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ABSTRACT

Estimating stochastic gradients is pivotal in fields like service systems in operations research. The classical
method for this estimation is the finite-difference approximation, which entails generating samples at
perturbed inputs. Nonetheless, practical challenges persist in determining the perturbation and obtaining an
optimal finite-difference estimator with the smallest mean squared error (MSE). To tackle this problem, we
propose a double sample-recycling approach in this paper. Firstly, pilot samples are recycled to estimate the
optimal perturbation. Secondly, recycling these pilot samples and generating new samples at the estimated
perturbation lead to an efficient finite-difference estimator. In numerical experiments, we apply the estimator
in two examples, and numerical results demonstrate its robustness, as well as coincidence with the theory
presented, especially in the case of small sample sizes.

1 INTRODUCTION

Stochastic gradient estimation involves estimating a function’s derivative. In realistic scenarios, the exact
function expression is often unknown, and one can only approximate it through stochastic simulation. Such
setting is often regarded as black-box or zeroth-order (Ghadimi and Lan 2013; Nesterov and Spokoiny
2015). Stochastic gradient estimation finds significant applications in stochastic optimization, machine
learning, financial engineering and operations research. In this paper, we investigate the finite-difference
method, which is straightforward and effective for estimating the gradient (Asmussen and Glynn 2007; Fu
2006; Glasserman 2013; L’Ecuyer 1991).

Finite-difference methods include forward, backward, and central finite-difference (CFD) methods. In
the finite-difference mechanism, the choice of perturbation size controls the balance between bias and
variance. Typically, if the perturbation is too small, the variance of the estimated quantity will be too
large, and if the perturbation is too large, the bias will be unacceptable. Using a metric of minimizing
the MSE of the estimator, Fox and Glynn (1989) and Zazanis and Suri (1993) studied this trade-off and
demonstrated that without using common random numbers (CRNs), the optimal order of perturbation size
is n−1/4 for forward and backward finite-difference methods and n−1/6 for the CFD method, where n is
the total number of samples. Glasserman (2013) suggested the extrapolation approach to further reduce
the bias. A linear combination of the CFD output values under two different perturbations is employed to
produce an estimator with decreased bias. When CRNs are not employed, the method’s optimal perturbation
is of order n−1/10.

Although the order of the optimal perturbation is known for the finite-difference methods, the constants
preceding the order are especially essential when the sample size is small (Li and Lam 2020; Lam et al. 2022).
However, obtaining information about the constants before the order is challenging, even more difficult
than estimating gradients because they contain higher-order derivatives and noises. Li and Lam (2020)
proposed a two-stage approach to address this issue. In the first stage, they utilized regression to estimate the
higher-order derivative and sample variance to estimate the function’s noise. However, the noise estimation
is somewhat coarse. Lam et al. (2022) enhanced the standard estimator regarding the choice of perturbation
subject to the ambiguity of the model characteristics.
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In this paper, we focus on enhancing the performance of the finite-difference method. We propose a
double sample-recycling (DSR) approach to the finite-difference estimator for stochastic gradient estimation
to more accurately estimate the unknown constants and effectively utilize the samples. Our work also
proposes a procedure in two stages and focuses on sample-recycling. Specifically, we apply two sample-
recycling techniques in the two stages to obtain an accurate estimator of perturbation and a finite-difference
estimator. We support our theory with empirical results.

The rest of this paper is organized as follows. In Section 2, we give some background on how to
use the CFD method for gradient estimation. In Section 3, we introduce the bootstrap method, apply it
to gradient estimation and provide theoretical guarantees for it. Section 4 guides the process of reusing
samples and provides theoretical evidence for the effectiveness of this operation. In Section 5, we give
some experiments to verify the theoretical results, followed by conclusions in Section 6.

2 BACKGROUND

In this section, we introduce the background of the finite-difference method for stochastic gradient estimation.
More details can be found in Asmussen and Glynn (2007), Fu (2006), Glasserman (2013). Consider a
model that depends on a single parameter θ , where θ varies within some range Θ⊂ R. Denote that α(·)
is a performance measure of interest and assume that we can only estimate it by simulation. Within the
simulation for any chosen θ ∈ Θ, each trail gives an unbiased but noisy estimate of α(θ), denoted by
Y (θ), i.e., α(θ) = E[Y (θ)]. Suppose that we do not use the CRNs, i.e., for θ1 6= θ2 ∈Θ, Y (θ1) and Y (θ2)
are independent. We would like to estimate the first-order derivative α ′(θ0), where θ0 ∈Θ is the point of
interest. In this paper, we consider the CFD method which yields an improvement in the convergence rate
of the bias compared to the forward (and backward) finite-difference method.

