focus is on exhibiting the importance of modeling the detailed real system's process flow, 
resources dependencies and decision points for RTS models synchronization. For that purpose, we first 
propose a more comprehensive approach of introducing DES modelling without randomness. The authors 
let students, at first, address deterministic dynamic single-server queue with limited capacity before 
introducing stochasticity. This sequential method allows them to grasp the rationale behind this event-

driven modeling approach and the internal system state evolution. Currently this state concept is 
underutilized and capturing it through simulation traces presents opportunities for real-time optimization 
(Nelson 2024). After addressing this simple introductory problem, we will explain how we immerse 
students in a Virtual Reality (VR) experience within a Learning Factory, enabling them to apply the DES 
modeling approach in real-world contexts towards a RTS embedment. In this activity, the authors will 
emphasize key concepts of granularity levels and the synchronization challenges in deploying a DT using 

an efficient RTS model. For that purpose, the Immersive Simulation Based Learning (ISBL) approach will 
be used (Ozden et al. 2020; Negahban 2024).  
 The remainder of this paper is structured as follows: Section 2 offers a Literature Review on the most 
common methods used for teaching DES modeling and the novel ISBL approach. In Section 3, the proposed 
method is presented, along with its learning outcomes. Section 4 discusses the implementation and 
synchronization issues through the use case of the Learning Factory. Finally, Section 5 concludes and 

suggests future teaching avenues. 
 

2 LITERATURE REVIEW 

During recent years, many research papers have focused on proposing DT frameworks towards production 
planning and control in manufacturing context. Wooley et al. (2023) conducted a comprehensive review of 
the proposed DT and their capabilities beyond traditional simulation models. When traditional simulation 

models were generally developed for what-if analysis, the DT evolved concurrently with real system 
synchronized through sensor data and capable to embed real-time decision. For that purpose, the DT is 
based on RTS model which is a connected DES model synchronized based on real-time sensors data 
streams. As presented in the framework developed by Jaoua et al. (2024) two DES models are required in 
an Intelligent DT, the traditional DES is used to predict system performances during offline training phase 
and the RTS, i.e. a connected DES, is used in real-time to establish the synchronization between the Cyber 

and Physical systems. In both of these DES models, it is crucial to represent process flows with the same 
level of detail. The main difference between these two models lies in their method of time advancement. In 
traditional DES model, the Simulation clock advances by jumping to the times of occurrence of future 
events scheduled according to the random variates drawn from probability distributions. Whereas, in RTS 
time advances continuously with the physical system using world wall clock time. In fact, in RTS the 
occurrence of events is not predicted based on a specific distribution but is triggered by sensor data. Thus, 

the RTS must rely on a high-fidelity model of the real system to ensure alignment between the physical 
components and their digital counterparts. The concern of requiring DES models that capture the essential 
details and dynamics of the physical system with high level of granularity for efficient DT deployment has 
been discussed in (Marquardt et al. 2021; Lugaresi and Matta 2021).  
 Over the past 40 years many books have proposed method to teach this DES modelling approach. 
Among the most frequently cited and seminal reference books in this context, we can mention “Discrete-

Event System Simulation” (Banks et al. 2000) and “Simulation Modeling and Analysis” (Law and Kelton 
2007). More recently, many other books have also addressed DES modeling from a practical perspective, 
focusing on the utilization of specific simulation software such as (Beaverstock et al. 2011; Rossetti 2015; 
Smith and Sturrock 2018). In all of these references, a common approach to introduce DES modeling based 
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on the next-event time advance approach is to conduct a simulation by hand of a single-server queuing 
system. In this system, the interarrival and service times are independent and identically distributed (IID) 
random variables generated according to a Markovian or other probability distribution. These variables are 

supposed to be given by the instructors because at this stage the learner has not yet acquired the skills to 
manipulate random number generators. 
 The main weakness here arises from the simultaneous introduction of two novel concepts: random 
numbers and DES modeling. Introducing random variates alongside the unfamiliar concept of the 
simulation model’s computer program and its complex components, such as the Event list and Simulation 
clock, could potentially overwhelm the learner. Therefore, the objective of this work is to adopt a sequential 

method that initially focuses the learner's attention solely on the DES modeling approach by manipulating 
the deterministic dynamic queuing system before introducing randomness.  
 Also, another area for improvement in these classic teaching DES books is the insertion of new chapters 
that address DT related concepts of RTS synchronization and on-line validation of DTs. Lugaresi et al. 
(2023) demonstrated that traditional methodologies based on confidence interval and hypothesis tests are 
not suitable for the new context of DT online validation. Also, for the RTS implementation, it is essential 

