
Proceedings of the 2024 Winter Simulation Conference
H. Lam, E. Azar, D. Batur, S. Gao, W. Xie, S. R. Hunter, and M. D. Rossetti, eds.

SCHEDULING JOBS ON A SINGLE STRESS TEST MACHINE IN A RELIABILITY
LABORATORY

Jessica Hautz1, Andreas Klemmt2, and Lars Mönch3

1Kompetenzzentrum Automobil- und Industrieelektronik GmbH (KAI), Villach, AUSTRIA
2Infineon Technologies Dresden GmbH, Dresden, GERMANY

3Dept. of Mathematics and Computer Science, University of Hagen, Hagen, GERMANY

ABSTRACT

We consider a single-machine scheduling problem with unequal job sizes and ready times. Several jobs can
be processed at the same time on the machine if the sum of their sizes does not exceed the capacity of the
machine. Only jobs of the same family can be processed at the same time. The machine can be interrupted
to start a new job or to unload a completed job. A conditioning time is required to reach again the
temperature for the stress test. The machine is unavailable during conditioning. Jobs that cannot be
completed before conditioning have to continue with processing after the machine is available again. The
makespan is to be minimized. A mixed-integer linear program and a constraint programming formulation
are established, and a constructive heuristic and a biased random-key genetic algorithm are designed.
Computational experiments based on randomly generated problem instances demonstrate that the
algorithms perform well.

1 INTRODUCTION

Semiconductor manufacturing deals with producing integrated circuits, so-called chips. The production
process is divided into front-end- and back-end production. The front-end consists of the wafer fabrication
and sort stages whereas the backend is formed by the assembly and final test stages. The wafer fabrication
stage takes place in wafer fabs where the chips are produced layer by layer on wafers, thin discs made of
silicon, silicon carbide, or gallium arsenide. Afterwards, the wafers are diced, the defective chips are sorted
out, and the chips of appropriate quality are assembled and packaged in an assembly facility. Various tests
are performed on the final devices in test facilities (Mönch et al. 2013). Possible failure modes are
anticipated in the early stages of technology development. This includes identifying an appropriate set of
reliability test structures on the test chip. It must be ensured that the test chips are thoroughly tested when
development lots are ready for testing. Trade-offs must be identified among conflicting requirements
between component reliability and electrical performance throughout the design and development stages
of a manufacturing process (El-Kareh and Hutter 2020). Reliability tests consist of a sequence of alternating
measurement and stress investigations, executed under different temperatures and electrical stress
conditions. They are conducted in reliability laboratories. The qualification of a product usually takes a few
months to be completed.

In the present paper, we analyze and solve a scheduling problem for a stress test machine. The machine
can process several jobs at the same time, i.e., it is a p-batching machine. However, in contrast to the
common assumptions in the p-batching literature (Fowler and Mönch 2022), we assume job availability,
i.e., the jobs are available for performing additional processing steps after finishing at the stress test
machine, and it is not required that all jobs of the batch are available when the batch is started.

The paper is organized as follows. The scheduling problem at hand is described in the next section.
This includes establishing a mixed integer linear programming (MILP) formulation and a discussion of
relevant work. In Section 3, we propose a constraint programming (CP) formulation, a constructive heuristic

1797979-8-3315-3420-2/24/$31.00 ©2024

Hautz, Klemmt, and Mönch

and a metaheuristic. Computational experiments with the proposed algorithms are discussed in Section 4.
Finally, conclusions are future research directions are presented in Section 5.

2 PROBLEM SETTING

2.1 Problem Description

We consider a single batch processing machine (BPM). There are 𝑛 jobs labeled by 𝑗 = 1,… , 𝑛 to be
scheduled on this machine. Each job 𝑗 has a ready date 𝑟! ≥ 0, a processing time 𝑝!, a size 𝑠! measured in
number of load boards to carry the chips, and a weight 𝑤! which is used to express the importance of the
job. Each job 𝑗 belongs to a single incompatible family 𝑓!. Only jobs of the same family can be batched
together. Several jobs can be processed together in a batch on the machine until the sum of their job sizes
does not exceed the maximum batch size 𝐵. After a job in a batch is completed it must be removed from
the machine, i.e., we have job availability. To do so, the processing of all unfinished jobs of the current
batch is stopped. This leads to a reduction of the stress temperature. After this, a condition time 𝑐𝑜𝑛𝑑 is
required to reach again the appropriate temperature for the test. A job can be added to an already processed
batch if the job is ready for processing, belongs to the same family as the jobs of the current batch, and its
size fits into the batch. After the job is added to an already processed batch again a conditioning time
c𝑜𝑛𝑑	is required. Note that the condition time is enlarged if other jobs are finished during the time span of
a conditioning activity or other jobs are added to the batch. The remaining jobs of the batch can continue
with processing after the conditioning activity is finished, i.e., we have resumable jobs. We are interested
in minimizing the makespan 	𝐶max of the schedule. It is the point in time, when the last job is completed on
the machine. Using the three-field notation, the scheduling problem can be stated as follows:

 1	4𝑝 − 𝑏𝑎𝑡𝑐ℎ, 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒, 𝑟! , 𝑠! , 𝐵, 𝑐𝑜𝑛𝑑, 𝑟 − 𝑎	4	𝐶%&'	 (1)

where 1 indicates the single machine, 𝑝 − 𝑏𝑎𝑡𝑐ℎ, 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 refers to batch processing with
incompatible families, and 𝑐𝑜𝑛𝑑, 𝑟 − 𝑎 describe the conditioning time and the resumable jobs, respectively.

