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ABSTRACT 

Despite relevant research endeavors, modeling efforts related to the building of discrete-event simulation 
models for planning changeable material flow systems still limit their practical application. This is because 
simulation experts have to model many possible structural variants and compare them based on key 
performance indicators such as throughput, workload or investment costs, while also ensuring sufficient 
system changeability. This article presents a methodology for reducing efforts for structural variation during 
the experimental phase of a simulation study. Starting from a valid initial simulation model, structural 
variants of this simulation model are automatically generated by applying component-based software 
synthesis which uses combinatorial logic; thereby, a range of simulation models is provided for the user. 
This paper presents the outlined methodology using a case study and places it in the research context of 
reducing efforts associated with the design and execution of simulation experiments. 

1 INTRODUCTION 

Nowadays, manufacturing companies operate in a dynamic market environment that is increasingly 
characterized by disruptions, which requires continuous change within these organizations to survive in 
global competition; thus, changeability is becoming a decisive competitive factor for production and 
logistics (Wiendahl and Heger 2004). Production and logistics systems should no longer only be planned 
in a solution-neutral way (Cisek et al. 2002) but must also allow in vivo possibilities for low-cost structural 
changes over a system operating period; this deliberate change to the system structure is referred to below 
as structural variance (Sutherland et al. 2024). Structural variance can be concretized as a set of operations 
through which changes to system structures are made. These include adding or removing elements, 
changing the connection structure (element sequence), merging several elements and substituting these 
elements (Sutherland et al. 2024). In this paper, we only consider the structure and material flow view in 
relation to production and logistics systems, which is why the term material flow system (MFS) is used 
below as an umbrella term for the systems to be planned. 

Discrete-event simulation (DES) has proven its suitability for the planning of MFSs in a wide range of 
industries and for a variety of planning reasons (e.g., see Bicalho-Hoch et al. 2022). It can be used to 
simulate and experimentally investigate the stochastic dynamic behavior of MFSs. However, conducting 
simulation studies (see Law 2019; Rabe et al. 2009) is still primarily time-consuming knowledge work. The 
scientific literature mentions significant efforts especially in connection with the building of simulation 
models, the collection of input data and information, verification and validation as well as the design and 
execution of experiments (see section 2). In order for MFSs to be planned in a changeable manner, 
simulation users and system experts have to model and evaluate a large number of structural variants. In 
practice, however, those involved in planning projects often only have time to simulatively examine a few 
candidate variants of systems; systematic and comprehensive modeling of all variants is usually 
uneconomical due to the effort involved. 

Therefore, the methodology discussed in this paper aims to reduce the effort associated with building 
model structural variants during the experimental phase. Decisive for our approach is the use of the 
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Combinatory Logic Synthesizer (CLS) framework (Bessai et al. 2014), which creates a product line based 
on a repository (i.e., a set of typed combinators). The product line is the set of all possible solutions 
synthesized by CLS under the specification of composition rules (i.e., the target specification; see section 
3). Starting from a valid initial simulation model, CLS is used to synthesize structural variants of the model. 
For this purpose, model elements are first wrapped as components and represented in CLS by typed 
combinators, from which structural variants (i.e., component-based representations of MFS simulation 
models) can be synthesized. The synthesized structural variants meet certain requirements that are 
previously specified and taken into account by CLS during synthesis. For example, the synthesis with CLS 
is carried out by applying the above-mentioned set of operations (e.g., by adding or removing components). 
Synthesized structural variants are then returned to the simulation tool and are available to the simulation 
user (see section 4) for further experimentation. As the synthesis takes place automatically and in the 
background from the user's point of view, the time required to build structural model variants is significantly 
reduced. The remainder of this paper focuses on detailing the outlined approach using a case study. 