to capture the detailed operations of the real system in the DES with a high level of fidelity. A higher 
granularity of these models is required in order to be able to synchronize them with real-time data gathered 
from sensors. It is well known that the decision regarding the level of granularity in designing a simulation 
model is intrinsically tied to achieving the desired level of validity necessary to fulfil the study's objectives 
(Robinson 2014). This is why classic DES models designed primarily for what-if analysis often struggle to 
evolve effectively to an RTS. To tackle this issue, the authors propose to teach students how to develop 

such high-fidelity models towards efficient DT, using Immersive Learning.  
 The capability of VR to conduct verification and validation of DES models have been exposed in (Turne 
et al. 2016). More recently, the ISBL approach was applied for teaching different modules in many realistic 
contexts such as manufacturing assembly plan and hospital emergency, and its beneficial effects as a 
learning tool have been reported by Ozden et al. (2020), and Nowparva et al. (2021). Despite its great 
potential, Negahban (2024) criticizes that it is not yet integrated with learning theories in engineering 

education. Then, the objective of this paper is to explore the capability of ISBL in guiding students to gain 
a deeper comprehension of RTS model granularity by immersing them in a LF. 

3 PROPOSED NOVEL DES TEACHING METHOD 

As stated earlier, our objective is to employ a sequential learning approach, initially focusing on enabling 
students to grasp DES modeling for a deterministic and dynamic system before introducing randomness. 
We adopted this method in an Undergraduate Simulation course given for Industrial Engineering students. 

We have uploaded all models and materials for the assignments on GitHub. You can access them at the 
following link: https://github.com/neprev. 

3.1 Teaching DES Modeling through a Deterministic Dynamic System 

The proposed teaching methodology consists of two steps: 
 

Step 1: Conducting a simulation by hand of a D/D/1/k queuing system.  

Step 2: Exploring the internal system state and the balking effect.  

For each step, there is a detailed description, followed by an exemplification case to ease the understanding. 

3.1.1 Step 1: Conducting a Simulation by Hand of a D/D/1/k Queuing System 

Description : this is a common exercise that serves to illustrate components of a DES program such as event 
list, simulation clock and data structures necessary for executing a simulation program. Nevertheless, the 
main difference herein is that the authors let students work with deterministic times rather than introducing 
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random variables drawn from probability distributions of inter-arrivals and service times. Here, students 
focus on identifying the simulation time clock advancement associated with Arrival and Departure events, 
as well as the corresponding state changes in a Single-Server Queue with deterministic Arrival and Service 

times and limited total capacity equal to k, D/D/1/k. In order to observe queuing phenomenon, it is 
mandatory for this exercise to choose 𝜆 > 𝜇. Recall from, (Shortle et al. 2018), that in queue of limited 
capacity there is no restriction on having 𝜆 < 𝜇.  
 Application : an example of this queuing model could be the process of material handling, with an 
Automated Guided Vehicle (AGV), of a manufactured product from a workstation to a warehouse. The 
authors assume that an automated workstation delivers a product every 5 minutes, which corresponds to a 

deterministic arrival rate 𝜆 = 12  𝑝𝑟𝑜𝑑𝑢𝑐𝑡/ℎ. Since this AGV, herein the Single Server, has a dedicated 
pathway its total service time is also deterministic and equal to 6 minutes, service rate 𝜇 = 10 𝑝𝑟𝑜𝑑𝑢𝑐𝑡/ℎ. 
If the AGV is busy, these products will be stored in a rack, herein the Queue, with limited capacity equal 
to 9 products, i.e. a D/D/1/10 queuing system. When the rack reaches its capacity, the product is redirected 
to a conveyor for alternative transportation mode, which aligns with the principle of balking in queuing 
theory.  

 In order to understand how DES modelling reproduces this queuing system state changing over time, 
students conduct a simulation by hand over a period of 30 minutes and to plot the number of products in 
the system at time 𝑡, 𝐿(𝑡), as depicted by Figure 1. 
 

Figure 1: Number in system, L(t), at time t. 
 

This simulation by hand with simple deterministic values of Arrival and Service times allows students to 
manipulate, easily, basic concepts of collecting System State, manipulating the Event list and Event routine 
and advancing with the simulation clock. Also by observing this plot, Figure 1, students understand the 
concept of queuing formation and delay propagation through products in this deterministic dynamic system. 