The CFD scheme is similar to the definition of the derivative and utilizes the information at the
neighboring points on both sides of θ0. That is, α ′(θ0) is approximated by

α̃
′
h(θ0) =

α(θ0 +h)−α(θ0−h)
2h

, (1)

where h is a perturbation parameter. As h tends to 0, α̃ ′h(θ0) tends to α ′(θ0). Denote

∆(h) =
Y (θ0 +h)−Y (θ0−h)

2h
. (2)

Evidently, ∆(h) is a noisy estimate of α ′(θ0) and this estimate is the output of the CFD method.
Specifically, the CFD scheme sets the perturbation parameter h> 0. At θ0+h, the simulation is repeated

independently, and n independently and identically distributed (i.i.d.) observations {Y1(θ0 +h), ...,Yn(θ0 +
h)} are obtained. Then, n i.i.d. observations {Y1(θ0−h), ...,Yn(θ0−h)} are simulated at θ0−h. Using the
sample average, we construct a CFD estimator of α ′(θ0), denoted by

∆̂n,h =
1
n

n

∑
i=1

∆i(h) =
1
n

n

∑
i=1

Yi(θ0 +h)−Yi(θ0−h)
2h

. (3)

For any i = 1, ...,n, Yi(θ0 + h) and Yi(θ0− h) are the unbiased estimators of α(θ0 + h) and α(θ0− h),
respectively, so ∆i(h) and ∆̂n,h are both the unbiased estimators of α̃ ′h(θ0). Let Zi(h) denote the zero-mean
error associated with ∆i(h), and finally let Z̄n,h = ∑

n
i=1 Zi(h)/n be the zero-mean error associated with ∆̂n,h.

Then, ∆̂n,h = α̃ ′h(θ0)+ Z̄n,h.
The choice of h is crucial because it controls the quality of ∆̂n,h. If h is too large, the expectation of

∆̂n,h, i.e., α̃ ′h(θ0) will be too far from α ′(θ0). In other words, the bias of ∆̂n,h will be unacceptable. If h
is too small, the variance of ∆̂n,h will explode due to the location of h in the denominator. To choose a
proper h, we should perform a trade-off between the bias and variance of ∆̂n,h. To calculate the bias and
variance elaborately, we make the following assumptions.
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Assumption 2.1 α(θ) is thrice continuously differentiable in a neighborhood of θ0 and α(3)(θ0) 6= 0.
Assumption 2.2 The standard deviation of Y (θ), denoted by σ(θ), is continuous at θ0 and σ(θ)> 0.

Assumptions 2.1 and 2.2 can be found in many other works, such as Glasserman (2013). Under
Assumption 2.1, according to the Taylor expansion, we have

α(θ0 +h) = α(θ0)+α
′(θ0)h+

α(2)(θ0)

2
h2 +

α(3)(θ0)

6
h3 +o(h3),

α(θ0−h) = α(θ0)−α
′(θ0)h+

α(2)(θ0)

2
h2− α(3)(θ0)

6
h3 +o(h3).

Subtraction eliminates α(2)(θ0), leaving

α̃
′
h(θ0) = α

′(θ0)+Bh2 +o(h2),

where B = α(3)(θ0)/6. Therefore, the bias of ∆̂n,h is

Bias
[
∆̂n,h

]
= E∆̂n,h−α

′(θ0) = α̃
′
h(θ0)−α

′(θ0) = Bh2 +o(h2). (4)

From (3), the variance of ∆̂n,h is

Var
[
∆̂n,h

]
=

1
n

Var
[

Y (θ0 +h)+Y (θ0−h)
2h

]
=

σ2(θ0 +h)+σ2(θ0−h)
4nh2 .

Under Assumption 2.2, we have σ2(θ0 +h) = σ2(θ0)+o(1) and σ2(θ0−h) = σ2(θ0)+o(1). Therefore,

Var
[
∆̂n,h

]
=

σ2(θ0)+o(1)
2nh2 . (5)

Then the MSE of ∆̂n,h is

MSE
[
∆̂n,h

]
= Bias2

[
∆̂n,h

]
+Var

[
∆̂n,h

]
= (B+o(1))2 h4 +

σ2(θ0)+o(1)
2nh2 . (6)

It follows from (6) that h controls a trade-off between the bias and variance, and thus we should choose
an appropriate h to minimize the MSE. According to the relationship between the arithmetic average and
the geometric average, we get

B2h4 +
σ2(θ0)

2nh2 ≥ 3
(

B2σ4(θ0)

16n2

)1/3

,

where the equality holds if and only if h∗ =
(
σ2(θ0)/(4nB2)

)1/6. The optimal bias, variance and MSE are
thus 

Bias∗ =
(

Bσ2(θ0)

4n

)1/3

+o
(
n−1/3

)
,

Var∗ =
(

B2σ4(θ0)

2n2

)1/3

+o
(
n−2/3

)
,

MSE∗ = 3
(

B2σ4(θ0)

16n2

)1/3

+o
(
n−2/3

)
.

