
Proceedings of the 2024 Winter Simulation Conference
H. Lam, E. Azar, D. Batur, S. Gao, W. Xie, S. R. Hunter, and M. D. Rossetti, eds.

COMPONENT-BASED SYNTHESIS OF STRUCTURAL VARIANTS OF SIMULATION
MODELS FOR CHANGEABLE MATERIAL FLOW SYSTEMS

Jan Winkels1, Felix Özkul2, Robin Sutherland2, Jannik Löhn1, Sigrid Wenzel2, and Jakob Rehof1,3

1Department of Computer Science, TU Dortmund University, GERMANY

2Dept. Organization of Production and Factory Planning (pfp), University of Kassel, GERMANY
3Lamarr Institute for Machine Learning and Artificial Intelligence, Dortmund, GERMANY

ABSTRACT

Despite relevant research endeavors, modeling efforts related to the building of discrete-event simulation
models for planning changeable material flow systems still limit their practical application. This is because
simulation experts have to model many possible structural variants and compare them based on key
performance indicators such as throughput, workload or investment costs, while also ensuring sufficient
system changeability. This article presents a methodology for reducing efforts for structural variation during
the experimental phase of a simulation study. Starting from a valid initial simulation model, structural
variants of this simulation model are automatically generated by applying component-based software
synthesis which uses combinatorial logic; thereby, a range of simulation models is provided for the user.
This paper presents the outlined methodology using a case study and places it in the research context of
reducing efforts associated with the design and execution of simulation experiments.

1 INTRODUCTION

Nowadays, manufacturing companies operate in a dynamic market environment that is increasingly
characterized by disruptions, which requires continuous change within these organizations to survive in
global competition; thus, changeability is becoming a decisive competitive factor for production and
logistics (Wiendahl and Heger 2004). Production and logistics systems should no longer only be planned
in a solution-neutral way (Cisek et al. 2002) but must also allow in vivo possibilities for low-cost structural
changes over a system operating period; this deliberate change to the system structure is referred to below
as structural variance (Sutherland et al. 2024). Structural variance can be concretized as a set of operations
through which changes to system structures are made. These include adding or removing elements,
changing the connection structure (element sequence), merging several elements and substituting these
elements (Sutherland et al. 2024). In this paper, we only consider the structure and material flow view in
relation to production and logistics systems, which is why the term material flow system (MFS) is used
below as an umbrella term for the systems to be planned.

Discrete-event simulation (DES) has proven its suitability for the planning of MFSs in a wide range of
industries and for a variety of planning reasons (e.g., see Bicalho-Hoch et al. 2022). It can be used to
simulate and experimentally investigate the stochastic dynamic behavior of MFSs. However, conducting
simulation studies (see Law 2019; Rabe et al. 2009) is still primarily time-consuming knowledge work. The
scientific literature mentions significant efforts especially in connection with the building of simulation
models, the collection of input data and information, verification and validation as well as the design and
execution of experiments (see section 2). In order for MFSs to be planned in a changeable manner,
simulation users and system experts have to model and evaluate a large number of structural variants. In
practice, however, those involved in planning projects often only have time to simulatively examine a few
candidate variants of systems; systematic and comprehensive modeling of all variants is usually
uneconomical due to the effort involved.

Therefore, the methodology discussed in this paper aims to reduce the effort associated with building
model structural variants during the experimental phase. Decisive for our approach is the use of the

1657979-8-3315-3420-2/24/$31.00 ©2024

Winkels, Özkul, Sutherland, Löhn, Wenzel, and Rehof

Combinatory Logic Synthesizer (CLS) framework (Bessai et al. 2014), which creates a product line based
on a repository (i.e., a set of typed combinators). The product line is the set of all possible solutions
synthesized by CLS under the specification of composition rules (i.e., the target specification; see section
3). Starting from a valid initial simulation model, CLS is used to synthesize structural variants of the model.
For this purpose, model elements are first wrapped as components and represented in CLS by typed
combinators, from which structural variants (i.e., component-based representations of MFS simulation
models) can be synthesized. The synthesized structural variants meet certain requirements that are
previously specified and taken into account by CLS during synthesis. For example, the synthesis with CLS
is carried out by applying the above-mentioned set of operations (e.g., by adding or removing components).
Synthesized structural variants are then returned to the simulation tool and are available to the simulation
user (see section 4) for further experimentation. As the synthesis takes place automatically and in the
background from the user's point of view, the time required to build structural model variants is significantly
reduced. The remainder of this paper focuses on detailing the outlined approach using a case study.

The paper is structured as follows: First, we present the state of the art in reducing the efforts associated
with the design and execution of simulation experiments and place our contribution within it. Then, we
delve into the theoretical foundations of combinatorial logic synthesis with intersection types and the CLS
framework to establish a sufficient understanding for the methodology outlined in section 4. Section 5
describes the use case to which the methodology is applied – a laboratory scale MFS (further details in
Özkul et al. 2023). Subsequently, we present a proof-of-concept implementation, demonstrating how the
CLS approach can effectively be utilized for the automatic generation of model structural variants during
the experimental phase. The paper concludes in section 6 with an outlook on future research that will build
on this work, aiming to further develop the prototype and explore its practical application.