Even though the service time is constant for all products but in this dynamic system, the second product 
will wait for 1 minute, 𝑊2

𝑄
= 1 𝑚𝑖𝑛, the third for 2 minutes, 𝑊3

𝑄
= 2 𝑚𝑖𝑛, and consequently, product 6 will 

wait for the cumulative waiting time of all preceding products plus 1, 𝑊6
𝑄

= 5 𝑚𝑖𝑛. This delay propagation 
is a common factor contributing to bottleneck formation in manufacturing systems, a phenomenon often 
erroneously attributed only to variability. With this next-event time advance approach the intricate 
dynamics of the queuing system and its different states is efficiently captured within a deterministic system.  

 Then after understanding the main components of a DES program, they are asked to deduce over this 
period of 30 minutes some classic performance measures of queuing theory, the time-weighted-average 
number of product in the system, denoted  �̂� given by equation (1), and the observed average time spent in 
queue per product denoted 𝑊�̂� given by equation (2). 
 

 �̂� =
1

𝑇
∑ 𝑖𝑇𝑖 =

1

30
∫ 𝐿(𝑡)𝑑𝑡

30

0
∞
𝑖=0 = 1.5 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (1) 
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1

N
∑ 𝑊𝑖

𝑄𝑁
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+𝑊2
𝑄

+𝑊3
𝑄

+𝑊4
𝑄

+𝑊5
𝑄

+𝑊6
𝑄

6
= 2.5 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 (2) 

 

 
This calculation is based on the plot and enables students to grasp the significance of these performance 
indicators. We then move to the next phase. 

3.1.2 Step 2: Exploring the Internal System State and the Balking Effect 

Description : once students are familiar with this DES modelling approach, the next step will be to let them 
explore the balking. Analyzing this balking phenomenon will allow them to understand the effect of delay 

propagation in realistic manufacturing context, i.e. with limited system capacity. This internal state 
changing is generally hidden when addressing the long-run average measures of performance of queueing 
systems. For that purpose, they will use a simulation software and model this deterministic dynamic system 
with different level of rack capacity. Then they will use the trace feature, provided by the simulation 
software, to capture the sample path of the system state. Finally, they are asked to plot the Average Waiting 
Time in Queue, WQ when a product balks and the Delay per product over a pre-defined simulation period. 

Application : the possible different levels of rack capacity were defined for the students as: 2, 3, 4 and 
5. Recall herein D/D/1/5 corresponds to the case that the rack has a maximum capacity of four products. 
The pre-defined simulation period is equal to T =360 minutes, they are asked to plot the Average Waiting 
Time when a product balks and of the delay trace for each product ID. Plots are given in Figure 2-a and 
Figure 2-b. 

Figure 2: (a) Average Wait in Queue when Balking occurs, (b) Delay per Product ID (minutes). 
 

 Herein the first observation is that even though the throughput for all these models is equal to 60 served 
products, i.e. transported by the AGV, these models lead to different internal states. This state is related to 

the delay propagation behaviors dependently on the rack capacity. From the Figure 2-a, students can easily 
observe how the higher the rack capacity, the less product will balk. For the case of D/D/1/2, the WQ is the 
lowest but 12 products balked. Whereas for the D/D/1/5, the Average WQ reaches 17.16 minutes and only 
9 products balked. Moreover, the trace for each Product ID, given in Figure 2-b, better exhibits the system 
state when this balking occurs. This plot indicates delay propagation through successive products until a 
product balks. Following the balking event, a periodic pattern occurs, depicted by a saw tooth waveform. 

This pattern shows delay increasing for consecutive products until a balking occurs. After the balking event, 
delay drops for the next product before resuming its increase for subsequent ones. For example, observing 
delays of products in D/D/1/5 this delay will propagate until the 24th product which will wait for 23 minutes, 
𝑊24

𝑄
= 23 𝑚𝑖𝑛,  then the 25th product will balk. After this balk the delay for the 26th product will decrease to 

𝑊26
𝑄

= 19 𝑚𝑖𝑛. Then the delay propagates for the next four products until reaching its maximum of 23 
minutes. This maximum delay corresponds to the time when the rack will reach its full capacity. This same 

behavior is observed for all the models where queue dissipation corresponds to a balk of an entity. This 
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Figure 2-b goes beyond the classic Average Outputs depicted by Figure 2-a, by providing a highly important 
state data which is the time spent by an entity in the queue.  
 This type of internal state data is highly valuable when it comes to use DES models to train 

Reinforcement Learning algorithm (Tiacci and Rossi 2024). As depicted in the Intelligent DT framework 
proposed by Jaoua et al. (2024) this state information is introduced as a node in the Input Layer of the Deep 
RL, which significantly enhances real-time decision quality. In fact, by supplying the algorithm with more 
comprehensive data about the environment, it can make better-informed decisions. 