(7)
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To obtain an optimal ∆̂n,h, we need to determine the value of h. Although we know that h∗ =Cn−1/6,
where C =

(
σ2(θ0)/(4B2)

)1/6, the constant C is typically unknown. The definition of C indicates that it
requires the estimation of some values depending on the model information, such as α(3)(θ0) and σ2(θ0).
However, estimating these values is more challenging than estimating the gradient because it involves the
higher-order derivatives of α(θ). Furthermore, experimental findings indicate that assigning a perturbation
with a significant deviation from the true one leads to substantial discrepancies in the MSE of the CFD
estimator. These motivate us to explore an approach to address this problem and achieve the optimal MSE.

3 SAMPLE-RECYCLING FOR PERTURBATION SELECTION

In this section, we propose a resampling procedure to estimate C, specifically B and σ2(θ0). Our inspiration
comes from equations (4) and (5), which demonstrate that E∆̂n,h and Var

[
∆̂n,h

]
are linear with respect to

(w.r.t.) h2 and 1/h2, respectively. However, E∆̂n,h and Var
[
∆̂n,h

]
are typically unknown and we turn to

seek their surrogates. A straightforward approach is to use the sample mean and variance, respectively.
Nevertheless, for any perturbation h, we need many sample pairs (sometimes we also use “samples”) to
obtain these surrogates, which is unavailable due to the limitation of sample size. To address this limitation,
we introduce a resampling technique, the bootstrap, to estimate the sample mean and variance. On the other
hand, to improve the accuracy of estimating B and σ2(θ0), we select K different values of h, expanding
(4) to encompass K linear equations correspondingly. Then least-squares regression is applied to derive
the slope of linear equations, i.e., the constant B. Similar procedure is also used to obtain the estimate of
σ2(θ0).

3.1 Bootstrap Sample Mean and Variance

The bootstrap technique is described as follows. For a fixed h, assume that nb sample pairs have been
generated, denoted by {(Yi(θ0+h),Yi(θ0−h)), i = 1,2, ...,nb}. Correspondingly, as defined in (2), we have
nb outputs ∆∆∆(h), {∆i(h), i = 1,2, ...,nb}. We pick with replacement nb times from ∆∆∆(h) independently and
randomly and then get a group of bootstrap samples ∆∆∆

∗(h) = {∆∗i (h), i = 1,2, ...,nb}. Using these bootstrap
samples, the estimator of α ′(θ0) is expressed as

∆̂
b
nb,h =

1
nb

nb

∑
i=1

∆
∗
i (h).

It is natural to expect that the bootstrap mean and variance of ∆̂b
nb,h will exhibit similar asymptotic

properties as described in (4) and (5), respectively, when nb is sufficiently large. For these, let E∗ and Var∗
denote the expectation and variance under the bootstrap probability measure P∗(·), P(·|∆∆∆(h)). Then the
asymptotic properties of the bootstrap mean and variance of ∆̂b

nb,h are summarized in Theorem 1.

Theorem 1 Denote ν4(h) =E [Z1(h)]
4 and ν4 = lim

h→0
E [hZ1(h)]

4. If ν4 < ∞, α(θ) is five times continuously

differentiable in a neighborhood of θ0 and α(5)(θ0) 6= 0, then under Assumptions 2.2, as nb→ ∞,

E∗∆̂b
nb,h = α

′(θ0)+Bh2 +Dh4 +o(h4)+ Z̄nb,h, (8)

Var∗
[
∆̂

b
nb,h

]
=

(nb−1)(σ2(θ0)+o(1))
2n2

bh2 +φ(h), (9)

where D = α(5)(θ0)/120 and φ(h) is a zero-mean error with

Var[φ(h)] =
(nb−1)2

n4
bh4

(
ν4 +o(1)

nb
− nb−3

nb(nb−1)
σ4(θ0)+o(1)

4

)
. (10)
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Theorem 1 demonstrates that E∗∆̂b
nb,h and Var∗

[
∆̂b

nb,h

]
inherit the asymptotic properties of E∆̂n,h and

Var
[
∆̂n,h

]
, respectively. That is, they are linear w.r.t. h2 and 1/h2, respectively. As a result, we can estimate

B and σ2(θ0) through these linear relationships, which we will present in the next subsection. Another
optional approach is to bootstrap {(Yi(θ0 +h), i = 1,2, ...,nb} and {(Yi(θ0−h), i = 1,2, ...,nb} separately.
This decoupling operation yields conclusions similar to those in Theorem 1. For convenience, we directly
bootstrap ∆∆∆(h) in this paper.

