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ABSTRACT

This paper investigates nested simulation for estimating Value-at-Risk (VaR), a widely adopted risk measure
in practice. We formulate a mathematical framework tailored to a practical setting where a risk estimate is
measured up to a certain precision level, and any risk estimate within certain range specified by the precision
tolerance level is deemed acceptable. Within this framework, we propose a rounded estimator of VaR that
explicitly accounts for the pre-specified precision tolerance level, and demonstrate that its error can decay
exponentially fast as the sampling budget increases. An important implication of our theoretical result is
that a finite inner sample size may suffice for nested simulation in our setting, leading to a budget allocation
rule that deviates substantially from the standard nested simulation procedure. Numerical examples confirm
the theoretical findings, showcasing the consistent performance of the proposed rounded estimator.

1 INTRODUCTION

In portfolio risk measurement, the loss of a portfolio L(X) is often represented as a real-valued function
of certain random risk factors X ∈ Rd . A risk measure is typically defined as a functional that maps
the probability distribution of L(X) to a real number. In practical applications, L(X) takes the form of a
conditional expectation E[Y |X ], for which the analytical expression is unknown. Consequently, following
the generation of multiple outer-level samples of X , the estimation of L(X) requires the simulation of
inner-level samples of Y conditioned on each outcome of X . This two-level simulation procedure is referred
to as nested simulation (e.g., Gordy, 2010).

In the literature, the efficacy of a nested simulation procedure is typically characterized by the convergence
rate of its mean squared error (MSE) relative to the total simulation budget, denoted as Γ = cmn (cf. Gordy
and Juneja 2010 and Zhang et al. 2022), where m and n represent the inner- and outer-level sample sizes,
respectively, and c is a positive constant representing the unit sampling cost for an inner observation.
Notably, Gordy and Juneja (2010) showed that the MSE of the standard nested estimator diminishes at a
rate no faster than Γ−2/3, and this optimal rate can be achieved by setting n ∼ Γ2/3 and m ∼ Γ1/3 for a wide
array of risk measures, where "∼" means equivalence in order. To further enhance this rate, leveraging
special problem structures is imperative. Broadie et al. (2011) recommended allocating varying inner-level
sample sizes to distinct outer-level samples and devised a sequential allocation procedure to estimate the
probability of large losses, achieving a rate of Γ−4/5+ε for any positive ε .

Another branch of literature on portfolio risk measurement centers on fitting the loss function L(X)
using statistical learning methods. Broadie et al. (2015) employed the least-squares method (LSM) to
approximate the loss function and demonstrated that the MSE converges at a rate of Γ−1 to a non-diminishing
bias, inherent in the LSM method due to the imperfect selection of basis functions. Hong et al. (2017)
utilized a non-parametric approach known as the kernel smoothing method to fit the loss function, but
it is susceptible to the curse of dimensionality, a common pitfall for most non-parametric methods. Liu
and Staum (2010) applied stochastic kriging to estimate the expected shortfall. Furthermore, Zhang et al.
(2017) and Feng et al. (2022) develop a likelihood ratio based method and demonstrated that the rate of
convergence of its MSE achieves the rate Γ−1, identical to the standard rate of non-nested simulation where
explicit expression of L(·) is known and directly computable.
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In this paper, our focus is on the widely used risk measure Value-at-Risk (VaR), which represents the
quantile of the probability distribution of the portfolio loss at a given confidence level. We consider a
practical setting where a risk estimate is measured up to a certain precision level, and any risk estimate
within a range specified by the precision tolerance level is deemed acceptable. For instance, risk managers
may be concerned about whether VaR is at 1000 USD or 1001 USD, but the decimal values in the estimates
may be considered as acceptable errors. In this example, risk estimates within a range specified by a
precision tolerance level of 1 are considered indifferent to the risk managers. To address this precision
tolerance issue, we develop a mathematical framework by defining a lattice set that represents the rounding
of risk estimates. More specifically, we work within a setting where the risk manager is only interested in
estimates of VaR that fall into this set. The VaR value that falls into this set is referred to as the target
VaR, and our objective is to develop simulation procedures that produce VaR estimates as close as possible
to this target VaR.

Tailored to this framework, we propose a rounded estimator for VaR for any user-specified precision
tolerance level, which is essentially the sample quantile of the rounded version of the estimate of L(X)
based on inner observations. We demonstrate that the error of the proposed rounded estimator can decay
exponentially fast as the sampling budget increases, implying that a finite inner sample size may suffice
for nested simulation in our setting, leading to a budget allocation rule that deviates substantially from
the standard nested simulation procedure. The accelerated convergence rate is achieved mainly due to two
factors. Firstly, with the introduction of the precision tolerance level, a finite inner sample size would
be sufficient to yield a negligible error in the rounded version of the inner estimate Lm(Xi) for each i.
Secondly, for the rounded inner estimates that follow a discrete distribution, the convergence rate can be
exponentially fast in the sample size.