Problem (1) is NP-hard since it is easy to see that for the special case 𝑟! ≡ 0, 𝑝! ≡ 1, 1 ≤ 𝑗 ≤ 𝑛, and
𝑐𝑜𝑛𝑑=0 solving an instance of (1) is equivalent to solving an instance of the bin packing problem. Here,
the items of the bin packing problem correspond to the jobs in (1), the size of the items to the size of the
jobs, and the bins to the batches. Moreover, the batch size corresponds to the bin capacity. Clearly, the
number of required bins is given by the 	𝐶max of the schedule. Since the bin packing problem is NP-hard
(Martello and Toth 1990), (1) is also NP-hard.

2.2 MILP Formulation

We establish a MILP formulation for problem (1). The following sets and indices are used in the model:

𝑁: set of all jobs, 𝑁 =	 {1, … , 𝑛}
𝐹: set of all incompatible job families, 𝐹 = 	 {1, … , 𝑓%&'}
𝑁𝑓: set of all jobs belonging to family 𝑓 ∈ 𝐹
𝐻: scheduling horizon, 𝐻 =	 {1, … , 𝑇}
𝑖, 𝑗: job index
𝑓, 𝑘: family index
𝑡: time slot index.

1798

Hautz, Klemmt, and Mönch

The following parameters are used in the model:

 𝑝𝑗: processing time of job 𝑗
 𝑟!:	 ready time of job 𝑗
 𝑠!: size of job 𝑗

𝐵: maximum batch size
 𝑐𝑜𝑛𝑑: conditioning time
 𝑇: sufficiently large number to describe the scheduling horizon 𝐻.

We define the following decision variables:

𝑆𝑗: start time of job 𝑗
 𝑃𝑗: machine time of job 𝑗

𝑋!* = L1, if	job	𝑗	is	active	in	time	slot	𝑡
0, otherwise

𝑎𝑣𝑎𝑖𝑙* = L1, if	the	machine	is	not	in	a	conditioning	state	at	time	slot	𝑡

0, otherwise

𝑝𝑟𝑚𝑡𝑛* = L1, if	the	machine	is	preemted	in	time	slot	𝑡

0, otherwise

 𝜒!* = 𝐴𝑁𝐷(𝑋!* , 𝑋!,*,-)
	𝑌!* = 𝐴𝑁𝐷(𝑋!* , 𝑎𝑣𝑎𝑖𝑙*).

The model can be formulated as follows:
min𝐶./0

 (2)

subject to	

h𝑌!* = 𝑝! , 𝑗 ∈ 𝑁,
*∈2

 (3)

h𝜒!* = 𝑃! − 1, 𝑗 ∈ 𝑁,
34-

*5-

 (4)

h𝑋!* = 𝑃!
*∈2

,				𝑗 ∈ 𝑁,

 (5)

h𝑠! ⋅ 𝑋!* ≤ 𝐵
!∈6

, 𝑡 ∈ 𝐻,

 (6)

1799

Hautz, Klemmt, and Mönch

𝑆! = 𝑋!- +	h(𝑡 + 1) ⋅ k𝑋!,*,- − 𝜒!*l, 𝑗 ∈ 𝑁,
34-

*5-

 (7)

𝑆! ≥ 𝑟! , 𝑗 ∈ 𝑁,

 (8)

𝑋!* + 𝑋7* ≤ 1, 𝑡 ∈ 𝐻, 𝑗 ∈ 𝑁8 , 𝑖 ∈ 	𝑁9 , 𝑓, 𝑘 ∈ 	𝐹, 𝑓 ≠ 𝑘, (9)

𝑝𝑟𝑚𝑡𝑛- = 𝑂𝑅!∈6k𝑋!-l, (10)

𝑝𝑟𝑚𝑡𝑛* = 𝑂𝑅!∈6k𝑋!* − 2 ⋅ 𝜒!,*4- + 𝑋!,*4-l, 2 ≤ 𝑡 ≤ 𝑇,

 (11)

𝑎𝑣𝑎𝑖𝑙* = 𝐴𝑁𝐷:∈{./0{-,*4<=>?,-},…,*}(1 − 𝑝𝑟𝑚𝑡𝑛:), 𝑡 ∈ 𝐻,

 (12)

𝜒!* = 𝐴𝑁𝐷k𝑋!* , 𝑋!,*,-l,									𝑗 ∈ 𝑁, 1 ≤ 𝑡 ≤ 𝑇 − 1,

 (13)

𝑌!* = 𝐴𝑁𝐷k𝑋!* , 𝑎𝑣𝑎𝑖𝑙*l,									𝑗 ∈ 𝑁, 𝑡 ∈ 𝐻,

 (14)

𝐶./0 ≥ 𝑆! + 𝑃! , 𝑗 ∈ 𝑁,	

 (15)

𝑆! , 𝑃! , 𝐶./0 ∈ ℝ,, 𝑋!* , 𝜒!* , 𝑌!* ∈ {0,1}, 𝑝𝑟𝑚𝑡𝑛* , 𝑎𝑣𝑎𝑖𝑙* ∈ {0,1}	, 𝑗 ∈ 𝑁, 𝑡 ∈ 𝐻.