3.2 Regression for Perturbation Selection

From Theorem 1, we can use the least-squares regression to derive the estimates of B and σ2(θ0). Specifically,
we consider

YYY e = XXXeβββ e +Ee, YYY v = XXXvβββ v +Ev, (11)

where

YYY e =
[
E∗∆̂b

nb,h1
, ...,E∗∆̂b

nb,hK

]>
,XXXe =

[
1 ... 1
h2

1 ... h2
K

]>
,

βββ e =
[
α
′(θ0),B

]>
,Ee =

[
Dh4

1 +o(h4
1)+ Z̄nb,h1 , ...,Dh4

K +o(h4
K)+ Z̄nb,hK

]>
,

(12)

and

YYY v =
[
Var∗

[
∆̂

b
nb,h1

]
, ...,Var∗

[
∆̂

b
nb,hK

]]>
, XXXv =

[
nb−1
2n2

bh2
1
, ...,

nb−1
2n2

bh2
K

]>
,

βββ v = σ
2(θ0), Ev =

[
(nb−1)o(1)

2n2
bh2

1
+φ(h1), ...,

(nb−1)o(1)
2n2

bh2
K

+φ(hK)

]>
.

(13)

Using the least-squares method, we derive the estimators of βββ e and βββ v, denoted by β̂ββ e and β̂ββ v,
respectively, where

β̂ββ e =
(

XXX>e XXXe

)−1
XXX>e YYY e, β̂ββ v =

(
XXX>v XXXv

)−1
XXX>v YYY v.

Let the first term of β̂ββ e be α̂ ′(θ0) and the second term be B̂. In the following, we show that β̂ββ e and
β̂ββ v are consistent estimators of βββ e and βββ v, respectively.

3.2.1 Consistency of B̂

The following theorem presents the consistency of B̂. The conditions about hk(k = 1, ...,K) in Theorem 2
ensure that the regression error vanishes fast enough, which is necessary for the consistency of regression
estimators.
Theorem 2 Suppose that α(θ) is five times continuously differentiable in a neighborhood of θ0 and
α(5)(θ0) 6= 0. For any k = 1, ...,K(K ≥ 2), denote hk = cknγ

b(ck 6= 0,γ < 0) and for any j 6= k, let c j 6= ck.
Then, under Assumption 2.1,

E
[
B̂
]
−B = HKn2γ

b +o
(

n2γ

b

)
, Var

[
B̂
]
=VK

σ2(θ0)+o(1)

2n1+6γ

b

, (14)

where HK and VK are constants depending on c1, ...,cK . Specifically,

HK =
K ∑

K
k=1 Dc6

k−∑
K
k=1 c2

k ∑
K
k=1 Dc4

k

K ∑
K
k=1 c4

k−
(
∑

K
k=1 c2

k

)2 , VK =
−K2

∑
K
k=1 c2

k +
(
∑

K
k=1 c2

k

)2
∑

K
k=1 1/c2

k(
K ∑

K
k=1 c4

k−
(
∑

K
k=1 c2

k

)2
)2 .
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In addition, if −1/6 < γ < 0, then B̂
p−→ B, where

p−→ means convergence in probability.

Theorem 2 indicates that for all hk = cknγ

b, where k = 1, ...,K and ck 6= 0, as long as −1/6 < γ < 0, B̂

is a consistent estimator of B. Furthermore, from (14), the convergence rate of the bias of B̂ is O
(

n2γ

b

)
,

and that of the variance of B̂ is O
(

n−1−6γ

b

)
.

Except for fixed values of c1, ...,cK , they can be generated from a proper distribution P0. In this case,
HK and VK are both random. Since c1, ...,cK are coefficients in the perturbations, they must not equal 0,
and are typically bounded. For these purposes, there are many optional distributions, such as the truncated
normal distribution, denoted by ψ

(
µ0,σ

2
0 ,L,U

)
. Specifically, for any k = 1, ...,K, let ck

d
= X1{L≤X≤U},

where d
= represents the same distribution, X ∼N

(
µ0,σ

2
0
)
, and L > 0 and U > 0 denote the lower bound

and upper bound, respectively. Because 0 < L≤ ck ≤U , HK and VK are bounded.
When we generate c1, ...,cK from P0, the bias of B̂ is

Bias
[
B̂
]
= E

[
E
[
B̂−B

∣∣P0

]]
= E[HK ]n

2γ

b +o
(

n2γ

b

)
, (15)

where the last equality is because c1, ...,cK are independent with the pilot samples and the bias result in
Theorem 2. If ck ∼ψ

(
µ0,σ

2
0 ,L,U

)
for k = 1, ...,K, then ck’s are bounded. Therefore, HK and the constants

in o
(

n2γ

b

)
are all bounded.