2 RELATED WORK

There is a significant amount of scientific literature that deals with reducing the effort of conducting a
simulation study, with a particularly pronounced field of application in production and logistics (Reinhardt
et al. 2019). Those approaches often focus on the automatic generation of simulation models, which is
confirmed by numerous literature reviews (see Reinhardt et al. 2019; Wenzel et al. 2019; Schlecht et al.
2023). However, not only the implementation of a simulation model is a time-consuming task, but so are
the preparation and execution of experiments to empirically investigate the model behavior (Ruscheinski
et al. 2018). In particular, the high number of different simulation experiments – which are necessary to
ensure statistically valid results – is a significant burden for users. For this reason, some simulation tools
include experiment management systems with features for automated experimental design, parameter
variation and results analysis. In recent years, some researchers have also focused on the specification,
automatic generation, execution, and reuse of simulation experiments (Wilsdorf et al. 2023). The various
approaches can be distinguished according to the objective and extent of automation, the methodology used,
the types of experiments, and the simulation tools supported (Wilsdorf et al. 2023).

Simulation experiments must be specified in advance for automated execution (Wilsdorf et al. 2023).
Therefore, some research work focusses on this (see Ruscheinski et al. 2018; Teran-Somohano 2015;
Wilsdorf et al. 2019). For example, Ruscheinski et al. (2018) use templates containing information about
the various experiments and methods to generate the simulation experiments. Wilsdorf et al. (2019) also
use this information and guide the user through the specification process independently of the simulation
method (e.g., discrete or continuous simulation methods). In general, explicit specification is relevant for
the accessibility and reusability of simulation results (Wilsdorf et al. 2023). Accordingly, there are also
approaches that address the reuse of the specification of simulation experiments (see Peng et al. 2017; Feng
and Jiang 2020). For example, Peng et al. (2017) pursue the idea that the specification from individual
simulation models can be reused for extended or composite simulation models. To achieve this, the
experiment specification of individual models (i.e., the specified behavioral properties) is optionally
enhanced with information on experiment adaptation (e.g., renaming or reassigning model parameters) and

1658

Winkels, Özkul, Sutherland, Löhn, Wenzel, and Rehof

reused or automatically adapted for the composed model. Finally, the specified behavioral properties are
checked for validity by conducting experiments with the composed model.

In general, the applicability of some approaches is limited to one application domain (e.g., biology,
engineering or healthcare), one specific experiment type (e.g., sensitivity analysis or steady-state analysis)
or one simulation tool (Wilsdorf et al. 2022). Therefore, Wilsdorf et al. (2021) describe best practices for
automatically selecting, parametrizing, generating, and executing simulation experiments. For that, they
link the contextual information of a simulation model with an ontology defining the general properties of
different analysis methods (e.g., sensitivity analysis). This approach is being further developed by the
authors so that experiments can also be identified automatically (Wilsdorf et al. 2023). For this purpose,
information on previous modeling and experimental activities is collected, compared with defined patterns,
and then interpreted (Wilsdorf et al. 2023).

When planning changeable systems, a systematical variation of the structure of a simulation model can
also be useful. However, determining the appropriate system structure variants is a challenge (Wenzel et al.
2019). Compared to automatic model generation, in this case a valid executable model already exists. The
generation of variants through structural adaptations considering structural variance (Sutherland et al. 2024)
is only considered in a few research contributions (see Lattner et al. 2010; Wenzel et al. 2019; Kallat 2023).
The automatic generation of system variants not only saves time and money, but also enables the systematic
identification of structural variants (Lattner et al. 2010). This approach is followed by Lattner et al. (2010),
who automatically apply knowledge-based structural changes to a simulation model. The knowledge base
contains information about existing and potential components and how they are connected. This
information is then used to generate variants of an existing simulation model. These approaches are often
tailored to a specific use case and can only be transferred with significant efforts (Reinhardt et al. 2019). In
addition, Wenzel et al. (2019) discuss the necessity of automatic structure variant generation for simulation
models and test an approach in a simplified use case using combinatorial logic. Based on the work of
Wenzel et al. (2019), further synthesis experiments have also been carried out using the CLS framework
(see Kallat et al. 2020; Kallat et al. 2021; Mages et al. 2022). Kallat et al. (2020) successfully use the CLS
framework with constraint-solving techniques to synthesize sophisticated simulation models for factory
configurations. These models represent specific factory setups differing in their machine settings. By
employing constraint-solving techniques, the authors were able to filter the synthesized configurations,
taking into account numerical constraints such as total costs or processing times. Kallat et al. (2021) utilize
the CLS framework to generate simulation models for block-stacking warehouses, with the resulting models
differing structurally in their process logic. To make this approach accessible even without programming
knowledge, the authors developed a method to automatically extract components from existing simulation
models. Users can modify semantic types and synthesis goals in this method through a user-friendly web
application to generate new variants. In contrast to previous works where variants of process logic were
synthesized within a model, our proof-of-concept generates new models and compositions based on the
same building blocks (see section 5). Both approaches are inspired by the work described in
Heineman et al. (2015), where an existing software library was migrated into a product line. However, our
method presents a novel approach to the gradual migration of an existing application into a product line.