 (16)

The AND and OR constructs in the MILP model can be linearized using standard techniques (cf. FICO
Xpress Optimization 2024). The decision variable 𝜒!* is 1 if job 𝑗 is processed at time slot 𝑡, but not finished
at 𝑡. The 𝑌!* decision variables take a value of 1 if job 𝑗 is processed on the machine at 𝑡 and the machine
is not in a conditioning state. Minimizing the makespan is the objective which is expressed by (2).
Constraints (3) ensure that each job is active for exactly 𝑝! time slots where the machine is not in a
conditioning state, and constraint set (4) forces each job to be conducted without preemption. The machine
time of job 𝑗 is calculated by (5), and constraint set (6) ensures that the maximum batch size is not exceeded
for any time slot. The job start times are calculated by the equalities (7). If job 𝑗 starts processing in the first
time slot, 𝑋!- = 1 holds and the remaining summands are zero. Furthermore, 𝑗 starts its processing in time
slot 𝑡 + 1 if and only if 𝑋!,*,- = 1 and 𝑋!* = 0 , i.e. 𝑋!,*,- − 	𝜒!* = 1 . The release dates of jobs are
respected by the inequalities (8), and the incompatible families are assured with (9). Constraints (10) and
(11) define the preemption variables. With (10), 𝑝𝑟𝑚𝑡𝑛- = 1 must hold if and only if at least one job starts
its processing in the first time slot, i.e., there is at least one job 𝑗 with 𝑋!- = 1. Furthermore, (11) assures
that 𝑝𝑟𝑚𝑡𝑛* = 1 if and only if at least one job starts its processing at time slot 𝑡 > 1, i.e., there exists at
least one job 𝑗 with 𝑋!,*4- = 0 and 𝑋!* = 1, or if a job finishes its machine time at time slot 𝑡 > 1, i.e., there
exists at least one job 𝑗 with 𝑋!,*4- = 1 and 𝑋!* = 0. In both cases, 𝑋!* − 2 ⋅ 𝜒!,*4- + 𝑋!,*4- = 1 holds.
Constraints (12) ensure that 𝑎𝑣𝑎𝑖𝑙* = 0 whenever the machine is in a conditioning period at time slot 𝑡,
applying if the machine has been preempted within [max{0, 𝑡 − 𝑐𝑜𝑛𝑑 + 1}, 𝑡]. The binary variables 𝜒!*
and 𝑌!* are defined by (13) and (14), respectively. Finally, the makespan is defined by the inequalities (15),
and constraint set (16) defines the domain of the decision variables.

Since problem (1) is NP-hard, it can only be expected that small-sized problem instances are solved in
a reasonable amount of computing time using the MILP model (2)-(16). However, the model can be applied
to assess the performance of the proposed heuristics for small-sized problem instances and make sure that
they are correctly coded.

2.3 Discussion of Related Work

For a recent survey of p-batching problems, we refer to Fowler and Mönch (2022). However, problems
similar to (1) are not addressed in this survey. Schmidt (1984) studies a parallel-machine scheduling
problem where each job has a deadline and each machine has different availability intervals. The goal is to

1800

Hautz, Klemmt, and Mönch

compute a feasible preemptive schedule whenever at least one exists. A pseudo-polynomial-time algorithm
is provided. Lee (1996) discusses scheduling problems where the machine is unavailable during the period
from 𝑠! to 𝑡! for 0 ≤ 𝑠! ≤ 𝑡! .	Resumable and nonresumable jobs are considered for several regular
performance measures. However, the problem at hand is different since the unavailable periods are not
given, they are a result of scheduling decisions. Schmidt (2000) reviews scheduling approaches for
problems with limited machine availability. However, BPM problems are not considered. Ozturk (2022)
studies a scheduling problem for a single BPM. Consecutive p-batches form a serial batch (s-batch), and
all jobs of the same serial batch are considered as finished when the last job of the s-batch completes its
processing. There is a fixed preparation time that occurs between consecutive s-batches. The total
completion time and the total weighted tardiness are the performance measures. A column generation
approach is proposed. Although this problem is similar to problem (1) we cannot reuse solution techniques
since we allow resumable jobs and have a different objective function in problem (1). Overall, we conclude
that to the best of our knowledge, problem (1) is not addressed so far in the literature.

3 SOLUTION APPROACHES

3.1 CP Approach

CP has become popular in solving complex scheduling problems, often outperforming MILP methods. The
strength of CP lies in its global constraints and specialized algorithms that exploit the structure of common
patterns found in scheduling problems and prune infeasible solutions efficiently. The direct representation
of time and resources through interval variables is particularly advantageous as it avoids time granularity
dependencies to decision variables. We refer to Apt (2003); Rossi et al. (2006) for CP details and the
specific syntax used here. We use a parameter 𝑆 to bound the maximum number of setups that can occur in
a problem instance. To model problem (1) with CP, the following decision variables and cumulative
functions are used:

𝐽!: interval variable representing job 𝑗, no size is specified
 𝐶𝑆! , 𝐶𝐸!:	 interval variable for conditioning periods of job 𝑗 (start and end) – size is 𝑐𝑜𝑛𝑑

𝐶B: optional interval variable representing the conditioning periods 𝑠 – no size
defined 𝑂!: integer variable representing the overlaps in the conditioning period of job 𝑗

𝐶./0: integer variable representing the makespan
 𝑐𝑢𝑚𝑢𝑙	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝐶: = ∑ (𝑝𝑢𝑙𝑠𝑒k𝐶𝑆! , 1l + 𝑝𝑢𝑙𝑠𝑒(𝐶𝐸! , 1))>

!5-
 𝑐𝑢𝑚𝑢𝑙	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝑆: = ∑ 𝑝𝑢𝑙𝑠𝑒(𝐶B, 1)C

B5-
 𝑐𝑢𝑚𝑢𝑙	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝑅: = ∑ 𝑝𝑢𝑙𝑠𝑒k𝐽! , 𝑠!l>

!5-
𝑐𝑢𝑚𝑢𝑙	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝐹: state function indicating the active job family.