Likewise, the variance of B̂ is

Var
[
B̂
]
= Var

[
E
[
B̂
∣∣P0

]]
+E

[
Var
[
B̂
∣∣P0

]]
= Var

[
B+HKn2γ

b +o
(

n2γ

b

)]
+E

[
VK

σ2(θ0)+o(1)

2n1+6γ

b

]

= Var[HK ]n
4γ

b +o
(

n4γ

b

)
+E[VK ]

σ2(θ0)+o(1)

2n1+6γ

b

. (16)

Comparing (14) with (15) and (16), it becomes evident that when ck’s are generated from P0, the bias
of B̂ still converges at a rate of O

(
n2γ

b

)
, while the variance of B̂ is increased by O

(
n4γ

b

)
. However, it is

important to note that the convergence rate of the MSE of B̂ remains unchanged. Therefore, during the
pilot stage, the hk’s selected based on the tradeoff between bias and variance in (14) maintain the same
order as those selected using the tradeoff between bias and variance in (15) and (16).

Similarly to Theorem 2, we can also obtain the asymptotic property of α̂ ′(θ0), which is useful for the
recycling of the pilot samples. Due to space limitations, we omit the description about it.

3.2.2 Consistency of β̂ v

Now we provide Theorem 3 which demonstrates the convergence rate of the bias and variance of β̂ββ v.
Theorem 3 Suppose that σ(θ) is continuously differentiable at θ0 and σ ′(θ0) is bounded. For any
k = 1, ...,K(K ≥ 1), denote hk = cknγ

b(ck 6= 0,γ < 0) and for any j 6= k, let c j 6= ck. Then, under Assumption
2.2,

E
[
β̂ββ v

]
−βββ v = H†

Kn2γ

b +o
(

n2γ

b

)
, Var

[
β̂ββ v

]
=V †

K
4ν4(nb−1)−σ4(θ0)(nb−3)

nb(nb−1)
+o
(

1
nb

)
,
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where H†
K and V †

K are constants depending on c1, ...,cK . Specifically,

H†
K = σ

′(θ0)
2

(
K

∑
k=1

1
c4

k

)−1 K

∑
k=1

1
c2

k
, V †

K =

(
K

∑
k=1

1
c4

k

)−2 K

∑
k=1

1
c8

k
.

Consequently, we have β̂ββ v
p−→ βββ v.

Theorem 3 indicates that for all hk = cknγ

b, where k = 1, ...,K and ck 6= 0, as long as γ < 0, β̂ββ v is a
consistent estimator of βββ v. The convergence rate of the variance of β̂ββ v is O

(
n−1

b

)
, which is independent

of γ and faster than that of B̂. Additionally, the convergence rate of the bias of β̂ββ v is O
(

n2γ

b

)
, which is

equal to that of B̂.
In light of Var

[
β̂ββ v

]
unrelated to γ , we focus on (14) and choose a suitable γ to balance the bias and

variance of B̂. Specifically, according to Theorem 2, we consider the following optimization problem:

minimize
γ,c1,...,cK

MSE
[
B̂
]
= H2

Kn4γ

b +VK
σ2(θ0)

2n1+6γ

b

, (17)

subject to −1/6 < γ < 0.

Solving (17) gives γ = −1/10. On the other hand, if c1, ...,cK are generated from P0 randomly, the
optimization problem comes from the combination of (15) and (16):

minimize
γ,P0

E[H2
K ]n

4γ

b +Var[HK ]n
4γ

b +E[VK ]
σ2(θ0)

2n1+6γ

b

, (18)

subject to −1/6 < γ < 0.

Solving (18) also gives γ = −1/10. That is, whether c1, ...,cK are fixed or not, the optimal selection of
hk’s is of order O

(
nγ

b

)
with γ =−1/10.

A more exact setting about {c1, ...,cK} or P0 necessitates knowledge of D, which is more challenging
than the estimation of α ′(θ0). In this paper, we treat {c1, ...,cK} and P0 as the hyperparameters whose
selection is beyond the scope of our discussion.

4 SAMPLE-RECYCLING FOR FINITE-DIFFERENCE OUTPUT

In Section 3, we have provided the estimators B̂ and β̂ββ v and shown that both of them are consistent under
mild conditions. In this section, we construct the double sample-recycling CFD (DSR-CFD) estimator
through the remaining n2 = n−Knb sample pairs as well as the pilot sample pairs. We have to consider
two questions: (1) how to generate the n2 sample pairs; and (2) how to recycle the pilot sample pairs.