Our work is related to the literature on estimating quantiles of discrete probability distributions in
a non-nested setting (i.e., the functional L(·) is directly computable), which has attracted the interest of
researchers over an extended period (cf. Feldman and Tucker 1966, Wang and Hutson 2011, Ma et al. 2011,
Chen and Lazar 2010). Our work distinguishes itself by working with the nested setting and introducing a
novel performance measure, the modified mean squared error (MSE), which is essential for guiding budget
allocation decisions. Specifically, our findings demonstrate that once the inner-level sample size surpasses
a certain threshold, further increases result in negligible improvements. This suggests the adoption of a
"one-and-a-half level" simulation, which generates only finite inner samples as the total sample budget
tends toward infinity.

The rest of this paper is organized as follows. We formulate our problem in Section 2. Its analysis
is provided in Section 3. Numerical experiments are presented in Section 4, followed by conclusions in
Section 5.

2 PROBLEM FORMULATION

Suppose a real-valued random variable W , the Value-at-Risk (VaR) of W with a confidence level α ∈ (0,1)
is defined as its α-quantile, i.e.

vα(W )≜ inf{y ∈ R : P(W ≤ y)≥ α}. (1)

In portfolio risk measurement, one is often interested in VaR of the loss of a portfolio over a pre-specified
risk horizon τ , which depends on a set of risk factors. In many cases, especially when the portfolio includes
derivative assets such as options, the portfolio loss L(X) can often be expressed as a conditional expectation,
i.e., L(X) := E[Y |X ], based on classical derivative pricing theory. Here, X ∈Rd denotes the d-dimensional
risk factor up to τ , and Y ∈ R denotes the loss of the portfolio at a maturity date T discounted back to τ ,
where T > τ . In this case, we are interested in estimating vα(L(X)) (abbreviated as vα when no confusion
arises), under the general setting that the functional form L(·) is not known explicitly and its estimation
requires Monte Carlo simulation.
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This problem setting is referred to as nested estimation, highlighting the feature that both the functional
form of L(·) and the resulting vα need to be estimated. A widely used approach to nested estimation is
through nested simulation (also referred to as two-level simulation). In a standard two-level simulation
procedure, n independent and identically distributed (i.i.d.) observations of X , denoted by {X1, . . . ,Xn}
are simulated, referred to as outer-level risk scenarios. Then, for any i ∈ {1, . . . ,n}, conditional on each
Xi, n i.i.d. observations of Y , denoted by {Y1(Xi), . . . ,Ym(Xi)}, are simulated, referred to as inner-level
observations. It is obvious that L(Xi) can be estimated by the sample mean of the inner-level observations,
and we denote this estimator by

Lm(Xi) =
1
m

m

∑
j=1

Yj(Xi).

Suppose that {X1:n, . . . ,Xn:n} is a permutation of {X1, . . . ,Xn} such that

Lm(X1:n)≤ Lm(X2:n)≤ Lm(Xn:n),

then the standard nested simulation suggests taking

v̂n,m = Lm(X⌈nα⌉:n) (2)

as the estimator of vα . Gordy and Juneja (2010) showed that under suitable regulatory conditions, the
asymptotic bias and variance of this estimator are of order m−1 and n−1, respectively. Their result suggests
that in order to minimize the asymptotic mean squared error (MSE), the asymptotic optimal inner and outer
sample sizes should be of order Γ−1/3 and Γ−2/3, respectively, where Γ = cmn denotes the total sample
budget with c being the unit sampling cost for an inner-level observation. It is well known that for the
standard nested simulation estimator, the resulting convergence rate of MSE is of order Γ−2/3.

The motivation of this paper is to address the precision tolerance issue in the context of nested simulation,
which arises in risk measurement practices. More specifically, a risk metric of practical concern is typically
measured up to a certain precision level. For instance, if the scale of the risk metric is in the range of a few
thousands and the required precision is ±1%, it is unnecessary to measure the decimal values accurately. In
addition to practical considerations, the inherent presence of model errors in risk models may also render a
metric measured with very high precisions meaningless and/or unnecessary. In what follows, we develop
a mathematical framework to address this precision tolerance issue.

Let ∆ > 0 be a user-specified precision tolerance level, expressed in absolute terms rather than as a
percentage, because specifying the precision tolerance as a percentage can be challenging since the true
value of the risk metric is unknown. By specifying a precision tolerance level ∆, the risk manager considers
estimates with an error within ∆/2 to be acceptable. For example, when ∆ = 1 and the true (but unknown)
risk metric is 1000.2, any resulting risk estimates within the range [999.7, 1000.7] are deemed satisfactory.
To establish a mathematical framework, we define a lattice set Z∆ = {∆i; i ∈Z} that represents the rounding
of risk estimates, and work within a setting where the risk manager is only interested in risk estimates that
fall into this set. Referring to the aforementioned example, the target risk estimate under this setting is
1000. Hence, our objective is to develop simulation procedures that produce a risk estimate as close as
possible to this target value.