3.2 Insights from the Teaching Method 

To summarize, this sequential learning method allows students to have a solid understanding of modelling 

deterministic dynamic systems through DES before introducing the concept of stochasticity. Specifically, 
the following outcomes are observed. 

 

• Learners concentrate on comprehending the mechanism behind the next-event time advance 

approach by conducting simulations manually, using deterministic values for inter-arrival and 

service times, without manipulating assumed randomly generated variables. 

• Learners analyze and understand that the concept of delay formation and propagation is inherent to 

the internal state of dynamic systems and is not necessarily due to stochasticity. 

• Learners understand that DES allows to capture the internal, generally hidden, state by average 

long-run statistics. They also acquire the knowledge of utilizing simulation-generated data for 

future simulation-based control optimization in DT framework. 

After understanding the basics of DES modeling on a simple queuing system the next step in the 
following section consists of addressing more realistic manufacturing contexts. 

4 HIGH-FIDELITY DES MODELING OF A LF THROUGH APPLICATION OF ISBL 

The ultimate objective herein is to teach students how to develop a DT for a Learning Factory (LF). The 
LF serves as an educational platform for the Master's degree program in NePRev https://neprev.com/ and 
also for the final-year undergraduate course in Industrial Engineering, titled 'Digital Twin for Smart 

Manufacturing', offered at the National Engineering School of Tunis, Tunisia. To achieve this, the 
instructors begin by introducing students to a real system. Then, they immerse them in a VR model, to teach 
students how to develop a high-fidelity DES model that is able to be evolved into an RTS. Once this DES 
model is developed the fundamental notion of synchronization with real-time data gathered from sensors is 
presented.  

4.1 Description of the Learning Factory 

At this LF, the Festo Modular Production System, MPS® system 403-1, from Festo® Didactic is used as 
an Industry 4.0 learning system. The MPS 403-1 is composed of three automated workstations: Distribution, 
Joining and Sorting, see Figure 3-a. The role of these workstations is to fulfil customer orders of workpieces 
received by the Manufacturing Execution System (MES), mimicking the make-to-order approach in the e-
commerce context. The corresponding layout is given in Figure 3-b.  
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Figure 3: Learning Factory, (a) the MPS 403–1® with the Robotino®, (b) Layout of the LF, (c) Assembly 
operation, (d) Disassembly operation. 

 The workpieces are equipped with RFID chips and move between the three MPS 403-1 workstations 
using conveyor belts. Once these customized orders, which may vary in workpiece color and quantity, are 
produced by the MPS 403-1, they are transported to the Manual Assembly Station by an Autonomous 
Mobile Robot (AMR) named Robotino®, from Festo® didactic, Figure 3-a and Figure 3-c. The aisle 

colored in blue, Figure 3-b, is the AMR designated Mobility Zone. The AMR is programmed to navigate 
within this aisle for pickup from the MPS 403-1 and delivery to one of the two Manual Assembly 
workstations. At each Manual Assembly station, a worker assembles the appropriate modular package and 
places the customer orders inside, Figure 3-c. The packaged orders are subsequently placed in the Shipping 
rack. Since this LF is also a teaching laboratory for other courses, aiming to teach the Circular Packaging 
concept (Liu et al., 2023), the instructors have produced modular packages with Additive Manufacturing. 

These packages are adjustable for different order sizes and can be disassembled for reuse. In the LF, to 
mimic the reverse logistics principles, the instructors retrieve the finished order from the shipping rack to 
replenish the packaging disassembly area. A worker is assigned for disassembly operation, Figure 3-d. Once 
the package components are disassembled, they are placed in the Pre-packaging inventory rack, from which 
the Assembly operator will retrieve the components for packing the upcoming orders. This LF will be used 
as a case study for this section. 

4.2 Teaching through ISBL High-fidelity DES modeling for RTS 

The proposed teaching methodology consists of the following three steps: 
 

Step 1: Immersing students in the LF to identify components of the DES conceptual model. 

Step 2: Conducting Input data modeling and exploring the level of granularity. 

Step 3: Deciding on the required level of details for RTS synchronization. 