An overlap with our work lies with Mages et al. (2022), who also employ CLS for automatic
composition of simulation models in AnyLogic. Analogous to our approach in sections 3 and 4 of this
paper, semantically typed components are used in their work as well, which are then automatically
assembled into various variants matching a target specification by the synthesis framework. However,
unlike in our approach, a fixed layout of machines and the intermediate transport paths are used. Within
this layout, components are substituted in the variants. In contrast, we go a step further and demonstrate an
approach to also synthesize the arrangement of machines, thus accommodating different layouts.

3 SYNTHESIS WITH COMBINATORY LOGIC

CLS (Bessai et al. 2014) is a framework for composing software components or data structures based on
type signatures. It utilizes combinatory logic (Hindley 2008) to generate solutions for planning by

1659

Winkels, Özkul, Sutherland, Löhn, Wenzel, and Rehof

establishing its formal foundation and employing intersection types. Type expressions include constants
(native or semantic), variables, function types, and intersections. CLS addresses software synthesis by
solving the type-theoretic problem of inhabitation (Barendregt et al. 2013), connecting type theory and
programs (the inhabitation problem is: Given a type, does there exist a program having the type?). The
synthesis process combines existing software components in a combinatory way from a repository, ensuring
completeness. Implementation details can be provided for combinators, including variability points and
type taxonomies. Algorithms for deciding inhabitation problems are available, supporting component-based
synthesis (Rehof et al. 2014). Type expressions, denoted as σ and τ, are defined as follows:

 σ, τ:: = a | ω | α | σ → τ | σ ∩ τ (1)

That means that a type expression can either be a type constant (a / ω), a type variable (α), a type
function (σ → τ, where a certain input type is converted to a certain output type), or an intersection type (σ
∩ τ, where two or more types are intersected and mapped onto a type variable). Type constants, represented
by a, b, c, ..., can be programming language types (native types like string or integer for example) or textual
descriptions (semantic types). The special type constant ω serves as the top element of the subtyping
relation. Type variables, indicated by α, β, γ, ..., are substituted with type constants according to a
substitution map, which is part of the domain specification (not part of type expressions). This map is
employed to resolve type variables before computing an inhabitant. Additionally, type expressions may
contain function types (→) and intersections (∩) (Barendregt et al. 2013). In addition to the type signature,
implementation details can be provided for combinators, including programs, data, data fragments, or
functions. Variability points can be inserted and described with the type expression. The use of type
taxonomies and type variables further supports the comprehensive specification of complex combinators.
An algorithm for deciding the inhabitation problem for intersection types is detailed in Düdder et al. (2012).
The component-based synthesis with intersection types can be categorized based on the dimensions in
program synthesis (Gulwani 2010). Domain knowledge can be expressed through the semantic layer and
corresponding combinator implementation. The search space is defined by well-formed applicative
compositions of available combinators, and the inhabitation algorithm represents the search strategy. User
intent must be supplied as a target type expression.

4 PROCEDURE MODEL

Our primary objective is the development of a systematic procedure model enabling users of simulation
tools to automatically generate diverse structural variants of their models. To achieve this, we have
conceived a comprehensive procedure model, exemplified in Figure 1 using AnyLogic. This simulation
tool is chosen for the initial prototype development and test due to its dedicated material handling library
for modeling production and logistics systems and its support for multiple modeling concepts (e.g., agent-
based modeling). In the procedure model, the user specifies a model part or the entire model that they want
new structural variants of. These parts will then be regenerated. Subsequently, the coordinates of the
selected region and the relevant (partial) model boundaries are conveyed to our synthesis framework.

This synthesis framework (CLS) draws upon a repository of modular building blocks, such as machines
or buffers. Its task is to explore and identify solutions that effectively cover the material flow from the
system's input to its output. As elucidated in Bessai (2019), CLS generates all possible solutions that can
be constructed from existing building blocks and fulfill the specified input and output conditions. The set
of diverse solutions is then transmitted to a connector, responsible for generating an XML file for each
solution. These XML files encapsulate the individual components, complete with appropriate coordinates,
allowing them to be seamlessly processed by AnyLogic.

Consequently, the user is presented with an array of new simulation models, each representing a variant
of their original model. These variants can be executed, facilitating a comprehensive assessment and
evaluation of their performance.

1660

Winkels, Özkul, Sutherland, Löhn, Wenzel, and Rehof

In this paper, our emphasis is specifically directed towards elucidating our approach to generate
structural variants. We elaborate on the process of assembling solutions and provide insights into the
implementation details. To facilitate a better understanding, we introduce a benchmark system and
subsequently guide the reader through a step-by-step explanation of how structural variants are
systematically generated from this system.