Note that the w.l.o.g. decision variables 𝐶%&' and 𝑂! can also be modeled as decision expressions. The

objective is given by 𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝐶./0, and the constraints are:

1801

Hautz, Klemmt, and Mönch

𝑠𝑡𝑎𝑟𝑡𝐴𝑡𝑆𝑡𝑎𝑟𝑡k𝐽! , 𝐶𝑆!l, 𝑠𝑡𝑎𝑟𝑡𝐴𝑡𝐸𝑛𝑑k𝐶𝐸! , 𝐽!l,								𝑗 ∈ 𝑁,

 (17)
𝑎𝑙𝑤𝑎𝑦𝑠𝐼𝑛k𝑆, 𝐶𝑆! , 1,1l,			𝑎𝑙𝑤𝑎𝑦𝑠𝐼𝑛k𝑆, 𝐶𝐸! , 1,1l, 𝑗 ∈ 𝑁,

	
 (18)

𝑎𝑙𝑤𝑎𝑦𝑠𝐼𝑛(𝐶, 𝐶B, 1, 𝐵), 𝑠 ∈ {1,… , 𝑆},

 (19)

𝑂! =h𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝐿𝑒𝑛𝑔𝑡ℎ(𝐽! , 𝐶B

C

B5-

), 𝑗 ∈ 𝑁,
 (20)

𝑠𝑖𝑧𝑒𝑂𝑓k𝐽!l = 𝑝! + 𝑂! , 𝑗 ∈ 𝑁,

 (21)
𝑎𝑙𝑤𝑎𝑦𝑠𝐸𝑞𝑢𝑎𝑙k𝐹, 𝐽! , 𝑓! , 0,0l, 𝑗 ∈ 𝑁, (22)

 𝑅 ≤ 𝐵,

 (23)
𝑒𝑛𝑑𝑂𝑓k𝐽!l ≤ 𝐶𝑚𝑎𝑥, 𝑗 ∈ 𝑁,

 (24)

𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝐶BD) => 	𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝐶B-), 𝑠1, 𝑠2 = 1, . . . , 𝑆, 𝑠1 + 1 = 𝑠2,

 (25)
𝑒𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝐶B-, 𝐶BD), 𝑠1, 𝑠2 = 1, . . . , 𝑆, 𝑠1 + 1 = 𝑠2.

 (26)

Constraint set (17) ensure that a conditioning period is applied whenever a job starts or finishes its

processing. With (18) and (19), a 1-n synchronization of this tasks to unique conditioning intervals 𝐶B is
performed. While (20) is measuring interval overlaps of Jobs 𝐽! and conditioning times 𝐶B , the actual
machine time of the jobs 𝐽! can be calculated by (21) defining interval 𝐽! size finally. The batching
constraints are given by (22). Constraints (23) ensure that the machine capacity is not exceeded, and (24)
bounds the makespan value. To further strengthen the CP, the symmetry-breaking constraints (25), (26) are
applied. The interesting aspect in modeling problem (1) in CP here is the fact that the actual machine time
of the jobs is dependent on the schedule, meaning that the interval size is dynamic. The synchronization of
interval variables via cumul function and the motivation for preemption modeling is shown in Figure1.

Figure 1: CP interval variable representation and synchronization via cumul function.

3.2 Constructive Heuristic

We introduce a constructive heuristic designed to compute schedules based on a given job permutation. It
constructs schedules by arranging jobs according to a given permutation 𝜋:𝑁 → 𝑁 , where 𝜋(𝑖) = 𝑗
indicates that job 𝑗 is in the 𝑖-th position of the permutation. The schedule is constructed within two
sequential algorithms. Algorithm 1 arranges jobs on the machine based on the permutation, starting each
job as early as possible while considering the machine capacity and job families. Subsequently, Algorithm
2 builds upon the schedule obtained by Algorithm 1 and incorporates the machine conditioning times
required whenever a job starts or ends. We use a capacity function 𝐶:𝐻 → {0,… , 𝐵} to describe the
remaining capacity of the machine at time 𝑡, and a family function 𝐹:𝐻 → {−1} ∪ {1,… , 𝑓%&'} that keeps
track of the active family at time 	𝑡 ∈ 𝐻. Initially, we set 𝐶(𝑡): = 𝐵 and 𝐹(𝑡): = −1, 𝑡 ∈ 𝐻.

C4

J1
time

J2

J3
J4

CS3
CE3

CS2
CE2

CS1
CE1

CS4

CE4

time

C

C1 C2 C3
S

CS3 CE3

CS2 CE2

CS1 CE1CS4 CE4

p1O1

1802

Hautz, Klemmt, and Mönch

Algorithm 1:

We iterate over the jobs of the input permutation 𝜋, and the current job of iteration 𝑗 is denoted by 𝜋(𝑗).
For the current job 𝜋(𝑗), the job start time 𝑆E(!): = 𝑟E(!) is set and a check is carried out whether the
machine has enough capacity for the job’s duration and whether the active family during the job’s duration
matches the family of the current job 𝑓E(!) or not. If the capacity and active family are sufficient for the
entire duration of the job, the job start time is set, the capacity and family functions are updated accordingly
and the next job in the permutation is considered. Otherwise, the job start time is incremented by one and
the availability check is performed again until a feasible job start time of the current job is found.