For each step, there is a detailed description, followed by an exemplification case to ease the 
understanding. 
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4.2.1 Step 1: Immersing Students in the LF to Identify Components of the DES Conceptual Model 

Description : the instructors first introduce the students to the real LF by placing three of them at each 
manual workstation and launch 5 customer orders on the MES. This introductory step allows the students 

to observe the physical system, but it does not give them an overview of the different processes flows 
throughout the system's long-term operation. For that purpose, instructors recourse to the ISBL approach. 
The instructors gave to students an Immersive Simulation (IS) model that we preliminarily developed to 
mimic the described dynamics of the LF. It is worth mentioning that the model we provide can be used both 
in low immersive, i.e. 3D model, and high immersive, i.e. VR versions. We opted to let them use the VR 
headset to benefit from this immersion experience. The instructors have developed this IS model using 

Simio Simulation Software. To settle the high immersion mode, the Render to Oculus feature of Simio is 
used. Students use a VR headset, specifically the Oculus Quest 2, and they are asked to develop a DES 
conceptual model of the LF. Specifically, they have to identify based on the Tutorial provided by Robinson 
(2017) the following components: the objectives, the inputs, the outputs, the activities and their 
interconnections, assumptions and simplifications of the model. 

Application : to create a more realistic flow in the LF, we introduce the following workspace constraint: 

each of the two Manual Assembly workstations can accommodate a maximum of three packages. 
Consequently, after assembling three customer requests, the operator proceeds to pack the subsequent order 
at the Auxiliary Workbench using components from the Pre-Packaging Inventory rack, Figure 3-b. The four 
Packed orders are then transported to the shipping rack. Subsequently the operator retrieves, from the Pre-
packing inventory rack, the necessary package components for the next three customer orders before 
returning to his Manual Assembly workstation. Figure 4-a shows a student experiencing the Immersive 

mode and Figure 4-b presents a snapshot of the scene as visualized through the VR headset. 

Figure 4: VR Immersion experience in the LF. 
 
 From the immersion experience students are asked to design two conceptual models with distinct level 
of granularity. The first, less detailed DES model does not consider space constraints and treats the 
Assembly activity for all orders as an aggregation of displacement and assembling operations. In contrast, 

the second model is a high-fidelity representation that replicates the periodic displacement required to 
perform the Assembly activity of the 4th orders at the Auxiliary Workbench. In the next step, Input data 
modeling will be conducted to fit these models. 

4.2.2 Step 2: Conducting Input Data Modeling and Exploring the Level of Granularity 

Description : Students must collect data corresponding to the different activities identified in the conceptual 
model. They first observe that the processing times of the three automated MPS stations: Distribution, 

Joining and Sorting is deterministic, and they do not need to collect sample for these processes. These data 
are extracted from the event log on the MES. Also, since the instructors fixed the AMR pathways, its 
transportation time is deterministic. However, they had to collect samples for non-deterministic Assembly 
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and Disassembly processing times. To understand the previously discussed level of granularity, students 
are tasked with collecting a sample of Assembly times for 50 customer requests.  
 Application : using the VR headset, students collected the needed sample data, i.e. the Assembly time 

denoted 𝐴. Then they plot this sample and analyze the data. The corresponding plot is given in Figure 5.  

Figure 5: Histograms of Assembly times (minutes). 

From this plot, Figure 5, students are able to detect that this Assembly time exhibits a bimodal pattern. The 
bimodality arises from the displacement due to space constraints, leading to periodic assembly of the 4th 
order at the Auxiliary Workbench. For these products, i.e. 25% of the sample, the empirical Mean Assembly 
Time is equal to 156.6 seconds whereas for the other 75% of assembled products it is equal to 78.3 seconds. 
They also observe that for both cases 𝐴 exhibits low variability with a coefficient of variation,  𝑐𝑣 = 0.1.  
 Students are then asked to fit separately these data to theoretical distributions. The corresponding 

Triangular distributions parameters are given in Figure 5. Since this conditional behavior is already 
embedded in the high-fidelity DES model, the consideration of these Input data is straightforward. 
However, for the less detailed DES model, students have to fit this sample to a unimodal distribution since 
they aggregated the displacement with the assembly operations. Herein the KS Test accepts the hypothesis 
of fitting this sample to the following shifted Gamma distribution: 𝐴 ∼ 60 + Γ(34.9,1.12). They introduce 
this distribution to generate Assembly times random variates in their less detailed DES model and observe 

how they are inducing irrelevant stochasticity with considerable 𝑐𝑣 = 0.36. Students recognize that the 
simplification assumption in the less detailed model led to an inconsistency regarding stochasticity. While 
the stochastic variability in the real system is notably low, the DES model designed with low level of 
granularity introduces a higher variability, resulting in a discrepancy between the DES and the real system. 
From these experiments students conclude on the important aspect of model granularity to avoid 
discrepancy between the real and virtual environments. In order to use this DES model as an RTS it is 

essential to capture the detailed operation within the real system with a high-level of fidelity. 