5 USE CASE

Our benchmark system is a section of a conveyor network with machines on a laboratory scale, which is
shown schematically in Figure 2 below. Starting from a source (Kin), object carriers loaded with objects are
loaded onto a conveyor belt into the system. The four object types {a, b, c, d} are conveyed via the main
conveyor to side conveyors in order to be processed at the machines M1, M2, and M3 in different sequences
and to different extents. The outfeed from or infeed to the main conveyor take place at the conveyor
switches w2, w4 and w6. If the capacity utilization on a side conveyor is too high to receive further object
carriers, no further object carriers will be discharged via the conveyor switches. Instead, the object carriers
are buffered on the main conveyor and conveyed cyclically. In this paper, however, this is ignored for
reasons of simplification and we assume that every material can always travel the intended route through
the system. After processing on one of the machines M1, M2 or M3, the material is conveyed back towards

Figure 1: Procedure model for the generation of variants of a simulation model.

w1

M3
w6

w4
M2

M1
w2

Kin w8 Kout

w3

w5

w7 Conveyor switch

Machine
Source Sink

Allowed material
flow direction

M
ai

n
C

on
ve

yo
r

Figure 2: Benchmark system (l.) and corresponding simulation model (r.).

1661

Winkels, Özkul, Sutherland, Löhn, Wenzel, and Rehof

the main conveyor. If an object has passed through all the required processing steps, the object carrier will
be ejected immediately after the last processing step via one of the conveyor switches w3, w5 or w7 in the
direction of w8 and conveyed to the sink (Kout).

To successfully synthesize simulation models of production systems using the approach described
above, CLS requires a target specification that reflects the structures of these models. For this purpose, we
have chosen a graph representation. In order to provide the synthesis framework with simple structures and
components, different graphs have to be mapped onto simple and generic structures. Based on our analysis,
we distinguish three node types:

• Sources and sinks: Represent the system boundaries and introduce objects into the system or

remove the desired output objects.
• Machines: Process and transform objects.
• Structural nodes: Represent branching or synchronization points of transport links of objects within

the system.

Edges in the graph represent (transport) connections between two elements (nodes) of the MFS. These

edges can be labeled to restrict which objects can be transported on them. Based on these considerations,
we create a graph model. The model contains the elements mentioned above and is subject to some general
restrictions:

1. Each graph must have exactly one input (Kin) and output node (Kout) specifying the system

boundaries.
2. Edges must always be labeled to specify which objects may be transported on them.
3. Any object appearing as part of an edge label in the graph must either be introduced into the system

by Kin or transformed by a machine.
4. Any object appearing as an edge label in the graph must either be removed from the system by Kout

or transformed by a machine.
5. The graph must be connected.

Figure 3 illustrated our benchmark system mapped in this kind of graph model. In this model, the round

nodes represent sources and sinks. The diamonds are the structural nodes, while the squares are machines.

The edges represent the material flow between the elements, whereby the edge labels restrict which
objects can be transported on the respective edge.

Figure 3: Benchmark system as a modeled graph.

1662

Winkels, Özkul, Sutherland, Löhn, Wenzel, and Rehof

Our synthesis software produces tree structures representing combinatory solutions. However, the
graph depicted does not conform to a tree structure as it contains parallel branches that subsequently merge,
as well as cycles. Recognizing the need to handle such complexities, we have introduced additional
specialized nodes. These nodes serve the purpose of abstracting cycles and parallelization within the graph,
facilitating the transformation of the original non-tree structure into a form compatible with our synthesis
software. This allows for a more effective and accurate synthesis process.

In the context of this specific use case, we have introduced a specialized node called a “parallelization
node”. This node is visually represented by a parallelogram and serves the purpose of consolidating parallel
paths within the graph into a single entity. The primary objective is to simplify the overall structure of the
original graph to enable CLS to synthesize these structures. Each parallelization node encompasses a
comprehensive list of all paths originating from the starting point and converging at the end of the respective
parallel branch. These paths can be categorized as either forward paths, illustrating the progression of
material flow, or backward paths, signifying the return of material flow to the initial branching point. This
inclusive approach enables the representation of cyclic structures within the graph. Furthermore, it is worth
noting that a path within a parallelization node can itself involve additional parallelization nodes. This
hierarchical arrangement allows for a flexible and expressive representation of complex relationships and
parallel processes within the synthesized graph. In our representation, these parallelization nodes therefore
replace structures such as cycles without changing the semantics of the graph.

An illustrative depiction of the graph from Figure 3, taking into account the presence of the
parallelization node, is featured in Figure 4. In this representation, the three distinct cycles associated with
each machine are meticulously captured through dedicated parallelization nodes, with the overarching
parallelization node encapsulating the broader main cycle. This structural adjustment ensures that, on a
fundamental node-based level, the graph is now devoid of cyclic dependencies, rendering it amenable to
the synthesis process.

The upcoming Figure 5 delves into a comprehensive exploration of the implementation details, offering
a thorough understanding of the applied methodologies and their implications.