The paper is structured as follows: First, we present the state of the art in reducing the efforts associated 
with the design and execution of simulation experiments and place our contribution within it. Then, we 
delve into the theoretical foundations of combinatorial logic synthesis with intersection types and the CLS 
framework to establish a sufficient understanding for the methodology outlined in section 4. Section 5 
describes the use case to which the methodology is applied – a laboratory scale MFS (further details in 
Özkul et al. 2023). Subsequently, we present a proof-of-concept implementation, demonstrating how the 
CLS approach can effectively be utilized for the automatic generation of model structural variants during 
the experimental phase. The paper concludes in section 6 with an outlook on future research that will build 
on this work, aiming to further develop the prototype and explore its practical application.  

2 RELATED WORK 

There is a significant amount of scientific literature that deals with reducing the effort of conducting a 
simulation study, with a particularly pronounced field of application in production and logistics (Reinhardt 
et al. 2019). Those approaches often focus on the automatic generation of simulation models, which is 
confirmed by numerous literature reviews (see Reinhardt et al. 2019; Wenzel et al. 2019; Schlecht et al. 
2023). However, not only the implementation of a simulation model is a time-consuming task, but so are 
the preparation and execution of experiments to empirically investigate the model behavior (Ruscheinski 
et al. 2018). In particular, the high number of different simulation experiments – which are necessary to 
ensure statistically valid results – is a significant burden for users. For this reason, some simulation tools 
include experiment management systems with features for automated experimental design, parameter 
variation and results analysis. In recent years, some researchers have also focused on the specification, 
automatic generation, execution, and reuse of simulation experiments (Wilsdorf et al. 2023). The various 
approaches can be distinguished according to the objective and extent of automation, the methodology used, 
the types of experiments, and the simulation tools supported (Wilsdorf et al. 2023). 

Simulation experiments must be specified in advance for automated execution (Wilsdorf et al. 2023). 
Therefore, some research work focusses on this (see Ruscheinski et al. 2018; Teran-Somohano 2015; 
Wilsdorf et al. 2019). For example, Ruscheinski et al. (2018) use templates containing information about 
the various experiments and methods to generate the simulation experiments. Wilsdorf et al. (2019) also 
use this information and guide the user through the specification process independently of the simulation 
method (e.g., discrete or continuous simulation methods). In general, explicit specification is relevant for 
the accessibility and reusability of simulation results (Wilsdorf et al. 2023). Accordingly, there are also 
approaches that address the reuse of the specification of simulation experiments (see Peng et al. 2017; Feng 
and Jiang 2020). For example, Peng et al. (2017) pursue the idea that the specification from individual 
simulation models can be reused for extended or composite simulation models. To achieve this, the 
experiment specification of individual models (i.e., the specified behavioral properties) is optionally 
enhanced with information on experiment adaptation (e.g., renaming or reassigning model parameters) and 
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reused or automatically adapted for the composed model. Finally, the specified behavioral properties are 
checked for validity by conducting experiments with the composed model.  

In general, the applicability of some approaches is limited to one application domain (e.g., biology, 
engineering or healthcare), one specific experiment type (e.g., sensitivity analysis or steady-state analysis) 
or one simulation tool (Wilsdorf et al. 2022). Therefore, Wilsdorf et al. (2021) describe best practices for 
automatically selecting, parametrizing, generating, and executing simulation experiments. For that, they 
link the contextual information of a simulation model with an ontology defining the general properties of 
different analysis methods (e.g., sensitivity analysis). This approach is being further developed by the 
authors so that experiments can also be identified automatically (Wilsdorf et al. 2023). For this purpose, 
information on previous modeling and experimental activities is collected, compared with defined patterns, 
and then interpreted (Wilsdorf et al. 2023). 