4.2.3 Step 3: Deciding on the Required Level of Details for RTS Synchronization  

Description : finally, students are asked to identify the appropriate sensors data to capture in the developed 
high-fidelity DES model to use it as an RTS for DT synchronization. This exercise is aligned with the 
principle established by Lugaresi and Matta (2021), which emphasizes minimizing unnecessary updates of 
the RTS by avoiding capturing redundant sensor data. 
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 Application : students detect that rather than tracking the workpieces continuous movement on the 
conveyor it is sufficient to track their corresponding events of entry and exit using the RFID readers placed 
at each station, i.e. Distribution, Joining and Sorting. However, capturing solely the event of delivery of 

packages by an Assembly operator on the shipping rack is insufficient to track the complex conditional 
flow. As they learned earlier, this aggregation of displacement and Assembly operations may lead to 
inconsistency between the RTS and the real system.  
 For an efficient RTS implementation, they conclude on the importance of tracking the AMR arrival and 
departure from the pickup to the delivery Manual workstations i.e. Manual Assembly 1 and 2. Finally, for 
Manual Disassembly, it is necessary to capture sensor data on both the Entry and Exit points to track the 

inter-arrival time between returned packages and the termination of the disassembly operation. 

4.3 Insights from the ISBL Approach 

 
To summarize, this ISBL approach allows students to acquire a good acknowledgement of developing 
highly detailed DES that can evolve to an RTS. Specifically, the following outcomes are observed. 

 

• Immersion allows learners to effectively apply the conceptual modelling principles to design DES 

with different level of granularity for a real system. 

• Learners gain proficiency in conducting input data modeling and the corresponding data collection 

step from the shop floor. 

• The learners successfully identified which sensor data to gather in order to synchronize the high-

fidelity DES model, enabling its integration as an RTS. 

 In conclusion, given the increasing complexity of the manufacturing context, the ISBL offers a highly 

potential approach to integrate with DES modeling and learning theories. Although we implemented this 

immersive learning only 2 years ago, we have observed a 13% increase in average test scores, indicating 

an enhancement in students' understanding. Indeed, this observed improvement must be confirmed with 

more in-depth statistical analysis with quantitative data comparing learning outcomes. As conducted in the 

investigation study by (Nowparvar et al. 2022), this can be achieved by dividing the learners into ISBL and 

control groups to assess the benefits of immersion. Also, employing the method proposed by (Li et al. 2022) 

to measure students' cognitive load during immersive tasks would be highly valuable. 

5 CONCLUSION 

In this work the authors have introduced new teaching methods for implementing high-fidelity DES models 
towards Intelligent DT for real-time decision in manufacturing environments. At first the authors have 
proposed a more comprehensive sequential approach of introducing DES modelling without randomness. 
This sequential method allows them to grasp the rationale behind this event-driven modeling approach and 
the complex notion of internal system state. For that purpose, the instructors let students manipulate the 
trace feature to capture the system's evolving state and delay propagation, which is often hidden by the 

averaged steady-state performances. After addressing this simple introductory problem, the instructors used 
the ISBL approach to immerse students in a VR experience within a LF and taught them steps towards 
embedment of an RTS. This approach allows students to develop a deeper understanding of RTS model 
granularity and the associated concepts of synchronization and determination of relevant sensor data to 
track. 
 The primary insight underscores the necessity for academia to produce updated educational resources 

tailored to the adoption of DT technology within the industry. This entails the integration of the discussed 
novel concepts specific to DT into educational materials. Additionally, the introduction of ISBL into 
Simulation Modeling curricula stands to significantly enhance learning outcomes. Even though in the 
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application course the instructors had access to a real Learning Factory, immersion allowed students to 
observe the long-run behavior of a realistic hybrid manufacturing system with human operators. Ultimately, 
this proactive approach empowers future professionals to navigate and leverage DT effectively in real-

world industrial settings. As a future works, the authors aim to continue providing updated educational 
content for academia for facilitating seamless integration of novel DT concepts in smart manufacturing. 
Additionally, a more in-depth comparative statistical analysis of learning outcomes under the immersive 
approach will be conducted. 
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