Algorithm 2:

1. Algorithm 1 is executed with input permutation 𝜋, returning an array of job start times 𝑆E. A second
permutation 𝜇 is then defined, sorting the jobs in non-decreasing order of the derived job start times
𝑆E. The set of job completion times of the previous iterations 𝐶H is defined and initially set to 𝐶H: =
∅. The capacity and family functions are set to their initial values.

2. We iterate over the jobs of the input permutation 𝜇, and the current job of iteration 𝑗 is denoted by
𝜇(𝑗). For each iteration 𝑗, the set 𝐽: = {𝜇(𝑖) ∈ 𝑁 ∣ 𝑖 < 𝑗} of already scheduled jobs is defined. For
the current job 𝜇(𝑗), the job start time 𝑆I(!): = max{𝑆I(!4-), 𝑟I(!)} is set and a check if the machine
has capacity for the duration [𝑆I(!), 𝑆I(!) + 1] and if the active family during this duration matches
the family of the current job 𝑓I(!) is made. It is sufficient to check the first time slot only because
the solution of Algorithm 1 already respects the capacity and family constraints and with the
consideration of the conditioning times, the feasible solution is just shifted to the right. If the
capacity and family constraints are met, the start time of the current job is set, the completion time
is computed by 𝐶I(!): = 𝑆I(!) + 𝑝I(!) + 𝑐𝑜𝑛𝑑 and the capacity and family functions are updated
accordingly. Then, the conditioning periods caused by job start times and job completion times are
considered within Steps 3.a-c. Otherwise, the job start time is incremented by one and the
availability check is performed again until a feasible job start time of the current job is found.

3. The current job can preempt the already scheduled jobs with its start and completion time. In
addition, the current job can be preempted by the completion times of already scheduled jobs. Since
the jobs are arranged in non-decreasing order of their start times, it is not possible that the current
job is preempted by the start times of already scheduled jobs. Since the start time of the current job
is already fixed, but the completion time can still vary, the conditioning periods have to be
considered in the following order:

a. The completion times of jobs that are preempted by the start time of the current job are adapted.
If 𝑆I(!) = 𝑆I(!4-) or 𝑆I(!) ∈ 𝐶H holds, then the preemption at this time slot was already considered
in a previous iteration. Otherwise, the completion times of already scheduled jobs 𝑖 ∈ 𝐽 with
𝑆I(!) < 𝐶7 have to be adapted. We denote the set of those jobs by 𝐽� and iterate over it. A parameter
𝑂𝐿𝐶 = 0 is set to count the overlaps of the conditioning period caused by the current job with
previous conditioning periods caused by jobs that are not preempted in the current iteration, i.e.
jobs from 𝐽 ∖ 𝐽�. Subsequently, all job completion times of jobs in 𝐽� are incremented by 𝑐𝑜𝑛𝑑 −
𝑂𝐿𝐶 and the capacity and family functions, as well as the set 𝐶H are updated accordingly.

b. The completion time of the current job is adapted, if it is preempted by the completion times of
already scheduled jobs. A set 𝐶H� := ∅ is used to store completion time preemptions that were
already considered. The completion time of already scheduled jobs 𝑖 ∈ 𝐽 preempts the current job
if 𝑆I(!) < 𝐶7 < 𝐶I(!) holds. We denote the set of those jobs by 𝐽� and iterate over it. If 𝐶7 ∈
𝐶H� 	holds, then the preemption at this time slot was already considered in a previous iteration.

1803

Hautz, Klemmt, and Mönch

Otherwise, similar to Step 3.a, the completion time of the current job is incremented while taking
overlaps into account, and the capacity and family functions, as well as the sets 𝐶H� and 𝐶H are
updated accordingly.

c. Finally, the completion times of jobs that are preempted by the completion time of the current job
are adapted. If 𝐶I(!) ∈ 𝐶H holds, then the preemption at this time slot was already considered in a
previous iteration. Otherwise, the completion times of already scheduled jobs 𝑖 ∈ 𝐽 with 𝐶I(!) <
𝐶7 have to be adapted. We denote the set of those jobs by 𝐽� and iterate over it. Similar to Step 3.a,
the job completion times of jobs in 𝐽� are incremented while taking overlaps into account, and the
capacity and family functions, as well as the set 𝐶H are updated accordingly.

We sort the jobs with respect to the longest processing time (LPT) dispatching rule to provide 𝜋 as

input for Algorithms 1 and 2. It is well-known that the LPT rule leads to high-quality schedules for the
𝑃𝑚||𝐶%&' problem (Pinedo 2008) where 𝑃𝑚 refers to parallel identical machines. Since we consider a
BPM which allows for processing several jobs at the same time, the problem at hand is similar to a parallel-
machine scheduling problem. We abbreviate this heuristic based on Algorithm 2 as A2-LPT.