To put forward a formal mathematical framework, we define

Q∆
α = arg min

y∈Z∆

|y− vα |.

Note that in general, Q∆
α is a set with possibly one or two elements. In particular, if vα ̸= (k+1/2)∆ for

any k ∈ Z, this set has only one element, which is our target VaR. If vα = (k+ 1/2)∆ for some k ∈ Z,
Q∆

α = {k∆,(k+ 1)∆}, values within which are indifferent to the risk manager, as both values in this set
deviate from vα by an amount no more than ∆/2. We thus refer to Q∆

α as the indifference set. Within this
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framework, the target VaR of interest belong to the indifference set, a slight modification is needed on
performance measures of an estimator. More specifically, we define the modified MSE of any estimator v̂
using

MSE∆(v̂) = E
[
dist2(v̂,Q∆

α)
]
,

where the distance between a real value a and a set A is given by dist(a,A) = infb∈A |a−b|, for any a ∈R
and A ⊂ R.

With a pre-specified precision tolerance level ∆, our goal is to study estimators for the target VaR
of interest, rendering its modified MSE as small as possible. To further simplify notation, we define the
rounding operator for a real value y ∈ R as

[y]∆ := k∆, if y ∈ Ik ≜ [(k−1/2)∆,(k+1/2)∆] , for some k ∈ Z.

Intuitively, a straightforward estimator of α-VaR is [v̂n,m]∆, where v̂n,m is given by Equation (2). To
analyze this estimator, we note that it is equivalent to the order statistic of the rounded version of L(X),
which follows a discrete probability distribution. Let L∆(X) = [L(X)]∆ and L∆

m(Xi) = [Lm(Xi)]∆. Note that
after rounding, the order of {Lm(X1:n), . . . ,Lm(Xn:n)} is preserved, i.e. L∆

m(X1:n) ≤ L∆
m(X2:n) ≤ L∆

m(Xn:n).
Then the order statistic of {L∆

m(X1:n), . . . ,L∆
m(Xn:n)} is given by L∆

m(X⌈nα⌉:n). It can be easily verified that
the VaR estimator [v̂n,m]∆ is equal to the rounded version of Lm(X⌈nα⌉:n), i.e.,

[v̂n,m]∆ = L∆
m(X⌈nα⌉:n).

We thus refer to this estimator as a rounded estimator with a precision tolerance level ∆, and write it as
v̂∆

n,m = [v̂n,m]∆ for easy of presentation in the analysis.

3 THEORETICAL RESULT

To facilitate analysis for the rounded estimator with a precision tolerance level ∆, we make the following
regularity assumptions.
Assumption 1 There exists a positive constant σu > 0 such that Var(Y |X)≤ σ2

u , w.p.1. The density function
of L(X), denoted by fL(y), exists, and is continuous and positive at y = vα .
Assumption 2 1. The density function gm(y,z)of (L(X),

√
m(Lm(X)−L(X))) and its partial derivatives

∂

∂y
gm(y,z) and

∂ 2

∂y2 gm(y,z)

exist for any m ≥ 1 and any (y,z).
2. For any m ≥ 1, there exist nonnegative functions p0,m(z), p1,m(z) and p2,m(z) such that

sup
y

gm(y,z)≤ p0,m(z), sup
y

∂

∂y
gm(y,z)≤ p1,m(z), sup

y

∂ 2

∂y2 gm(y,z)≤ p2,m(z),

for any z. In addition supm
∫

∞

−∞
|z|r pi,m(z)dz < ∞ for i = 0,1,2 and 0 ≤ r ≤ 4.

Assumption 1 imposes a requirement on the bounded conditional variance of Y given X , a condition
typically employed in the nested simulation literature. Assumption 2 consists of a set of regularity conditions
on the smoothness of the density function of (L(X),

√
m(Lm(X)−L(X))), and the same assumption has

been made in the literature, e.g., Gordy and Juneja (2010).
To simplify the presentation, we introduce further notations. Denote the cumulative distribution function

(CDF) of L(X) by FL(y), and the CDF and the probability density function (PDF) of Lm(X) by Fm(y)
and fm(y), respectively. Define F̄(L(t)) = P(L(X)≥ t) and vαm = vα(Lm(X)). When Assumption 2 holds,
Lemma 1 of Gordy and Juneja (2010) showed that as m → ∞, fm(vαm) converges to fL(vα), which is positive
as implied by Assumption 1. Here, to facilitate the analysis, we further make the following assumption
that imposes bounds on fm(vαm) uniformly over m.