As seen in Figure 1, the input to the CLS-Framework consists of a repository of combinators together
with a target type (system boundaries specification). The repository consists of general structural
combinators and case-specific combinators like machines. In our benchmark system, the structural node
combinators allow the construction of graphs as described above and consists of combinators corresponding
to the sequential or parallel combination of sub-graphs with the option of backwards paths. The case-
specific combinators then correspond to the machines (M1, M2, M3). The target type is a description of the
sources and sinks. The number of different machines and corresponding combinators is finite, however, the
structural combinators only follow some kind of constraints to ensure they respect reasonable conditions
w. r. t. the inputs and outputs of the subgraphs. To solve this, first, a set L of all relevant edge labels (i.e.,
inputs and outputs) is constructed, and then substituted into the variables of the structural combinators (see
above). The repository uses two type constructors: Consume(x) and Produce(x), describing the set x of
inputs/outputs to the subgraph constructed by the typed combinator. The structural and machine
combinators will be described in detail below. Figure 5 depicts the formal specification of these
combinators. The first part defines the pattern in which CLS can select subgraphs for the respective structure
(enclosed in ❬ ❭), followed by the path conditions (literals) that must also be satisfied after the next arrow.

Figure 4: Graph with parallel nodes.

1663

Winkels, Özkul, Sutherland, Löhn, Wenzel, and Rehof

For example, for every machine M, with inputs I and outputs O, a combinator with the type
Consume(I) ∩ Produce(O) is added to the repository. The implementation of a machine combinatory simply
places the corresponding machine.

Two subgraphs can be concatenated (combinator seq) if, and only if, all of the outputs of the first one
correspond to all of the inputs of the second one and the resulting graph then consumes the inputs of the
first subgraph and produces the outputs of the second subgraph. The implementation of a sequential
combinator places the implementation of its subgraphs next to each other and connects them with a
conveyor that can transport the intermediate product(s). Two subgraphs can always be placed in parallel
(combinator par) and the resulting graph consumes the combined inputs of the two, and produces the
combined output. The implementation of a parallel combinator places the implementation of its subgraphs
next to each other and connects them with a turntable. If one or both subgraphs already are parallel
compositions, the implementation of the other subgraph can be added to that composition, or they can be
combined, respectively.

A backwards path (combinator back) can be added to any subgraph, where the input and output have
some intersection. Feeding back the output into the input using a backwards path, the resulting graph only
requires the inputs that it cannot produce itself. The implementation of this combinator works the same way
as the implementation for the parallel composition. The second subgraph consists of a backwards transport
conveyor and the turntables must be able to handle multiple inputs and outputs. If the subgraph to which
the backward path is added is already a parallel composition, a backward transport can simply be added to
that composition. Forward paths (combinator forw) can also be used in the same way as backward paths.
Here, however, the edge labels are not subject to such strict restrictions. Instead, forward paths can be used
to route individual materials past nodes on a parallel path.

As eluded in section 1 and section 3, the described repository and synthesis have been implemented
using the Python implementation of the CLS framework. Our implementation is available at https://ls14-
scm.cs.tu-dortmund.de/kl4sim_publications/wsc24.git. For information about the CLSP Python library see
https://github.com/tudo-seal/clsp-python. The repository consists of exactly the structural combinators as
they are described above and the machine combinators from Figure 6.

Figure 5: Notation for combinators.

1664

https://ls14-scm.cs.tu-dortmund.de/kl4sim_publications/wsc24.git
https://ls14-scm.cs.tu-dortmund.de/kl4sim_publications/wsc24.git
https://github.com/tudo-seal/clsp-python

Winkels, Özkul, Sutherland, Löhn, Wenzel, and Rehof

Our implementation successfully synthesizes two representations of the graph in Figure 3, namely the
ones shown in Figure 4 and in Figure 7. It also generates an enumerable infinite set of other solutions, a
selection of those can be seen in Figure 8. These solutions can be seen as structural variants of the original
model. By generating these variants, we can automatically cover a wide range of possible modeler's choices.
Through experimental execution of the individual variants, the most advantageous one can be determined,
thereby identifying potential for structural improvements.

A key challenge with the current implementation is the large amount of time required for synthesis,
specifically constructing a grammar that enumerates the solutions. For the example above, the current
implementation requires at least one hour in our experimental setup to construct the grammar. This is
primarily caused by the large theoretical complexity of combinatory logic synthesis, as explained in detail
in Bessai (2019). Still, some improvements to the CLSP implementation or a better or more exact
specification of our model should enable large improvements for the runtime. Improving the synthesis time
of CLS is part of the ongoing research progress on CLS.

Another challenge consists of the aforementioned improvement of the specification of the model using
semantic intersection types. Amongst many other uses, this could enable prohibiting or enforcing the usage
of some machines, or even allowing the user to specify the number of times a machine should be present in
the synthesis result (either via an exact number, or a more sophisticated predicate). This would also allow
for a more exact and sophisticated notion of redundancy w. r. t. structural variants (e.g., to decide if the two
variants from Figure 8 should be considered structurally different to each other, and respectively, if both
should be generated).

Figure 8: Synthesized structural variants.

Figure 7: Generated solution.

Figure 6: Structural combinators.