To answer the first question, note that we hope to utilize the whole n sample pairs, including the pilot
sample pairs and the n2 sample pairs. Therefore, the desired CFD estimator should be constructed based

on the perturbation ĥn =
(

β̂ββ v/(4nB̂2)
)1/6

.
To answer the second question, recall that our objective is to estimate α ′(θ0) under the criteria of

minimizing the MSE of its estimator. To reuse the pilot samples, we transform ∆(hk) which are constructed
based on the pilot samples, by adjusting their location and scale, so that after the transformation, they have
the same expectation and variance as ∆

(
ĥn

)
. Note that when no confusion arises, the subscript i of ∆i(·)

is omitted to denote a generic index i = 1, ...,n.
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Specifically, for any j = 1, ...,nb and k = 1, ...,K, we transform ∆ j(hk) toVar
[
∆

(
ĥn

)]
Var[∆(hk)]

1/2

[∆ j(hk)−E∆(hk)]+E∆

(
ĥn

)
. (19)

Evidently, [∆ j(hk)−E∆(hk)]/(Var[∆(hk)])
1/2 in (19) represents a standardization with mean 0 and variance

1. Then (19) possesses the same expectation and variance as ∆

(
ĥn

)
. Therefore, a desired estimator for

α ′(θ0) can be formulated as:

n2

n
1
n2

n2

∑
i=1

∆i

(
ĥn

)
+

Knb

n
1

Knb

K

∑
k=1

nb

∑
j=1

(19). (20)

This is a weighted average of an estimator at ĥn constructed through the n2 samples, and the one by the
transformation from the pilot samples. It is reasonable to expect that under certain mild conditions, such
as ensuring that the covariance of two terms in (20) converges faster than the variance of either term, the
bias, variance and MSE of (20) all achieve their optimal values as in (7).

For any j = 1, ...,nb and k = 1, ...,K, we substitute the regression estimators into (19), and (19) is
approximated by

∆
t
j(hk) =

|hk|∣∣∣ĥn

∣∣∣
(

∆ j(hk)−
(
1,h2

k
)

β̂ββ e

)
+
(

1, ĥ2
n

)
β̂ββ e. (21)

Then, the DSR-CFD estimator, i.e., the estimated version of (20), is established as follows:

∆̂n,ĥn
=

1
n

(
n2

∑
i=1

∆i

(
ĥn

)
+

K

∑
k=1

nb

∑
j=1

∆
t
j(hk)

)
. (22)

Next, we analyze the theoretical properties of ∆̂n,ĥn
. The results are summarized in the following

theorem. For the sake of convenience, we consider the non-random hyperparameters c1, ...,cK such that
when nb is given, h1, ...,hK are also given. The result is similar when considering P0 as the hyperparameter,
i.e., c1, ...,cK are random.
Theorem 4 Suppose that α(θ) is five times continuously differentiable in a neighborhood of θ0 and
α(5)(θ0) 6= 0. For any k = 1, ...,K(K ≥ 2), let hk = ckn−1/10

b (ck 6= 0) and for any j 6= k, c j 6= ck. If
nb,n→ ∞, then under Assumptions 2.1 and 2.2,

E
[
∆̂n,ĥn

]
=α

′(θ0)+

(
Bσ2(θ0)

4n

)1/3

+

(
4B2

σ2(θ0)

)1/6√nb

n
Dccc>PPPccc444n−1/3 +o

(
n−1/3

)
, (23)

Var
[
∆̂n,ĥn

]
=

(
B2σ4(θ0)

2n2

)1/3

+

(
B2σ4(θ0)

2

)1/3 nb

n

[
|| Diag(ccc−1)PPPccc ||22 −K

]
n−2/3 +o

(
n−2/3

)
, (24)

where ccc = [|c1|, ..., |cK |]>, ccc4 = [c4
1, ...,c

4
K ]
>, PPP = III−XXXe(XXX>e XXXe)

−1XXX>e , XXXe is defined as in (12), Diag(ccc−1) =

Diag
(

1
|c1|

, ...,
1
|cK |

)
, sign(B) is the sign of B, and || vvv ||2=

(
∑

K
k=1 v2

k

)1/2 for any vvv ∈ RK .

Comparing (23) and (24) with (7), the changes of bias, variance, and MSE in the DSR-CFD method
compared to the optimal CFD method are obvious, which depend on ccc>PPPccc444 and || Diag(ccc−1)PPPccc ||22 that
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Algorithm 1: DSR-CFD method.
Input: The number of total sample pairs n, the number of perturbation parameters K, the

number of pilot sample pairs at each perturbation nb, the number of bootstrap I and initial
perturbation generator P0.

Step 1. Estimate the unknown constants B, σ2(θ0) and the optimal perturbation.

1. Generate c1,c2, ...,cK
i.i.d.∼ P0 and let hk = ckn−1/10

b for any k = 1,2, ...,K. Generate pilot samples
and calculate ∆ j(hk), where j = 1,2, ...,nb and k = 1,2, ...,K.

2. Perform bootstrap resampling I times for each set of samples at h1,h2, ...,hK and calculate

∆̄
b
nb,hk

=
1
I

I

∑
q=1

∆̂
b
nb,hk

(q), s2
nb,hk

=
1
I

I

∑
q=1

[
∆̂

b
nb,hk

(q)− ∆̄
b
nb,hk

]2
.