398



Kuang, Liu, and Zhu

Assumption 3 There exists positive constants pu and pl , such that for any m ≥ 1, pl ≤ fm(vαm)≤ pu.
With these assumptions, our main theoretical result is summarized in the following theorem.

Theorem 1 Suppose that Assumptions 1-3 hold. Then, there exist an integer m0 ∈ N+ and a constant
Cm > 0 that may depend on m, such that for any m ≥ m0 and C ∈ (0,Cm),

MSE∆(v̂∆
n,m) = O(exp{−Cn}) , (3)

where the notation bn = O(an) means that limsupn bn/an ≤ c for some positive constant c.
Theorem 1 shows that the modified MSE decays to zero at an exponential rate in the outer sample size

when the inner sample size is sufficiently large (but finite). This suggests that with a precision tolerance
level, the proposed rounded estimator converges at a much faster rate compared to the standard nested
simulation estimator. The accelerated convergence rate is achieved mainly due to two factors. Firstly, with
the introduction of the precision tolerance level, a finite inner sample size would be sufficient to yield a
negligible error in the rounded version of the inner estimate Lm(Xi) for each i. Secondly, for the rounded
inner estimates that follow a discrete distribution, the convergence rate can be exponentially fast in the
sample size.

In an ideal case when the threshold value m0 is known, one can simply set n = Γ/m0, where Γ is the
total sampling budget. In this scenario, the modified MSE decays exponentially fast to zero as Γ goes to
infinity. However, it should be noted that in practical applications, m0 is usually unknown. In such cases,
we are interested in estimating m0 using appropriate heuristic procedures, which shall be further discussed
in Section 4.

It is important to note that a large m does not necessarily imply a faster convergence rate, as Cm is not
necessarily increasing in m. Our preliminary numerical study suggests that for m’s that are greater than
m0, it is possible that a larger m may lead to a slower rate of convergence.

In the remainder of this section, we provide a sketch of the proof for Theorem 1, which explains why
a finite inner sample size may lead to an exponential rate of convergence in the rounded estimator with a
precision tolerance level, while a more complete and detailed proof will be offered in the appendix.

Proof Sketch

Without loss of generality, throughout the proof we assume that vα ∈ [−∆/2,∆/2). Denote v∆
αm = vα(L∆

m(X)).
A critical observation is that for k ∈Z, v∆

αm > k∆ if P
(
L∆

m(X)≤ k∆
)
< α and v∆

αm < k∆ if P
(
L∆

m(X)≥ k∆
)
<

1−α .
Suppose that we have kL

m,k
U
m ∈ Z (to be specified momentarily in the case-by-case analysis below) such

that v∆
αm ∈ [kL

m∆,kU
m∆]. Define

bm = max{dist
(
kL

m∆,Q∆
α

)
,dist

(
kU

m∆,Q∆
α

)
}.

Then, the modified MSE of v̂∆
n,m can be bounded as follows:

MSE∆(v̂∆
n,m)≤ b2

m +E
[
dist2

(
L∆

m(X⌈nα⌉;n),Q
∆
α

)
I{L∆

m(X⌈nα⌉;n)≤kL
m∆−∆}

]
+E

[
dist2

(
L∆

m(X⌈nα⌉;n),Q
∆
α

)
I{L∆

m(X⌈nα⌉;n)≥kU
m∆+∆}

]
.

(4)

The key to establishing the result in Theorem 1 includes two parts. The first part is that bm = 0 for m≥m0,
while the second part is that the second and third terms on the right-hand-side of Equation (4) converge to
zero exponentially fast. The intuition of the latter follows from a fact that both P

(
L∆

m(X⌈nα⌉;n)≥ kU
m∆+ k∆

)
and P

(
L∆

m(X⌈nα⌉;n)≤ kL
m∆− k∆

)
decay to zero exponentially fast in n for any k ≥ 1, which shall be shown

in detail in the proof in the appendix. The main purpose in this sketch is to provide a proof on the first
part, by considering two separate cases.
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Case 1: vα ∈ (−∆/2,∆/2), implying that Q∆
α = {0}. In this case, there exist tl and tu such that

−∆/2 < tl < vα < tu < ∆/2. Then FL(tl)< α and F̄L(tu)< 1−α by Assumption 1. Hence,

P
(
L∆

m(X)≤−∆
)
= P(Lm(X)≤−∆/2) = P(Lm(X)≤−∆/2,L(X)≤ tl)+P(Lm(X)≤−∆/2,L(X)≥ tl)

≤ FL(tl)+P(Lm(X)−L(X)≥−∆/2− tl)≤ FL(tl)+
σ2

u

m(∆/2+ tl)2 ,

(5)
where the last inequality follows from Chebyshev’s inequality.