An illustrative example of the preemptions that have to be considered in Algorithms 2, 3.a-3.c is
provided in Figure 2. The already scheduled jobs of the set 𝐽 are colored green and the current job is colored
red. In the example on the left, job 4 preempts job 1 with its start time, and job 4 is preempted by the
completion time of job 1. In the example on the right, job 4 preempts job 1 with both its start and completion
time. In both cases, the start time preemption of job 4 was already considered in previous iterations, since
job 2 and 3 finish at the same time slot where job 4 starts.

Figure 2: Example of preemptions.

3.3 BRKGA

A genetic algorithm (GA) maintains a set of solutions, and we refer to this set as population. GAs are
iterative algorithms. A single iteration corresponds to a generation. Reproduction and mutation procedures
are used to change the individuals of the current generation to form a new generation. It is likely that only
the fittest individuals are selected for the new generation. GAs are successfully applied to solve
computationally hard problems of operations management (Lee 2018). GAs based on the random-key
representation, so-called random-key GAs (RKGAs), are appropriate to support sequencing decisions.
Chromosomes are represented as vectors of randomly generated real numbers from (0,1). Only problem-
specific decoders must be designed to associate a chromosome with a solution of a scheduling problem at
hand. Sorting the random keys is required to compute a sequence, i.e., a permutation. Starting from a
randomly chosen population of random-key vectors, the fitness of a chromosome is determined by a
decoder that implements the objective function of the optimization problem. The population consists of a
small set of elite individuals and a set of non-elite individuals. Individuals that belong to the elite set have
low objective function values in the case of a minimization problem. The elite individuals are taken over
unchanged into the next generation. A certain fraction of randomly generated mutants is placed into the
population. The remaining individuals of the population of the next generation are determined by crossover.
Two individuals are randomly chosen from the population in a RKGA for crossover purposes. A

1

time

2

3
4

already scheduled jobs

new job to be added

machine
capacity

1

time

2

3
4

machine
capacity

1804

Hautz, Klemmt, and Mönch

parameterized uniform crossover is applied. A biased coin is tossed for each gene to determine which parent
will contribute to the allele. Biased RKGAs (BRKGAs) are RKGAs where the first parent chromosome is
from the elite set and the probability of choosing from this parent is . BRKGAs converge often faster
than RKGAs (Londe et al. 2024).

The random-key representation is appropriate to problem (1) since it is able to produce the job
permutations (𝜋[1], … , 𝜋[𝑛]) to represent problem (1). The following encoding and decoding is therefore
appropriate for problem (1). A chromosome is provided by the random-key vector 𝑟𝑘 ≔ [𝑟𝑘-, … , 𝑟𝑘>] of
real numbers where 𝑟𝑘! ∈ (0,1), 1 ≤ 𝑗 ≤ 𝑛, and gene 𝑟𝑘! represents job 𝑗. We then use the Algorithms 1
and 2 from Subsection 3.2 as a decoder. Job permutations are transferred into feasible schedules.

4 COMPUTATIONAL EXPERIMENTS

4.1 Design of Experiments

We assess the performance of the proposed algorithms by randomly generated problem instances motivated
by settings found for stress test machines in semiconductor reliability laboratories. We expect that the
performance of the proposed algorithms depends on the number of jobs, the ready date setting, the
maximum batch size, the condition time, and the number of incompatible families. For a first experiment,
we generate medium- and large-sized instances. We compare the CP and the BRKGA relative to the
performance of the A2-LPT which serves as a reference heuristic. The ratio (1 −
𝐶%&'(𝐴) 𝐶%&'(𝐴2 − 𝐿𝑃𝑇)⁄)100% is applied to evaluate the performance of an algorithm 𝐴 relative to the
A2-LPT where 𝐶%&'(𝐴) is the makespan of a schedule obtained by 𝐴. The design of experiments is
summarized in Table 1. Here, 𝐷[𝑎, 𝑏] refers to a discrete uniform distribution over the set of integers
{𝑎, … , 𝑏}.

Table 1: Design of experiments for medium- and large-sized instances.

Factor Level Count
number of jobs, 𝑛 24,48,96,192 4

job sizes 1
maximum batch size, 21 boards (3 jobs), 42 boards (6 jobs) 2
number of families, 1,3,6 3

number of jobs per family, n/ 1
processing time of the jobs ~𝐷𝑈[1, 100] 1

ready times 10%,20% of the jobs 2
ready times

~𝐷𝑈[1, ⌈50𝑛/𝐵⌉] 1

conditioning time small: 1,2,3 (each with equal probability)
large: 10,20,30 (each with equal probability)

2

Number of factor combinations 96
Number of independent problem instances 3

Total number of problem instances 288

In another experiment, we consider small-sized problem instances to check the correct implementation
of the heuristics. The generation scheme is similar to the one of Table 1. But we consider only 6, 9, and 12
jobs. We use 𝐵 = 21 and , while the number of jobs per family is equally distributed. The job
processing times follow 𝑝!~𝐷𝑈[1, 20] and the ready times 𝑟!~𝐷𝑈[1, ⌈40𝑛/𝐵⌉], while 10% of the jobs are
ready at time 0. The conditioning time of the machine is set to 1,2, and 3, each with equal probability. The

0.5>ρ

[]13,1~ DUs j
B
maxf

fn maxf
jp

0ºjr
0³jr

{ }3,1max Îf

1805

Hautz, Klemmt, and Mönch

remaining settings are the same as in Table 1. We have six factor combinations, and the number of
independent problem instances per factor combination is 3. Overall, we solve 18 small-sized instances. We
use a maximum computing time per instance for each of the considered algorithms except the A2-LPT.