3. For k = 1, ...,K, replace E∗∆̂b
nb,hk

and Var∗
[
∆̂b

nb,hk

]
with ∆̄b

nb,hk
and s2

nb,hk
, respectively. Perform

(weighted) regression to obtain B̂ and β̂ββ v. Set the perturbation as ĥn =
(

β̂ββ v/(4nB̂2)
)1/6

.

Step 2. Construct the DSR-CFD estimator of α ′(θ0).

1. Reuse ∆ j(hk), where j = 1,2, ...,nb and k = 1,2, ...,K. That is, calculate

∆t
j(hk) =

|hk|∣∣∣ĥn

∣∣∣
(

∆ j(hk)−
(
1,h2

k

)
β̂ββ e

)
+
(

1, ĥ2
n

)
β̂ββ e for j = 1,2, ...,nb, and k = 1,2, ...,K.

2. Denote the number of remaining sample pairs as n2 = n−Knb. Generate n2 sample pairs at ĥn

and calculate
{

∆1(ĥn), ...,∆n2(ĥn)
}

.
3. The DSR-CFD estimator

∆̂n,ĥn
=

1
n

(
n2

∑
i=1

∆i

(
ĥn

)
+

K

∑
k=1

nb

∑
j=1

∆
t
j(hk)

)
.

Output: ∆̂n,ĥn
.

are typically manageable. Even more attractive is the fact that if B and Dccc>PPPccc444 are of opposite signs, the
squared bias of ∆̂n,ĥn

may be smaller than that of the optimal CFD estimator (see (7)). In addition, when
c1, ...,cK are chosen such that || Diag(ccc−1)PPPccc ||22≤ K, the variance will be reduced.

The full implementation of DSR-CFD method is shown in Algorithm 1. In Section 5, we will present
two numerical examples to validate the aforementioned properties of our proposed DSR-CFD estimator.

5 NUMERICAL EXPERIMENTS

In this section, we use two examples to check the performance of our method. Examples 5.1 is from Li and
Lam (2020). Example 5.2 is the generic M/M/1 queueing system from Lam et al. (2022). All numerical
results are based on 1000 replications.

We will compare the performance of our proposed method and the Estimation-Minimization CFD
(EM-CFD) method proposed by Li and Lam (2020). In the first and second examples, we let the initial
perturbation generators P0 = ψ (0,0.1,0.01,∞) and P0 = ψ (0,1,0.1,∞), respectively. The number of
bootstrap I = 1000. During the first phase, we set the number of regression points as K = 10 or 20.

463



Liang, Liu, and Zhang

Example 5.1 We consider estimating the first order derivatives of the polynomial function α(θ) = 1−6θ +
36θ 2−53θ 3 +22θ 5 at different θ0. Assume that the observed variables at θ obey a normal distribution
with mean α(θ) and variance 0.05, i.e., Y (θ)∼N (α(θ),0.05). From a simple calculation we obtain

α
′(θ0) =−6+72θ0−159θ

2
0 +110θ

4
0 , B =−53+220θ

2
0 , σ

2(θ0) = 0.05,

as the real parameters to measure the performance of our proposed method. During the implementation of
each algorithm, we assume that the parameters α ′(θ0), B and σ2(θ0) are unknown.

Table 1 presents a comparison of bias, variance, and MSE between the DSR-CFD estimator (denoted
by Bias-DSR, Var-DSR and MSE-DSR, respectively) and the optimal CFD (Opt-CFD) estimator (denoted
by Bias-Opt, Var-Opt and MSE-Opt, respectively) across various sample sizes and estimation points
(corresponding to different problems) in Example 5.1. In Table 1, B and D are respectively the true values
and Opt-CFD is meant to set B and σ2(θ0) as their true values, i.e., B =−53+220θ 2

0 and σ2(θ0) = 0.05.
We take 50% of the total sample to estimate the unknown constants and set K = 10 for DSR-CFD method.

Table 1: Comparison of the bias, variance and MSE of the DSR-CFD and Opt-CFD estimators in Example
5.1.

Budget x B D Bias-DSR Bias-Opt Var-DSR Var-Opt MSE-DSR MSE-Opt

103

0 −53 22 −0.1335 −0.0829 0.0117 0.0154 0.0295 0.0222
0.2 −44.2 22 −0.1356 −0.0789 0.0115 0.0149 0.0299 0.0211
0.4 −17.5 22 −0.1264 −0.0584 0.0105 0.0067 0.0265 0.0101
0.6 26.2 22 0.0170 0.0693 0.0102 0.0101 0.0105 0.0149
0.8 87.8 22 0.0658 0.1016 0.0163 0.0212 0.0206 0.0315
1 167 22 0.0991 0.1294 0.0217 0.0323 0.0315 0.0490