When planning changeable systems, a systematical variation of the structure of a simulation model can 
also be useful. However, determining the appropriate system structure variants is a challenge (Wenzel et al. 
2019). Compared to automatic model generation, in this case a valid executable model already exists. The 
generation of variants through structural adaptations considering structural variance (Sutherland et al. 2024) 
is only considered in a few research contributions (see Lattner et al. 2010; Wenzel et al. 2019; Kallat 2023). 
The automatic generation of system variants not only saves time and money, but also enables the systematic 
identification of structural variants (Lattner et al. 2010). This approach is followed by Lattner et al. (2010), 
who automatically apply knowledge-based structural changes to a simulation model. The knowledge base 
contains information about existing and potential components and how they are connected. This 
information is then used to generate variants of an existing simulation model. These approaches are often 
tailored to a specific use case and can only be transferred with significant efforts (Reinhardt et al. 2019). In 
addition, Wenzel et al. (2019) discuss the necessity of automatic structure variant generation for simulation 
models and test an approach in a simplified use case using combinatorial logic. Based on the work of 
Wenzel et al. (2019), further synthesis experiments have also been carried out using the CLS framework 
(see Kallat et al. 2020; Kallat et al. 2021; Mages et al. 2022). Kallat et al. (2020) successfully use the CLS 
framework with constraint-solving techniques to synthesize sophisticated simulation models for factory 
configurations. These models represent specific factory setups differing in their machine settings. By 
employing constraint-solving techniques, the authors were able to filter the synthesized configurations, 
taking into account numerical constraints such as total costs or processing times. Kallat et al. (2021) utilize 
the CLS framework to generate simulation models for block-stacking warehouses, with the resulting models 
differing structurally in their process logic. To make this approach accessible even without programming 
knowledge, the authors developed a method to automatically extract components from existing simulation 
models. Users can modify semantic types and synthesis goals in this method through a user-friendly web 
application to generate new variants. In contrast to previous works where variants of process logic were 
synthesized within a model, our proof-of-concept generates new models and compositions based on the 
same building blocks (see section 5). Both approaches are inspired by the work described in 
Heineman et al. (2015), where an existing software library was migrated into a product line. However, our 
method presents a novel approach to the gradual migration of an existing application into a product line. 

An overlap with our work lies with Mages et al. (2022), who also employ CLS for automatic 
composition of simulation models in AnyLogic. Analogous to our approach in sections 3 and 4 of this 
paper, semantically typed components are used in their work as well, which are then automatically 
assembled into various variants matching a target specification by the synthesis framework. However, 
unlike in our approach, a fixed layout of machines and the intermediate transport paths are used. Within 
this layout, components are substituted in the variants. In contrast, we go a step further and demonstrate an 
approach to also synthesize the arrangement of machines, thus accommodating different layouts. 

3 SYNTHESIS WITH COMBINATORY LOGIC 

CLS (Bessai et al. 2014) is a framework for composing software components or data structures based on 
type signatures. It utilizes combinatory logic (Hindley 2008) to generate solutions for planning by 
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establishing its formal foundation and employing intersection types. Type expressions include constants 
(native or semantic), variables, function types, and intersections. CLS addresses software synthesis by 
solving the type-theoretic problem of inhabitation (Barendregt et al. 2013), connecting type theory and 
programs (the inhabitation problem is: Given a type, does there exist a program having the type?). The 
synthesis process combines existing software components in a combinatory way from a repository, ensuring 
completeness. Implementation details can be provided for combinators, including variability points and 
type taxonomies. Algorithms for deciding inhabitation problems are available, supporting component-based 
synthesis (Rehof et al. 2014). Type expressions, denoted as σ and τ, are defined as follows:  
 
 σ, τ:: = a | ω | α | σ →  τ | σ ∩ τ (1) 
 