4.2 Parameter Setting and Implementation Issue

The following parameter settings are used for the BRKGA. The population size is 400 in all experiments.
We use as the probability of choosing a parent from the elite set. The fraction of the population
to be replaced by mutants is , and the fraction that belongs to the elite set is 0.2. These settings
are found by recommendations from Toso and Resende (2011) and some preliminary experiments with a
small number of instances applying a trial and error strategy. The MILP and the heuristics are coded using
the C++ programming language. The MILP instances are solved using Gurobi 11.0.1. The CP Optimizer in
IBM ILOG CPLEX Optimization Studio 22.1.1 (IBM 2024) is used to solve the CP instances using default
settings, i.e. the parametrization of search types, propagation settings, and search phases defining
instantiation strategies are omitted. The brkgaAPI framework (Toso and Resende 2015) is used to code the
BRKGA. We apply the parallel decoding capabilities of the brkgaAPI using OpenMP. The experiments are
performed on a workstation with Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz.

4.3 Results

The obtained 𝐶./0 values for the small-sized instances are shown in Table 2. The time limit for the MILP
approach is 6 hours per instance, and the BRKGA and CP approach are performed for 120 seconds per
instance. We also report the relative MIP gap. Best known or even optimal 𝐶./0 values are marked bold.

Table 2: Computational results for small-sized instances.

Benchmark A2-LPT MILP (6h) BRKGA (120s) CP (120s)
N F Instance 𝐶!"# Gap (%)
6 1 1 49 47 0.00 48 47
6 1 2 50 42 0.00 42 42
6 1 3 31 29 0.00 31 29
6 3 1 64 58 0.00 59 58
6 3 2 68 63 0.00 63 63
6 3 3 70 67 0.00 69 67
9 1 1 53 48 0.00 48 48
9 1 2 55 53 0.00 53 53
9 1 3 47 41 0.00 47 41
9 3 1 93 87 0.00 87 87
9 3 2 76 72 0.00 72 72
9 3 3 77 72 0.00 72 72
12 1 1 73 60 0.00 61 61
12 1 2 77 68 25.00 63 64
12 1 3 56 51 0.00 53 51
12 3 1 80 69 0.00 70 70
12 3 2 101 88 9.09 91 89
12 3 3 77 63 0.00 63 63

Table 2 shows that the MILP struggles to find optimal solutions for problem instances with 𝑛 = 12.

This shortfall results from the time-indexed formulation of the problem presented in Subsection 2.2. The
results of the BRKGA showcase the limitation of the algorithm in finding an optimal solution.

0.7=ρe
0.1=pm

1806

Hautz, Klemmt, and Mönch

The tendency to schedule jobs as early as possible is efficient, but may lead to suboptimal decisions in
certain situations, as highlighted in Figure 3. This instance contains 𝑛 = 7 jobs with 𝑝! =
	{1,2,3,1,2,3,2},	𝑠! = {1,1,1,1,1,1,1}, 𝑟! =	 {0,1,2,5,6,7,8}, 𝐵 = 3, and 𝑐𝑜𝑛𝑑 = 2. The schedule on the left
is derived by considering the jobs in non-decreasing order of their ready times using Algorithm 2, the
schedule on the right displays an optimal MILP solution. The red area reflects the conditioning time. We
observe that it can be beneficial to start the jobs later and at the same time as other jobs are started or
completed resulting in less conditioning periods and a smaller 𝐶./0 . CP demonstrates its ability to
determine an optimal schedule for most problem instances within a maximum computing time of 120
seconds per instance. This efficiency of the CP compared to the MILP is enhanced by the utilization of
interval variables to model the processing times of jobs.

Figure 3: Worst-case example for the behavior of Algorithm 2.

We compare the A2-LPT, the BRKGA, and the CP for the instances from Table 1 in Table 3. Instead
of presenting all results individually, average results are grouped by different factor levels. All values are
relative to the 𝐶./0 values found by the A2-LPT. Best results in each row are marked in bold.

Table 3: Computational results for medium- and large-sized instances.

Compare n B F Cond Overall
 24 48 96 192 21 42 1 3 6 1,2,3 10,20.30

BRKGA
30s 0.908 0.898 0.948 1.019 0.935 0.950 0.932 0.935 0.959 0.947 0.936 0.942
60s 0.907 0.894 0.931 0.998 0.926 0.938 0.924 0.925 0.947 0.940 0.923 0.932
120s 0.905 0.890 0.925 0.980 0.920 0.930 0.917 0.918 0.941 0.935 0.913 0.925
300s 0.905 0.887 0.920 0.969 0.917 0.925 0.913 0.914 0.936 0.933 0.907 0.921
CP
30s 0.916 0.909 0.981 1.000 0.947 0.951 0.947 0.939 0.961 0.945 0.953 0.950
60s 0.913 0.902 0.965 0.998 0.942 0.942 0.942 0.933 0.953 0.940 0.945 0.943
120s 0.912 0.897 0.952 0.998 0.938 0.937 0.939 0.927 0.947 0.936 0.940 0.938
300s 0.911 0.893 0.938 0.994 0.933 0.932 0.934 0.921 0.941 0.932 0.932 0.933

We see from Table 3 that the BRKGA and the CP generally outperform the A2-LPT, particularly when

a minimum of 60 s of computing time is given. This trend is observable for the instances with 𝑛 = 192,
where the approaches struggle to find superior solutions within just 30 s per instance. The BRKGA obtaines
the best results due to its problem-tailored design, but the CP approach also consistently yields high-quality
solutions even without customization.