Similarly, we have

P
(
L∆

m(X)≥ ∆
)
≤ F̄L(tu)+

σ2
u

m(∆/2− tu)2 . (6)

Let

m0 =

(
σ2

u

(α −FL(tl))(0.5∆+ tl)2

)∨( σ2
u

(FL(tu)−α)(0.5∆− tu)2

)
+1, (7)

where a∨ b = max(a,b). Then, it can be observed that for any m ≥ m0, P
(
L∆

m(X)≤−∆
)
< α and

P
(
L∆

m(X)≥ ∆
)
< 1−α , which implies that kL

m = kU
m = 0. By definition, it can be verified that bm = 0 for

any m ≥ m0.
Case 2: vα =−∆/2, implying Q∆

α = {−∆,0}. Similar to Case 1, choose any tl and tu with −3∆/2 <
tl <−∆/2 < tu < ∆/2. By Assumption 1, we have FL(tl)< α and F̄L(tu)< 1−α , and

P
(
L∆

m(X)≤−2∆
)
≤ F̄L(tl)+

σ2
u

m(3∆/2+ tl)2 , P
(
L∆

m(X)≥ ∆
)
≤ F̄L(tu)+

σ2
u

m(∆/2− tu)2 .

By letting

m0 =

(
− σ2

u

(α −FL(tl))(3∆/2+ tl)2

)∨(
− σ2

u

(FL(tu)−α)(∆/2− tu)2

)
+1,

we have kL
m =−1 and kU

m = 0, leading to bm = 0 for any m ≥ m0.

4 NUMERICAL EXPERIMENTS

We consider two examples to examine the performance of the proposed rounded estimator. First, we start
with a simple example where the marginal distribution of L(X) and the conditional distribution of Y are
normally distributed. For this case, an explicit formula for the optimal value of m0 can be derived, based on
which we suggest a heuristic procedure to determine the value of m0 using pilot samples during practical
implementation.

Furthermore, we explore a more realistic example related to portfolio risk measurement. In this case,
the optimal value of m0 is not known explicitly. We employ the heuristic procedure to set m0, as proposed
for the first example, and evaluate the performance of the rounded estimator accordingly.

4.1 A Simple Example

Suppose L(X) follows a normal distribution with mean 0 and variance σ2
1 , i.e., L(X) ∼ N(0,σ2

1 ), and
Y (X) = L(X)+Z, where Z ∼ N(0,σ2

2 ), and X and Z are independent. In this case, it can be easily verified
that Lm(X) = 1

m ∑
m
i=1Yi(X) ∼ N(0,σ2

3 ), where σ2
3 = σ2

1 + 1
m σ2

2 . Then vα = σ1zα and vαm = σ3zα , where
zα is the α-VaR for a standard normal distribution.

Suppose vα ∈ Ip = ((p−1/2)∆,(p+1/2)∆] for a certain p∈Z. To ensure v∆
αm = v∆

α = p∆, it is expected
that vαm falls in Ip, which is equivalent to

m ≥ m0 = inf{m ∈ N : vαm ∈ Ip}=
⌈

σ2
2 z2

α

(p+1/2)2∆2 −σ2
1 z2

α

⌉
. (8)
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Despite the fact that the right-hand-side of Equation (8) involves unknown parameters σ2
1 , σ2

2 and p, it
provides a heuristic guideline on how to estimate these parameters and thus m0. In particular, with generated
data {Xi,Yj(Xi), i = 1, . . . ,n, j = 1, . . . ,m}, σ2

2 and σ2
3 can be estimated by σ̂2

2 = 1
n(m−1) ∑

n
i=1 ∑

m
j=1[Yj(Xi)−

Lm(Xi)]
2, σ̂2

3 = 1
n−1 ∑

n
i=1[Lm(Xi)− L̄m(X)]2, respectively, where L̄m(X) = 1

n ∑
n
i=1 Lm(Xi). Then, an estimator

of σ2
1 is given by σ̂2

1 = σ̂2
3 − 1

m σ̂2
2 . Furthermore, vα and p can be estimated by v̂α = Lm(X⌈nα⌉,n) and

p̂ = [ v̂α

∆
], respectively, which then naturally leads to an estimator of m0, denoted by m̂0.