That means that a type expression can either be a type constant (a / ω), a type variable (α), a type 
function (σ → τ, where a certain input type is converted to a certain output type), or an intersection type (σ 
∩ τ, where two or more types are intersected and mapped onto a type variable). Type constants, represented 
by a, b, c, ..., can be programming language types (native types like string or integer for example) or textual 
descriptions (semantic types). The special type constant ω serves as the top element of the subtyping 
relation. Type variables, indicated by α, β, γ, ..., are substituted with type constants according to a 
substitution map, which is part of the domain specification (not part of type expressions). This map is 
employed to resolve type variables before computing an inhabitant. Additionally, type expressions may 
contain function types (→) and intersections (∩) (Barendregt et al. 2013). In addition to the type signature, 
implementation details can be provided for combinators, including programs, data, data fragments, or 
functions. Variability points can be inserted and described with the type expression. The use of type 
taxonomies and type variables further supports the comprehensive specification of complex combinators. 
An algorithm for deciding the inhabitation problem for intersection types is detailed in Düdder et al. (2012). 
The component-based synthesis with intersection types can be categorized based on the dimensions in 
program synthesis (Gulwani 2010). Domain knowledge can be expressed through the semantic layer and 
corresponding combinator implementation. The search space is defined by well-formed applicative 
compositions of available combinators, and the inhabitation algorithm represents the search strategy. User 
intent must be supplied as a target type expression. 

4 PROCEDURE MODEL 

Our primary objective is the development of a systematic procedure model enabling users of simulation 
tools to automatically generate diverse structural variants of their models. To achieve this, we have 
conceived a comprehensive procedure model, exemplified in Figure 1 using AnyLogic. This simulation 
tool is chosen for the initial prototype development and test due to its dedicated material handling library 
for modeling production and logistics systems and its support for multiple modeling concepts (e.g., agent-
based modeling). In the procedure model, the user specifies a model part or the entire model that they want 
new structural variants of. These parts will then be regenerated. Subsequently, the coordinates of the 
selected region and the relevant (partial) model boundaries are conveyed to our synthesis framework. 

This synthesis framework (CLS) draws upon a repository of modular building blocks, such as machines 
or buffers. Its task is to explore and identify solutions that effectively cover the material flow from the 
system's input to its output. As elucidated in Bessai (2019), CLS generates all possible solutions that can 
be constructed from existing building blocks and fulfill the specified input and output conditions. The set 
of diverse solutions is then transmitted to a connector, responsible for generating an XML file for each 
solution. These XML files encapsulate the individual components, complete with appropriate coordinates, 
allowing them to be seamlessly processed by AnyLogic. 

Consequently, the user is presented with an array of new simulation models, each representing a variant 
of their original model. These variants can be executed, facilitating a comprehensive assessment and 
evaluation of their performance. 
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In this paper, our emphasis is specifically directed towards elucidating our approach to generate 
structural variants. We elaborate on the process of assembling solutions and provide insights into the 
implementation details. To facilitate a better understanding, we introduce a benchmark system and 
subsequently guide the reader through a step-by-step explanation of how structural variants are 
systematically generated from this system. 

5 USE CASE 

Our benchmark system is a section of a conveyor network with machines on a laboratory scale, which is 
shown schematically in Figure 2 below. Starting from a source (Kin), object carriers loaded with objects are 
loaded onto a conveyor belt into the system. The four object types {a, b, c, d} are conveyed via the main 
conveyor to side conveyors in order to be processed at the machines M1, M2, and M3 in different sequences 
and to different extents. The outfeed from or infeed to the main conveyor take place at the conveyor 
switches w2, w4 and w6. If the capacity utilization on a side conveyor is too high to receive further object 
carriers, no further object carriers will be discharged via the conveyor switches. Instead, the object carriers 
are buffered on the main conveyor and conveyed cyclically. In this paper, however, this is ignored for 
reasons of simplification and we assume that every material can always travel the intended route through 
the system. After processing on one of the machines M1, M2 or M3, the material is conveyed back towards 

Figure 1: Procedure model for the generation of variants of a simulation model. 
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Figure 2: Benchmark system (l.) and corresponding simulation model (r.). 
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the main conveyor. If an object has passed through all the required processing steps, the object carrier will 
be ejected immediately after the last processing step via one of the conveyor switches w3, w5 or w7 in the 
direction of w8 and conveyed to the sink (Kout). 