5 CONCLUSIONS AND FUTURE RESEARCH

In this paper, we formulated and analyzed a single-machine scheduling problem which can be found in
semiconductor reliability laboratories. A MILP and a CP approach were established. Moreover, a
constructive heuristic for a given job permutation and a metaheuristic approach were designed.
Computational experiments were carried out that demonstrate that the metaheuristic approach and the CP

1
time

2

3

machine
capacity

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

3

4 5

6

7

1
time

3

4

machine
capacity

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3

2 6

5

7

1807

Hautz, Klemmt, and Mönch

perform well, even for a small amount of computing time. There are several directions for future research.
First of all, it is desirable to design neighborhood search-based metaheuristics, such as variable
neighborhood search or iterated local search. It is expected that appropriate neighborhood structures can
avoid the limitations of Algorithm 2. Moreover, it is desirable to consider parallel machines. Finally, it is
interesting to consider complex job scheduling problems for semiconductor reliability laboratories where
the problem studied in the present paper is a subproblem.

ACKNOWLEDGMENTS

This work was funded by the Austrian Research Promotion Agency (FFG, Project No. FO999900268).

REFERENCES

Apt, K. 2003. Principles of Constraint Programming. Cambridge: Cambridge University Press.
El-Kareh, B. and L. N. Hutter. 2020. Silicon Analog Components: Device Design, Process Integration, Characterization, and

Reliability.2nd ed., Cham: Springer.
FICO Xpress Optimization. 2024. “MIP Formulations and Linearizations”. Quick Reference. https://msi-jp.com/xpress/-

learning/square/10-mipformref.pdf, accessed 29th April 2024.
Fowler, J. W. and L. Mönch. 2022. “A Survey of Scheduling with Parallel Batch (p-batch) Processing”. European Journal of

Operational Research 298(1): 1-24.
IBM. 2024. “IBM ILOG CPLEX Optimization Studio v20.1”. https://www.ibm.com/products/ilog-cplex-optimization-studio,

accessed 29th April 2024.
Lee, C.-Y. 1996. “Machine Scheduling with an Availability Constraint”. Journal of Global Optimization 9:395–416.
Lee, C. K. H. 2018. “A Review of Applications of Genetic Algorithms in Operations Management”. Engineering Applications of

Artificial Intelligence 76: 1-12.
Londe, M. A., L.S. Pessoa, C. E. Andrade, and M. G. C. Resende. 2024. “Biased Random-key Genetic Algorithms: a Review”.

European Journal of Operational Research. In press.
Martello S. and P. Toth. 1990. Knapsack Problems: Algorithms and Computer Implementations. Chichester: Wiley.
Mönch, L., J. W. Fowler, and S. J. Mason. 2013. Production Planning and Control for Semiconductor Wafer Fabrication Facilities:

Modeling, Analysis, and Systems. New York: Springer.
Ozturk, O. 2022. “When Serial Batch Scheduling Involves Parallel Batching Decisions: A Branch and Price Scheme”. Computers

& Operations Research 137: 105514.
Pinedo, M. L. 2008. Scheduling: Theory, Algorithms, and Systems. 3rd edition. New York: Springer.
Rossi, F., P. van Beek, and T. Walsh. 2006. Handbook of Constraint Programming. Amsterdam: Elsevier Science.
Schmidt, G. 1984. “Scheduling Independent Tasks with Deadlines on Semi-identical Processors”. Journal of the Operational

Research Society 39: 271-277.
Schmidt, G. 2000. “Scheduling with Limited Machine Availability”. European Journal of Operational Research 121: 1-15.
Toso, R. F. and M. G. C. Resende. 2011. “A C++ Application Programming Interface for Biased Random-key Genetic Algorithms”.

http://mauricio.resende.info/doc/brkgaAPI.pdf, accessed 29th April 2024.
Toso, R. F. and M. G. C. Resende. 2015. “A C++ Application Programming Interface for Biased Random-key Genetic Algorithms”.

Optimization Methods and Software 30(1): 81-93.

AUTHOR BIOGRAPHIES

JESSICA HAUTZ is a PhD student at the University of Hagen. She received her master’s degree in Mathematics in 2022 from
the University of Klagenfurt. She works as a PhD researcher at KAI GmbH in the data science team. Her research interests are
combinatorial optimization, mathematical programming, and scheduling. Her email adress is Jessica.Hautz@k-ai.at.

ANDREAS KLEMMT is a Lead Principal Engineer at Infineon Technologies. He received his master’s degree in Mathematics in
2005 and Ph.D. in Electrical Engineering in 2011 from Dresden University of Technology. He works as vertical integration solution
architect in the Global Factory Integration Department of Infineon. His research interests are scheduling, mathematical
programming, capacity planning, production control, and simulation. His email adress is Andreas.Klemmt@infineon.com.

LARS MÖNCH is full professor of Computer Science at the University of Hagen where he heads the Chair of Enterprise-wide
Software Systems. He holds M.S. and Ph.D. degrees in Mathematics from the University of Göttingen. His research and teaching
interests are in information systems for production and logistics, simulation, scheduling, and production planning. His email address
is Lars.Moench@fernuni-hagen.de. His website is https://www.fernuni-hagen.de/ess/team/lars.moench.shtml.

1808