1665

Winkels, Özkul, Sutherland, Löhn, Wenzel, and Rehof

Additionally, there exist some theoretical graphs that conform to the general graph model explained
above, that cannot be easily represented in a cycle-free tree-structure using just parallelization nodes. We
have investigated multiple approaches to resolve this, e.g., duplicating some nodes in the representation.
However, these must be researched further to increase the number of MFSs that are representable using our
approach.

6 RESULTS AND FURTHER WORK

Our paper is first contextualized in the state of the art in reducing efforts associated with the design and
execution of simulation experiments. The paper uses a case study to illustrate how structural variants can
be automatically generated based on an initial valid simulation model. Using the CLS-Framework,
structural variants are automatically synthesized (taking into account a target description). The starting
point and intermediate result of the synthesis are graph models of the simulation model and its structural
variants. Using a connector, the synthesis result is translated into AnyLogic XML and is thus directly
available to the user in the simulation tool.

Although the current solution is already able to automatically generate structural variants based on the
relevant conversion-capable operators (see above), there are further research challenges, which are
explained below. Adding and removing material flow system elements creates distribution or merging
points, which require corresponding control strategies. Examples of distribution strategies are the targeted
distribution of objects according to their object type or the percentage distribution of objects. Examples of
merging strategies are first in first out (FIFO) or prioritizing inputs. In the case of merging according to
FIFO, the control strategy can be applied automatically for any number of inputs that are added or removed
by the synthesis with CLS. However, in the case of more complex user-specific strategies, variant-related
strategies cannot be automatically synthesized unless additional synthesis rules are specified.

Furthermore, we recognize that our current approach is primarily focused on the application in
AnyLogic 8 (the result of the procedure model outlined in section 4 is a direct modification of the AnyLogic
XML file) and that other simulation tools will have to be connected to the developed methodology in order
to reach a wide range of users. This connection is technically feasible, as the formalism of the CLS graph
model works on the basis of fundamental material flow structures that can basically be modeled in all
relevant simulation tools for the investigation of MFSs.

Further research needs are identified regarding the complexity and expressivity of the synthesis and the
evaluation of structural variants. By complexity and expressiveness, we refer to the further development of
our approach to allow more precise specification of the desired variants, e.g., through constraints. In
addition, we aim to generate more complex structures and synthesize more sophisticated components,
including distribution strategies. Although our methodology reduces the effort required to build structural
simulation model variants, these structural variants only really serve their purpose when they are used in
simulation experiments. For this purpose, the evaluation of structural variants is performance-related (e.g.,
throughput or utilization rate) based on the experiments. However, it should be expanded to include further
criteria with regard to structure-related changeability. For this purpose, Sutherland et al. (2024) offer
concrete criteria, some of which, such as determining the proportion of modular or redundant elements, can
already be applied statically (i.e., without running the simulation model). These criteria are to be further
developed into a superordinate evaluation methodology in order to enable a differentiated evaluation of
structural variants of changeable MFSs.

FUNDING ACKNOWLEDGEMENT

This article was written as part of the project “KL4SiM – automated generation of structural variants for
simulation models in the field of production and logistics using combinatorial logic” (funded by the German
Research Foundation (DFG) – 511349842).

1666

Winkels, Özkul, Sutherland, Löhn, Wenzel, and Rehof

REFERENCES
Barendregt, H., W. Dekkers, and R. Statman. 2013. “Lambda calculus with types”. Cambridge University Press
Bessai, J. 2019. “A type-theoretic framework for software component synthesis”. TU Dortmund
Bessai, J., A. Dudenhefner, B. Düdder, M. Martens, and J. Rehof. 2016. “Combinatory Process Synthesis”. In: Proceedings of 7th

International Symposium on Leveraging Applications of Formal Methods, Verification and Validation: Foundational
Techniques, ISoLA, Imperial, Corfu, Greece, Part I, 266-281, https://doi.org/10.1007/978-3-319-47166-219

Bessai, J., A. Dudenhefner, B. Düdder, M. Martens, and J. Rehof. 2014. “Combinatory Logic Synthesizer”. In Leveraging
Applications of Formal Methods, Verification and Validation. Technologies for Mastering Change, edited by T. Margaria and
B. Steffen, 26-40, Berlin, Heidelberg: Springer.

Bicalho-Hoch, A. L., F. Özkul, N. Wittine, and S. Wenzel. 2022. “A Tool-Based Approach to Assess Simulation Worthiness and
Specify Sponsor Needs for SMEs”. In 2022 Winter Simulation Conference (WSC), 1818-1829,
https://doi.org/10.1109/WSC57314.2022.10015373.