To successfully synthesize simulation models of production systems using the approach described 
above, CLS requires a target specification that reflects the structures of these models. For this purpose, we 
have chosen a graph representation. In order to provide the synthesis framework with simple structures and 
components, different graphs have to be mapped onto simple and generic structures. Based on our analysis, 
we distinguish three node types: 

 
• Sources and sinks: Represent the system boundaries and introduce objects into the system or 

remove the desired output objects. 
• Machines: Process and transform objects. 
• Structural nodes: Represent branching or synchronization points of transport links of objects within 

the system. 
 
Edges in the graph represent (transport) connections between two elements (nodes) of the MFS. These 

edges can be labeled to restrict which objects can be transported on them. Based on these considerations, 
we create a graph model. The model contains the elements mentioned above and is subject to some general 
restrictions: 

 
1. Each graph must have exactly one input (Kin) and output node (Kout) specifying the system 

boundaries. 
2. Edges must always be labeled to specify which objects may be transported on them. 
3. Any object appearing as part of an edge label in the graph must either be introduced into the system 

by Kin or transformed by a machine. 
4. Any object appearing as an edge label in the graph must either be removed from the system by Kout 

or transformed by a machine. 
5. The graph must be connected. 
 
Figure 3 illustrated our benchmark system mapped in this kind of graph model. In this model, the round 

nodes represent sources and sinks. The diamonds are the structural nodes, while the squares are machines.  

The edges represent the material flow between the elements, whereby the edge labels restrict which 
objects can be transported on the respective edge. 

Figure 3: Benchmark system as a modeled graph. 
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Our synthesis software produces tree structures representing combinatory solutions. However, the 
graph depicted does not conform to a tree structure as it contains parallel branches that subsequently merge, 
as well as cycles. Recognizing the need to handle such complexities, we have introduced additional 
specialized nodes. These nodes serve the purpose of abstracting cycles and parallelization within the graph, 
facilitating the transformation of the original non-tree structure into a form compatible with our synthesis 
software. This allows for a more effective and accurate synthesis process. 

In the context of this specific use case, we have introduced a specialized node called a “parallelization 
node”. This node is visually represented by a parallelogram and serves the purpose of consolidating parallel 
paths within the graph into a single entity. The primary objective is to simplify the overall structure of the 
original graph to enable CLS to synthesize these structures. Each parallelization node encompasses a 
comprehensive list of all paths originating from the starting point and converging at the end of the respective 
parallel branch. These paths can be categorized as either forward paths, illustrating the progression of 
material flow, or backward paths, signifying the return of material flow to the initial branching point. This 
inclusive approach enables the representation of cyclic structures within the graph. Furthermore, it is worth 
noting that a path within a parallelization node can itself involve additional parallelization nodes. This 
hierarchical arrangement allows for a flexible and expressive representation of complex relationships and 
parallel processes within the synthesized graph. In our representation, these parallelization nodes therefore 
replace structures such as cycles without changing the semantics of the graph. 

An illustrative depiction of the graph from Figure 3, taking into account the presence of the 
parallelization node, is featured in Figure 4. In this representation, the three distinct cycles associated with 
each machine are meticulously captured through dedicated parallelization nodes, with the overarching 
parallelization node encapsulating the broader main cycle. This structural adjustment ensures that, on a 
fundamental node-based level, the graph is now devoid of cyclic dependencies, rendering it amenable to 
the synthesis process.  

The upcoming Figure 5 delves into a comprehensive exploration of the implementation details, offering 
a thorough understanding of the applied methodologies and their implications. 

