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ABSTRACT

This tutorial serves as an introductory guide to Monte Carlo tree search (MCTS), a versatile methodology
for sequential decision making under uncertainty through stochastic/Monte Carlo simulation. MCTS gained
notoriety from its pivotal role in Google DeepMind’s AlphaZero and AlphaGo, hailed as major breakthroughs
in artificial intelligence (AI) due to AlphaGo defeating the reigning human world Go champion Lee Sedol
in 2016 and the world’s top-ranked Go player Ke Jie in 2017. AlphaZero, without requiring any domain-
specific knowledge beyond the game rules (tabula rasa), achieved remarkable success by surpassing previous
benchmarks in Go and outperforming leading AI opponents in chess (Stockfish) and shogi (Elmo) after
just 24 hours of MCTS-driven reinforcement learning. We demonstrate the building blocks of MCTS and
its performance through decision trees and the game of Othello, and provide an empirical simulation study
for the latter.

1 INTRODUCTION

Monte Carlo tree search (MCTS) is a sequential decision-making algorithm based on a tree structure and
randomized sampling. The name MCTS was first used by Rémi Coulom (Coulom 2006), who presented a
randomized tree search algorithm for Crazy Stone, an artificial intelligence (AI) program for playing Go,
the ancient Asian board game. This randomized approach, inspired by algorithms proposed in Chang, Fu,
Hu, and Marcus (2005), represented a paradigm shift from previous Go-playing programs that had focused
on deterministic search algorithms, e.g., alpha-beta pruning, widely used for combinatorial games such as
chess (Newborn 2012).

MCTS was employed by Google DeepMind in its AlphaGo program to generate game play data used
to train two deep neural networks (DNNs), one used as a policy network and the other used as a value
network. AlphaGo claimed its first important victory over a professional human player when it defeated
the reigning European Go champion Fan Hui in October 2015 with a 5-0 sweep. Less than a year later,
AlphaGo defeated then reigning world Go champion Lee Sedol in March 2016 (4-1; Seoul, South Korea),
which was followed by a decisive victory over the world’s No. 1 ranked Go player Ke Jie in May 2017
(3-0; Wuzhen, China). The remarkable success of AlphaGo was hailed as an important milestone in AI
development, and the fascinating stories of AlphaGo were documented in a short movie (Silvestri 2017).

MCTS played a dual role in the development of AlphaGo (Silver et al. 2016) and its successor AlphaGo
Zero and AlphaZero (Silver et al. 2017). It was used as an algorithm to search for the best move but also as
the computational engine that executed millions of self-play games to allow AlphaGo to use reinforcement
learning (RL) to train its neural networks for predicting moves and values of a game state. Self-play
facilitated a shift in the learning paradigm of the initial training stage used by AlphaGo, which initially
trained on a library of recorded Go games played by human players, i.e., supervised learning, to initialize
its neural networks. The new approach allowed AlphaZero to learn “from scratch” (tabula rasa), only being
provided the rules of the game, enabling it to train/learn without requiring the benefit of expert domain
knowledge. Even so, AlphaGo Zero was able to trounce its predecessor/parent AlphaGo 100 games to 0, as
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announced by DeepMind in the October 19, 2017 issue of Nature, Silver et al. (2017). No longer limited to
just the game of Go, AlphaZero was then able to go on to soundly defeat the world’s leading chess playing
program, Stockfish, in December of 2017, using only MCTS-enabled reinforcement learning without any
supervised domain-specific training or knowledge of classical chess openings or end-game strategies, which
Stockfish and other chess-playing algorithms include as key components of their arsenal. However, it should
be noted that there is some dispute as to whether the computational requirements of AlphaZero gave it an
unfair advantage, even though MCTS guided AlphaZero to search orders of magnitudes fewer tree paths
than Stockfish.

While MCTS gained its fame as a search algorithm for deterministic combinatorial games, MCTS also
works smoothly with the more general setting of sequential decision making under uncertainty, which can
be modeled using Markov decision processes (MDPs) (Chang, Fu, Hu, and Marcus 2007; Chang, Hu, Fu,
and Marcus 2013). This tutorial will introduce MCTS under this more general setting, with an objective
to maximize an expected reward over a finite time horizon from an given initial starting state, i.e., the root
node of a game decision tree.