104

0 −53 22 −0.0583 −0.0415 0.0021 0.0031 0.0055 0.0049
0.2 −44.2 22 −0.0558 −0.0339 0.0021 0.0031 0.0052 0.0042
0.4 −17.5 22 −0.0544 −0.0279 0.0017 0.0015 0.0047 0.0023
0.6 26.2 22 0.0099 0.0343 0.0018 0.0021 0.0019 0.0033
0.8 87.8 22 0.0340 0.0484 0.0033 0.0044 0.0044 0.0068
1 167 22 0.0549 0.0596 0.0055 0.0069 0.0085 0.0104

105

0 −53 22 −0.0245 −0.0196 4.5424e-04 6.7200e-04 0.0011 0.0011
0.2 −44.2 22 −0.0222 −0.0179 4.2904e-04 6.3269e-04 9.2243e-04 9.5076e-04
0.4 −17.5 22 −0.0208 −0.0126 2.8572e-04 3.3534e-04 7.1882e-04 4.9412e-04
0.6 26.2 22 0.0088 0.0150 3.4222e-04 4.2576e-04 4.1963e-04 6.4935e-04
0.8 87.8 22 0.0200 0.0220 7.4610e-04 9.9544e-04 0.0011 0.0015
1 167 22 0.0270 0.0277 9.8655e-04 0.0015 0.0017 0.0023

From Table 1, we have the following observations:

• Bias: The bias is influenced by the signs of B and D. If B and D have the same (opposite) signs,
the absolute bias of the DSR-CFD method is smaller (larger) than that of the Opt-CFD method.
This aligns with Theorem 4 because ccc>PPPccc444 is negative in our experiment. When B and D share
the same (opposite) signs, B and Dccc>PPPccc444 exhibit opposite (same) signs.

• Variance: It is observed that as the sample size increases, the variance of the DSR-CFD estimator
consistently outperforms that of the Opt-CFD estimator, aligning with Theorem 4. For instance, at
x = 1 with a sample budget of 105, the variances for the DSR-CFD and Opt-CFD estimators are
9.8655×10−4 and 0.0015, respectively.

• MSE: It is important to note that the bias and variance of the DSR-CFD estimator consistently
approximate and are smaller than those of the Opt-CFD estimator, respectively. Consequently,
when employing MSE as the error criterion, the DSR-CFD estimator consistently performs nearly
as well as (or even outperforms) the Opt-CFD estimator.
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Example 5.2 We consider a generic M/M/1 queueing system which is empty initially. Both of the arrival
distribution and the service distribution are the exponential distribution and the arrival rate and service rate
are denoted by λ and µ , respectively. Observations are the averaged system time of the first N customers
and we are interested in the gradient of this quantity w.r.t. the service rate. For this example, we consider
two cases.

• Case 1: We consider a critically loaded system, where we set λ = µ = 4 and N = 10. In this case,
the true derivative is −0.2501, which is calculated using the likelihood ratio/score function method
(Glynn 1990) with 106 simulation repetitions (Lam et al. 2022).

• Case 2: We consider a non-critically loaded queue, where we set λ = 3, µ = 5 and N = 10. In
this case, the true derivative is −0.1136.

Figure 1 illustrates the numerical results for different methods in Example 5.2 when the sample-pair
size changes from n = 60 to n = 1000. We compare the following three methods: The conventional CFD
(Con-CFD) method, EM-CFD method and DSR-CFD method. For the Con-CFD method, we do not know
any information about the model in advance and set B = 5 and σ2(θ0) = 1. When considering the EM-CFD

method, we set r = 0.1 and generate h1, ...,hrn
i.i.d.∼ N

(
0,1× (rn)−1/5

)
. When applying the DSR-CFD

method, we set K = 20 in the pilot phase and r = 1.
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Figure 1: Comparison of the MSE among different estimators for cases 1 and 2 in Example 5.2.

Figure 1 illustrates that the performance of the Con-CFD estimator is inferior to that of the other
two estimators. This observation emphasizes the importance of estimating unknown constants within
finite-difference methods. In case 1 of Example 5.2, the DSR-CFD estimator consistently yields the most
favorable results. For instance, with a sample-pair size of 60, the MSEs for the DSR-CFD and EM-CFD
estimators are 0.011 and 0.033, respectively. In case 2, the performances of these two estimators are
comparable. In conclusion, the DSR-CFD estimator performs well across various problems.

6 CONCLUSIONS

The choice of the perturbation significantly influences the accuracy of the finite-difference approximation
in stochastic gradient estimation. Although the order of the optimal perturbation is known, determining the
unknown constants remains a challenge. To address this issue and construct an efficient finite-difference
approximation, in this paper, we develop a double sample-recycling approach, which utilizes samples
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efficiently. We provide complete theoretical analyses, particular algorithms, and numerical experiments.
The theories and the findings of the numerical experiments are consistent. In particular, theoretical analyses
reveal that the proposed estimator has a reduced variance compared to the optimal finite-difference estimator,
and in some cases, a decrease in bias.
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