As seen in Figure 1, the input to the CLS-Framework consists of a repository of combinators together 
with a target type (system boundaries specification). The repository consists of general structural 
combinators and case-specific combinators like machines. In our benchmark system, the structural node 
combinators allow the construction of graphs as described above and consists of combinators corresponding 
to the sequential or parallel combination of sub-graphs with the option of backwards paths. The case-
specific combinators then correspond to the machines (M1, M2, M3). The target type is a description of the 
sources and sinks. The number of different machines and corresponding combinators is finite, however, the 
structural combinators only follow some kind of constraints to ensure they respect reasonable conditions 
w. r. t. the inputs and outputs of the subgraphs. To solve this, first, a set L of all relevant edge labels (i.e., 
inputs and outputs) is constructed, and then substituted into the variables of the structural combinators (see 
above). The repository uses two type constructors: Consume(x) and Produce(x), describing the set x of 
inputs/outputs to the subgraph constructed by the typed combinator. The structural and machine 
combinators will be described in detail below. Figure 5 depicts the formal specification of these 
combinators. The first part defines the pattern in which CLS can select subgraphs for the respective structure 
(enclosed in ❬ ❭), followed by the path conditions (literals) that must also be satisfied after the next arrow. 

Figure 4: Graph with parallel nodes. 
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For example, for every machine M, with inputs I and outputs O, a combinator with the type 
Consume(I) ∩ Produce(O) is added to the repository. The implementation of a machine combinatory simply 
places the corresponding machine. 

Two subgraphs can be concatenated (combinator seq) if, and only if, all of the outputs of the first one 
correspond to all of the inputs of the second one and the resulting graph then consumes the inputs of the 
first subgraph and produces the outputs of the second subgraph. The implementation of a sequential 
combinator places the implementation of its subgraphs next to each other and connects them with a 
conveyor that can transport the intermediate product(s). Two subgraphs can always be placed in parallel 
(combinator par) and the resulting graph consumes the combined inputs of the two, and produces the 
combined output. The implementation of a parallel combinator places the implementation of its subgraphs 
next to each other and connects them with a turntable. If one or both subgraphs already are parallel 
compositions, the implementation of the other subgraph can be added to that composition, or they can be 
combined, respectively. 

A backwards path (combinator back) can be added to any subgraph, where the input and output have 
some intersection. Feeding back the output into the input using a backwards path, the resulting graph only 
requires the inputs that it cannot produce itself. The implementation of this combinator works the same way 
as the implementation for the parallel composition. The second subgraph consists of a backwards transport 
conveyor and the turntables must be able to handle multiple inputs and outputs. If the subgraph to which 
the backward path is added is already a parallel composition, a backward transport can simply be added to 
that composition. Forward paths (combinator forw) can also be used in the same way as backward paths. 
Here, however, the edge labels are not subject to such strict restrictions. Instead, forward paths can be used 
to route individual materials past nodes on a parallel path. 

As eluded in section 1 and section 3, the described repository and synthesis have been implemented 
using the Python implementation of the CLS framework. Our implementation is available at https://ls14-
scm.cs.tu-dortmund.de/kl4sim_publications/wsc24.git. For information about the CLSP Python library see 
https://github.com/tudo-seal/clsp-python. The repository consists of exactly the structural combinators as 
they are described above and the machine combinators from Figure 6. 

Figure 5: Notation for combinators. 
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Our implementation successfully synthesizes two representations of the graph in Figure 3, namely the 
ones shown in Figure 4 and in Figure 7. It also generates an enumerable infinite set of other solutions, a 
selection of those can be seen in Figure 8. These solutions can be seen as structural variants of the original 
model. By generating these variants, we can automatically cover a wide range of possible modeler's choices. 
Through experimental execution of the individual variants, the most advantageous one can be determined, 
thereby identifying potential for structural improvements. 