Based on the formula for m̂0 and the requirement that m ≥ m0, we propose the following heuristic
procedure to determine the inner sample size m. The heuristic procedure works as follows. It first sets
m′ = ( Γ

10)
1/3 and n′ = ( Γ

10)
2/3 following the asymptotic optimal inner and outer sample size results in Gordy

and Juneja (2010), and then generates data {Xi,Yj(Xi), i = 1, . . . ,n′, j = 1, . . . ,m′} to obtain m̂0. To avoid
using too small m0 that is often subject to estimation error, we suggest setting m = 2m̂0, which implies a
budget allocation rule with m = 2m̂0 and n = ⌈ Γ

m⌉.
Considering the reuse of data, the budget allocation rule can be more precisely described from an

implementation perspective as follows. If 2m̂0 >m′ and
(
Γ− Γ

10

)
≥ n′ (2m̂0 −m′), then m= 2m̂0 and n= ⌈ Γ

m⌉,
which indicates that each of the existing n′ scenarios requires additional (m−m′) inner samples, and (n−n′)
new scenarios are generated, each with m inner samples. If 2m̂0 > m′ and

(
Γ− Γ

10

)
< n′ (2m̂0 −m′), then

n = n′,m = ⌈Γ

n ⌉(< 2m̂0), that is, each of the existing n′ scenarios generates additional m−m′ inner samples,
and no new scenario is simulated. If 2m̂0 ≤ m′, then m = m′(≥ 2m̂0) and n =

⌈
Γ

m

⌉
, which means that (n−n′)

new scenarios are generated, each with m′ inner samples. Through this implementation, we increase the
inner sample size to 2m̂0 as much as possible, based on the previously generated data, while ensuring that
each scenario corresponds to the same size of inner samples.

For the rounded estimator, an appropriate accuracy level ∆ needs to be specified in advance. Generally,
the order of magnitude of the true value can be inferred from historical records or other relevant sources,
after which the accuracy level should be set appropriately. In our numerical experiments, ∆ is set between
1% and 5% of the true value. To evaluate the performance of our procedure, we compute the true value of
vα as a benchmark, which is then used to measure the modified MSE based on 1,000 macro replications.

In this example, the parameters are set as σ1 = 1, σ2 = 1, and α = 0.95. The true value can be directly
calculated using vα = σ1zα . The precision tolerance level is set to be ∆ = 0.05. In the experiments, we
normalize the unit cost of sampling an inner observation of Y as 1. The modified MSEs for different
sampling budgets are then summarized in Figure 1, with respect to different inner sample sizes m. In
particular, inner sample sizes m = 10 and m = 100 are set as benchmarks. Moreover, explicit formula in
Equation (8) suggests m0 = 28, and thus m = 2m̂0 = 56 is considered an another benchmark. For each
replication, our procedure employs the aforementioned heuristic method in determining the value of m,
yielding an average value of m approximately equal to 118 across 1,000 macro replications.

From Figure 1, it can be seen that when m is sufficiently large, say, greater than or equal to 56, the
modified MSE decays rapidly as the sampling budget is sufficiently large (i.e., close to 107), which is
consistent with the theoretical result in Theorem 1. However, when m is too small, e.g., m = 10, the rate of
convergence of the modified MSE may be much slower. From this figure, it can also be observed that the
performance of the rounded estimator with the heuristic procedure is comparable to the estimator with the
known value of m = 56, suggesting the heuristic procedure in determining m works quite well. Moreover,
when the sample size is large enough, the modified MSE vanishes to 0 because the probability of the
estimator not belonging to the indifference set is extremely close to 0 and we are unable to observe such
cases in a limited number of replications.

4.2 Portfolio Risk Measurement

We consider a more realistic risk measurement example for a portfolio that is comprised of options written
on several underlying assets. More specifically, let X(t) = (X1(t), . . . ,Xd(t))

⊤ denote the price dynamics of
d underlying assets, which are governed by a multidimensional geometric Brownian motion, characterized
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Figure 1: MSE∆ for normal example.

by drifts µ ′
i , volatility σi and correlations ρi j, i, j = 1, . . . ,d. In other words,

dXi(t)
Xi(t)

= µ
′
i dt +

i

∑
j=1

Ai jdB j(t), i = 1, . . . ,d,

where {B j(t), j = 1, . . . ,d} are independent standard Brownian motions, Σ = (Σi j) with Σi j = σiσ jρi j and
the lower triangle matrix A satisfies Σ = AA⊤.

Using Itô’s formula, the price of the ith underlying asset at time t can be written as

Xi(t) = Xi(0)exp

{(
µ
′
i −

1
2

σ
2
i

)
t +

i

∑
j=1

Ai jB j(t)

}
, i = 1, . . . ,d.

Note that µ ′ is chosen to be returns of the underlying asset µ under the real-world probability measure
during the time horizon [0,τ], and the risk-free interest rate r under the risk neutral probability measure
during (τ,T ], with τ and T denoting the risk horizon and the maturity of the options, respectively. For
simplicity, we assume that all underlying assets have the same initial price, drift, and volatility, and the
correlation between any two underlying assest is the same. Hence we can omit subscripts in these notations.
The parameters are set as d = 4, X(0) = 100, µ = 0.08, r = 0.05, σ = 15%, and ρ = 0.3.