Cisek, R., C. Habicht, and P. Neise. 2002. “Gestaltung wandlungsfähiger Produktionssysteme“. Zeitschrift für wirtschaftlichen
Produktbetrieb 97(9): 441-445

Curry, H. 1934. “Functionality in combinatory logic” In Proceedings of the National Academy of Sciences, 20(11):584-590.,
Howard, W. 1980. “The formulae-as-types notion of construction”. To HB Curry: essays on combinatory logic, lambda calculus

and formalism, 44:479-490.
Düdder, B., M. Martens, J. Rehof, and P. Urzyczyn. 2012. “Bounded Combinatory Logic” In Computer Science Logic (CSL'12) -

26th International Workshop/21st Annual Conference of the EACSL. Leibniz International Proceedings in Informatics
(LIPIcs), Vol- 16, 243-258, Schloss Dagstuhl - Leibniz-Zentrum für Informatik https://doi.org/10.4230/LIPIcs.CSL.2012.243

Feng, B. and G. Jiang. 2020. “Reusing Simulation Outputs of Repeated Experiments Via Likelihood Ratio Regression”. In: 2020
Winter Simulation Conference (WSC), 325-336, https://doi.org/10.1109/WSC48552.2020.9383879

Gulwani, S. 2010. “Dimensions in program synthesis”. In Proceedings of the 12th international ACM SIGPLAN symposium on
Principles and practice of declarative programming. 13-24.

Heineman, G., A. Hoxha, B., Düdder and J. Rehof. 2015 “Towards migrating object-oriented frameworks to enable synthesis of
product line members”. In Proceedings of the 19th International Conference on Software Product Line, 56-60.

Hindley, J. R. and J. Seldin. 2008. “Lambda-calculus and combinators: an introduction” Cambridge University Press.
Jain, S., and D. Lechevalier. 2016. “Standards based generation of a virtual factory model”. In 2016 Winter Simulation Conference

(WSC), 2762-2773. IEEE.
Kallat, F. 2023. “Komponentenbasierte Synthese von Simulationsmodellen”. Dortmund: Universitätsbibliothek Dortmund.
Kallat, F., C, Mieth, J. Rehof, and A. Meyer. 2020. “Using component-based software synthesis and constraint solving to generate

sets of manufacturing simulation models”. Procedia CIRP 93:556-561.
Kallat, F., J. Pfrommer, J. Bessai, J. Rehof, and A. Meyer. 2021. “Automatic building of a repository for component-based synthesis

of warehouse simulation models”. Procedia CIRP 104:1440-1445.
Kassen, S., H. Tammen, M. Zarte, and A. Pechmann. 2021. “Concept and case study for a generic simulation as a digital shadow

to be used for production optimization”. Processes 9 (8):1362-1380.
Lattner, A. D., T. Bogon, Y. Lorion, and I. J. Timm. 2010. “A knowledge-based approach to automated simulation model

adaptation”. In Proceedings of the 2010 Spring Simulation Multiconference, edited by R. McGraw, E. Imsand, and M. J.
Chinni, 1-8. San Diego: Society for Computer Simulation International.

Law, A. M. 2019. “How to Build Valid and Credible Simulation Models”. In 2019 Winter Simulation Conference (WSC), 1402-
1414, https://doi.org/10.1109/WSC40007.2019.9004789.

Mages, A., C. Mieth, J. Hetzler, F. Kallat, J. Rehof, C. Riest, and T. Schäfer. 2022. “Automatic component-based synthesis of user-
configured manufacturing simulation models”. In 2022 Winter Simulation Conference (WSC), 1841-1852,
https://doi.org/10.1109/WSC57314.2022.10015425.

Neyrinck, A., A. Lechler, and A. Verl. 2015. “Automatic Variant Configuration and Generation of Simulation Models for
Comparison of Plant and Machinery Variants”. Procedia CIRP 29:62-67.

Özkul, F., R. Sutherland, S. Wenzel, and S. Spieckermann. 2023. “Einsatz von Process-Mining zur Verifikation und Validierung
von Simulationsmodellen in Produktion und Logistik”. In 20. ASIM Fachtagung Simulation in Produktion und Logistik, edited
by S. Bergmann, N. Feldkamp, R. Souren and S. Straßburger, 463-472, Ilmenau: TU Ilmenau Universitätsbibliothek.

Peng, D., T. Warnke, F. Haack, and A. M. Uhrmacher. 2017. “Reusing simulation experiment specifications in developing models
by successive composition – a case study of the Wnt/ β -catenin signaling pathway”. SIMULATION 93(8):659-677.

Rabe, M., S. Spieckermann, and S. Wenzel. 2008. “A new Procedure Model for Verification and Validation in Production and
Logistics Simulation”. In 2008 Winter Simulation Conference (WSC), 1717-1726,
https://doi.org/10.1109/WSC.2008.4736258.

Reinhardt, H., M. Weber, and M. Putz. 2019. “A Survey on Automatic Model Generation for Material Flow Simulation in Discrete
Manufacturing”. Procedia CIRP 81:121-126.

Rehof, J. and M. Y. Vardi. 2014. “Design and synthesis from components (Dagstuhl seminar 14232)”. Dagstuhl Reports.