A key challenge with the current implementation is the large amount of time required for synthesis, 
specifically constructing a grammar that enumerates the solutions. For the example above, the current 
implementation requires at least one hour in our experimental setup to construct the grammar. This is 
primarily caused by the large theoretical complexity of combinatory logic synthesis, as explained in detail 
in Bessai (2019). Still, some improvements to the CLSP implementation or a better or more exact 
specification of our model should enable large improvements for the runtime. Improving the synthesis time 
of CLS is part of the ongoing research progress on CLS. 

Another challenge consists of the aforementioned improvement of the specification of the model using 
semantic intersection types. Amongst many other uses, this could enable prohibiting or enforcing the usage 
of some machines, or even allowing the user to specify the number of times a machine should be present in 
the synthesis result (either via an exact number, or a more sophisticated predicate). This would also allow 
for a more exact and sophisticated notion of redundancy w. r. t. structural variants (e.g., to decide if the two 
variants from Figure 8 should be considered structurally different to each other, and respectively, if both 
should be generated). 

Figure 8: Synthesized structural variants. 

Figure 7: Generated solution. 

Figure 6: Structural combinators. 
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Additionally, there exist some theoretical graphs that conform to the general graph model explained 
above, that cannot be easily represented in a cycle-free tree-structure using just parallelization nodes. We 
have investigated multiple approaches to resolve this, e.g., duplicating some nodes in the representation. 
However, these must be researched further to increase the number of MFSs that are representable using our 
approach. 

6 RESULTS AND FURTHER WORK 

Our paper is first contextualized in the state of the art in reducing efforts associated with the design and 
execution of simulation experiments. The paper uses a case study to illustrate how structural variants can 
be automatically generated based on an initial valid simulation model. Using the CLS-Framework, 
structural variants are automatically synthesized (taking into account a target description). The starting 
point and intermediate result of the synthesis are graph models of the simulation model and its structural 
variants. Using a connector, the synthesis result is translated into AnyLogic XML and is thus directly 
available to the user in the simulation tool.  

Although the current solution is already able to automatically generate structural variants based on the 
relevant conversion-capable operators (see above), there are further research challenges, which are 
explained below. Adding and removing material flow system elements creates distribution or merging 
points, which require corresponding control strategies. Examples of distribution strategies are the targeted 
distribution of objects according to their object type or the percentage distribution of objects. Examples of 
merging strategies are first in first out (FIFO) or prioritizing inputs. In the case of merging according to 
FIFO, the control strategy can be applied automatically for any number of inputs that are added or removed 
by the synthesis with CLS. However, in the case of more complex user-specific strategies, variant-related 
strategies cannot be automatically synthesized unless additional synthesis rules are specified.  

Furthermore, we recognize that our current approach is primarily focused on the application in 
AnyLogic 8 (the result of the procedure model outlined in section 4 is a direct modification of the AnyLogic 
XML file) and that other simulation tools will have to be connected to the developed methodology in order 
to reach a wide range of users. This connection is technically feasible, as the formalism of the CLS graph 
model works on the basis of fundamental material flow structures that can basically be modeled in all 
relevant simulation tools for the investigation of MFSs. 

Further research needs are identified regarding the complexity and expressivity of the synthesis and the 
evaluation of structural variants. By complexity and expressiveness, we refer to the further development of 
our approach to allow more precise specification of the desired variants, e.g., through constraints. In 
addition, we aim to generate more complex structures and synthesize more sophisticated components, 
including distribution strategies. Although our methodology reduces the effort required to build structural 
simulation model variants, these structural variants only really serve their purpose when they are used in 
simulation experiments. For this purpose, the evaluation of structural variants is performance-related (e.g., 
throughput or utilization rate) based on the experiments. However, it should be expanded to include further 
criteria with regard to structure-related changeability. For this purpose, Sutherland et al. (2024) offer 
concrete criteria, some of which, such as determining the proportion of modular or redundant elements, can 
already be applied statically (i.e., without running the simulation model). These criteria are to be further 
developed into a superordinate evaluation methodology in order to enable a differentiated evaluation of 
structural variants of changeable MFSs. 
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