We assume that all the options have a common maturity date T . The portfolio consists of twenty
European call options, with five options written on each of the underlying assets with strike prices K1 = 90,
K2 = 95, K3 = 100, K4 = 105, and K5 = 110. We denote the current time by 0 and are interested in
measuring the portfolio risk at a given risk horizon τ < T . We set T = 1/12 year, that is, 1 month, and
τ = 1/52 year, that is, 1 week. The current value of the portfolio, denoted by V (0), can be calculated
explicitly using the Black-Scholes formula. The value of the portfolio at time τ , referred to as V (τ), can
be written as

V (τ) = E

[
4

∑
k=1

5

∑
l=1

e−r(T−τ) (Xk(T )−Kl)
+

∣∣∣∣∣X (τ)

]
.

Then the portfolio loss at time τ can be represented as

L(X(τ)) = E

[
V (0)−

4

∑
k=1

5

∑
l=1

e−r(T−τ) (Xk(T )−Kl)
+

∣∣∣∣∣X (τ)

]
.
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To obtain the true value of the α-VaR of L(X(τ)) as a benchmark, we generate a very large amount (108)
observations of X(τ) and evaluate the corresponding values of L(X(τ)) using the explicit Black-Schole
formula, and then estimate α-VaR with very high accuracy. This benchmark value is then used to estimate
the modified MSE of the proposed rounded estimator. In our experiments, α = 95%, ∆= 1 and vα = 22.627.

The modified MSEs with respect to different sampling budgets are plotted in Figure 2. We have similar
observations as in the simple example, implying that the heuristic procedure in determining m works
reasonably well despite the fact that both the outer-level scenarios and the inner-level observations do not
follow normal distributions. When m is small, e.g., m = 50, the rate of convergence of the modified MSE
may be relatively slow. When m is sufficiently large, e.g., m = 100, the modified MSE decays at a much
faster speed as the sampling budget is sufficiently large, which is consistent with the theoretical result in
Theorem 1. In addition, the modified MSE also decays to zero after a large sample size as seen in the
simple example.

104 105 106 107

Budget

0

10 3

10 2

10 1

100

101

M
SE

m = 50
m = 100
Our procedure

Figure 2: MSE∆ for portfolio risk measurement example.

5 CONCLUSIONS

In this paper, we have formulated a mathematical framework that considers a pre-specified precision tolerance
level, and proposed a rounded estimator of VaR that explicitly accounts for this precision tolerance level.
Our theoretical analysis has demonstrated that the error of the proposed rounded estimator can decay
exponentially fast as the sampling budget increases. Notably, our results suggest that a finite inner sample
size may be sufficient for nested simulation within this practical setting, leading to a budget allocation rule
that differs considerably from the standard nested simulation procedure. The numerical examples provided
have validated our theoretical findings.
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A PROOF OF THEOREM 1

In this section, we shall show that the second and third terms in Equation (4) are of order exp{−Cn} for
some C ∈ (0,Cm). To this end, we will use the following lemma, which is the extension of the powerful
Bahadur theorem to the nested simulation setting.
Lemma 1 Under Assumption 2, suppose sn is a sequence of integer with

sn

n
= α +on

(
(logn)q
√

n

)
,

for some q ≥ 1
2 . Then

Lm(Xsn:n) = vαm +
1
n

n

∑
i=1

Zm(i)+
sn/n−α

fm(vαm)
+Anm, (9)

where Zm(i) =
α − I{Lm(Xi)≤vαm}

fm(vαm)
and |Anm| ≤ an := c0 ·n−3/4(logn)(1+q)/2 for some constant c0 w.p.1.

The proof of Lemma 1 is skipped due to page limit. Essentially, it follow from the integration of
Lemma 1 in Gordy and Juneja (2010), the standard proof techniques for the classic Bahadur representation
(see, e.g., Theorem 2.5.2 in Serfling 2009) for each m ≥ 1, and our construction of a bound on the residuals
Anm uniformly over m.

In addition to Lemma 1, we also need the following elementary result.
Lemma 2 Suppose X is a non-negative random variable with F̄(x) = P(X ≥ x). Then for any t ≥ 0,

E
[
XI{X≥t}

]
=
∫

∞

t
F̄(x)dx+ tF̄(t).

Particularly if X takes value on N, then for t ∈ N,

E
[
X2I{X≥t}

]
=

∞

∑
i=t

((i+1)2 − i2)P(X ≥ i)+ t2F̄(t) =
∞

∑
i=t

(2i+1)P(X ≥ i)+ t2F̄(t)

Proof.

E
[
XI{X≥t}

]
=−

∫
∞

t
xdF̄(x) =

∫
∞

t
F̄(x)dx− xF̄(x)

∣∣∣∞
t
=
∫

∞

t
F̄(x)dx+ tF̄(t).