1667

https://doi.org/10.1109/WSC57314.2022.10015373

Winkels, Özkul, Sutherland, Löhn, Wenzel, and Rehof

Ruscheinski, A., K. Budde, T. Warnke, P. Wilsdorf, B. C. Hiller, M. Dombrowsky, and A. M. Uhrmacher. 2018. “Generating
Simulation Experiments Based on Model Documentations and Templates”. In 2018 Winter Simulation Conference (WSC),
715-726, https://doi.org/ 10.1109/WSC.2018.8632515

Schlecht, M., R. de Guio, and J. Köbler. 2023. “Automated generation of simulation model in context of industry 4.0”. International
Journal of Modelling and Simulation 1-13.

Sutherland, R., F. Özkul, L. Grusie, S. Wenzel, J. Winkels, J. Löhn, and J. Rehof. 2024. “Strukturvarianz in wandlungsfähigen
Produktions- und Logistiksystemen”. Zeitschrift für wirtschaftlichen Fabrikbetrieb 119:141-145.

Teran-Somohano, A., A. E. Smith, J. Ledet, L. Yilmaz, and H. Oguztuzun. 2015. “A model-driven engineering approach to
simulation experiment design and execution”. In 2015 Winter Simulation Conference (WSC), 2632-2643,
https://doi.org/10.1109/WSC.2015.7408371

Wenzel, S. J. Stolipin, J. Rehof, and J. Winkels. 2019. “Trends in Automatic Composition of Structures for Simulation Models in
Production and Logistics”. In 2019 Winter Simulation Conference (WSC), 2190-2200,
https://doi.org/10.1109/WSC40007.2019.9004959

Wiendahl, H. P. and C. L. Heger. 2004. “Justifying Changeability. A Methodical Approach to Achieving Cost Effectiveness”.
Journal for Manufacturing Science and Production 6(1-2):33-40.

Wilsdorf, P., M. Dombrowsky, A. M. Uhrmacher, J. Zimmermann, and U. van Rienen. 2019. “Simulation Experiment Schemas –
Beyond Tools and Simulation Approaches”. In 2019 Winter Simulation Conference (WSC), 2783-2794,
https://doi.org/10.1109/WSC40007.2019.9004710

Wilsdorf, P., N. Fischer, F. Haack, and A. M. Uhrmacher. 2021. “Exploiting Provenance and Ontologies In Supporting Best
Practices For Simulation Experiments: A Case Study On Sensitivity Analysis”. In 2021 Winter Simulation Conference (WSC),
1-12, https://doi.org/10.1109/WSC52266.2021.9715362

Wilsdorf, P., J. Heller, K. Budde, J. Zimmermann, T. Warnke, C. Haubelt et al. 2022. “A Model-Driven Approach for Conducting
Simulation Experiments”. Applied Sciences 12(16):7977.

Wilsdorf, P., A. Wolpers, J. Hilton, F. Haack, and A. M. Uhrmacher. 2023. “Automatic Reuse, Adaption, and Execution of
Simulation Experiments via Provenance Patterns”. ACM Transactions Modelling and Computer Simulation 33(1-2):1-27.

AUTHOR BIOGRAPHIES

JAN WINKELS is a post-doctoral researcher at the Department of Computer Science at TU Dortmund University. His research
focusses on component-based software synthesis. His email address is jan.winkels@tu-dortmund.de.

FELIX ÖZKUL is a research associate and PhD candidate at the Department Organization of Production and Factory Planning
(pfp), University of Kassel. His research primarily focusses on the use of discrete-event simulation and process mining in
production and logistics systems. His email address is felix.oezkul@uni-kassel.de.

ROBIN SUTHERLAND is a research associate and PhD candidate at the Department Organization of Production and Factory
Planning (pfp), University of Kassel. His work focusses on the design of changeable production networks and the structural
variance of simulation models. His email address is robin.sutherland@uni-kassel.de.

JANNIK LÖHN studies computer science at TU Dortmund University and works as a student assistant at the Chair of Software
Engineering at TU Dortmund University. His E-Mail Address is jannik.loehn@tu-dortmund.de.

SIGRID WENZEL is Professor and head of the Department Organization of Production and Factory Planning (pfp), University
of Kassel. In addition to this, she is a board director of the Arbeitsgemeinschaft Simulation (ASIM), spokesperson for the
ASIM working group Simulation in Production and Logistics, member of the advisory board of the Association of German
Engineers Society of Production and Logistics (VDI-GPL), and head of the Committee Modeling and Simulation of the VDI-
GPL. Her email address is s.wenzel@uni-kassel.de.

JAKOB REHOF is professor at the Department of Computer Science at TU Dortmund University. He heads the Chair of Software
Engineering and is Director of the Lamarr Institute for Machine Learning and Artificial Intelligence in Dortmund, Germany.
His email address is jakob.rehof@tu-dortmund.de.

1668

mailto:jan.winkels@tu-dortmund.de
mailto:jannik.loehn@tu-dortmund.de
mailto:jakob.rehof@tu-dortmund.de

	ABSTRACT
	1 INTRODUCTION
	2 RELATED WORK
	3 SYNTHESIS WITH COMBINATORY LOGIC
	4 Procedure Model
	5 USE CASE
	6 RESULTS AND FURTHER WORK
	Funding Acknowledgement
	REFERENCES
	AUTHOR BIOGRAPHIES