Now we proceed to the proof of Theorem 1. As suggested in the proof sketch provided in the main
text, throughput the proof we assume that vα ∈ [−∆/2,∆/2). The analysis proceeds separately for the
cases vα ∈ (−∆/2,∆/2) and vα =−∆/2, corresponding to Q∆

α = {0} and Q∆
α = {−∆,0}, respectively. We

mainly present the proof for Case 1, while that for Case 2 follows in a similar manner and is thus omitted.
Recall that the analysis in Section 3 shows bm = 0 for any m ≥ m0. Then, for any such m, Equation

((4)) becomes

MSE∆(v̂∆
n,m)≤ E

[(
L∆

m(X⌈nα⌉;n)
)2 I{L∆

m(X⌈nα⌉;n)≤−∆}

]
+E

[(
L∆

m(X⌈nα⌉;n)
)2 I{L∆

m(X⌈nα⌉;n)≥∆}

]
. (10)

Note that in addition to v∆
αm = 0, it holds that vαm ∈ (−∆/2,∆/2), since P(Lm(X) ≤ −∆) < α and

P(Lm(X) ≥ ∆) < 1−α . Denote dm = min{vαm +∆/2,vαm −∆/2} > 0. By Lemma 1, for j ≥ 1 and
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sufficiently large n such that an < dm,

P
(
L∆

m(X⌈nα⌉;n)≤− j∆
)
= P

(
Lm(X⌈nα⌉;n)≤−( j−1/2)∆

)
= P

(
1
n

n

∑
i=1

Zm(i)≤−( j−1/2)∆− vαm +an

)

≤P

(
1
n

n

∑
i=1

Zm(i)≤−( j−1)∆−dm +an

)
≤ exp

{
−2np2

l (( j−1)∆+dm −an)
2} ,

(11)
where Zm and an were defined in Lemma 1, pl is a lower bound for fm(vαm) by Assumption 3, and the
last inequality follows from Hoeffding’s inequality.

Similarly, it can be shown that

P
(
L∆

m(X⌈nα⌉;n)≥ j∆
)
≤ exp

{
−2np2

l (( j−1)∆+dm −an)
2} .

For notational ease, denote en( j) = exp
{
−2np2

l (( j−1)∆+dm −an)
2
}

, we need the following lemma
that characterize the order of ∑

∞
i=1 en(i) and ∑

∞
i=1 ien(i).

Lemma 3 For any constant C ∈ (0,2p2
l d2

m),
∞

∑
i=1

en(i) = O(exp{−Cn}) , and
∞

∑
i=1

ien(i) = O(exp{−Cn}) (12)

Proof. For sufficiently large n such that an < dm, because {en(i), i ≥ 1} is a decreasing sequence, we
have,

∞

∑
i=1

en(i) =
∞

∑
i=1

exp
{
−2np2

l ((i−1)∆+dm −an)
2}

≤ en(1)+
∫

∞

0
exp
{
−2np2

l (t∆+dm −an)
2
}

dt

= en(1)+

√
2π(4np2

l )
−1

∆

∫
∞

0

1√
2π(4np2

l )
−1

exp

{
−(t +dm −an))

2

2(4np2
l )

−1

}
dt

= en(1)+∆
−1

√
π

2np2
l
P
(
N
(
0,(4np2

l )
−1)≥ dm −an

)
≤ en(1)+∆

√
π

2np2
l

exp{−2np2
l (dm −an)

2}

= O
(
exp{−2np2

l (dm −an)
2}
)
= O(exp{−Cn}) .

Similarly, for sufficiently large n, {ien(i), i ≥ 1} is decreasing, and thus
∞

∑
i=1

ien(i) =
∞

∑
i=1

j exp
{
−2np2

l ((i−1)∆+dm −an)
2}

≤ en(1)+
∫

∞

0
t exp

{
−2np2

l (t∆+dm −an)
2
}

dt

≤ en(1)+
1
∆

∫
∞

dm−an

t exp
{
−2np2

l t2}dt

−2(dm −an)
∫

∞

0
exp
{
−2np2

l (t∆+dm −an)
2
}

dt

= O(exp{−Cn}) .
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Then, by Lemma 2, the first term on the right-hand-side of Equation (10) is bounded by

E
[(

L∆
m(X⌈nα⌉;n)

)2 I{L∆
m(X⌈nα⌉;n)≤−∆}

]
= ∆

2P(L∆
m(X⌈nα⌉;n)≤−∆)+∆

2
∞

∑
j=1

(2 j+1)P(L∆
m(X⌈nα⌉;n)≤− j∆)

≤ ∆
2(en(1)+

∞

∑
j=1

(2 j+1)en( j)) = O(exp{−Cn}) ,

for any C <Cm := 2p2
l d2

m.
The bound for the second term on the right-hand-side of Equation (10) follows in a similar manner

and is thus omitted, which then completes the proof.
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