Solving a sequential decision making problem using tree search is not a new idea. For example,
alpha-beta pruning of game decision tree was the core of IBM’s Deep Blue chess program that defeated
world chess champion Kasparov in 1997 (Newborn 2012). However, both the breadth (number of feasible
actions that can be taken at a state) and depth (number of decision epochs) make a complete tree search
impossible for many real-world decision problems. For example, the possible sequence of game plays in a
combinatorial board game can be approximated as bd , with b and d representing the average breadth (number
of legal moves) and depth (number of total moves) in a game. For chess and Go, we have b ≈ 35,d ≈ 80
and b ≈ 250,d ≈ 150 (Silver et al. 2016). Because of the many orders of magnitude differences between
chess and Go, applying a pruning strategy similar to what Deep Blue used is (currently) computationally
impractical for the game of Go. MCTS circumvents this challenge by sampling an admissible action at
each decision stage and simulating (more often referred to as roll-out in the MCTS literature) to the end
of the game without any branching. Averages of simulation results are then used to evaluate the game
state and different actions, e.g., the probability of winning the game from the current state and the action
that will lead to the highest win probability. In this process, MCTS needs to balance exploration, i.e., to
expand the tree to visit more states and sample more actions, and exploitation, i.e., to obtain more accurate
estimates of promising actions to identify the best action for the current state.

The remainder of this tutorial is organized to provide both an overview of MCTS and selected recent
research advances in MCTS. We start in Section 2 with a description of MCTS, including its historical roots
and connection to the simulation-based adaptive multi-stage sampling algorithm of Chang et al. (2005),
illustrated using simple decision tree examples, where a decision tree here refers to the older OR term
from decision theory and not the more recent AI/ML technique. We then describe the main components of
an MCTS algorithm in the context of AlphaGo and AlphaZero. In Section 3 we focus on the role of tree
selection policy in MCTS and compare the tree policy used by AlphaGo and AlphaZero with MCTS-OCBA
(Li et al. 2019; Li et al. 2022), an optimal computing budget allocation (OCBA) (Chen and Lee 2011)
policy adapted to MCTS. In Section 4, we illustrate MCTS using Othello, a combinatorial board game
with b ≈ 10,d ≈ 58, which has only been claimed to be weakly solved as of 2023 (Takizawa 2023), and
we include empirical numerical test results using MCTS-OCBA.

This tutorial makes generous use of previously published materials by some of the authors, especially
the following: a recent expository journal article (Fu 2019), a 2017 INFORMS TutORial chapter (Fu 2017),
a recent original research article (Li et al. 2022), and two previous WSC proceedings article (Fu 2016; Fu
2018). The October 2016 OR/MS Today article (Chang et al. 2016) provides more non-technical details
of the history of MCTS and its connection to OR and simulation. Beyond MCTS, the recent INFORMS
TutORial by (Peng et al. 2023) provides other connections between simulation optimization and AI.
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2 OVERVIEW OF MCTS

2.1 Background

The term MCTS was first coined by Rémi Coulom (Coulom 2006) when he integrated a tree search algorithm
using Monte Carlo roll-outs into his Go-program known as Crazy Stone. Then, Kocsis and Szepesvári
(2006) introduced UCT (Upper Confidence Bound applied to trees) as a tree selection policy for tree-search
algorithm for Markov Decision Process (MDP) problems, although Kocsis and Szepesvári (2006) did not
use the term MCTS and instead referred to it as Monte Carlo planning. UCT was based on the upper
confidence bound (UCB) policy from the multi-armed bandit (MAB) literature (Auer, Cesa-Bianchi, and
Fischer 2002), and has been used in MCTS-based Go programs including AlphaGo and AlphaZero. Both
Coulom (2006) and Kocsis and Szepesvári (2006) cite the main idea in Chang et al. (2005), which introduced
an adaptive multi-stage simulation-based sequential decision-making algorithm for MDPs using a UCB
policy, developed in 2002 (and presented at a Cornell University colloquium in the School of Operations
Research and Industrial Engineering in April 2002). In fact, as noted in Kocsis and Szepesvári (2006),
“When states are not likely to be encountered multiple times, our algorithm degrades to this algorithm.”

2.2 MCTS Algorithm

A generic MCTS algorithm has four main “operators”. We will use the term “operator” in the spirit of the
description of MCTS itself as a “powerful policy improvement operator” by Silver et al. (2017). These
four operators are the following: selection, expansion, simulation, and back propagation. Please refer to a
survey of MCTS by Browne et al. (2012) for a complete description of these operators and various policies
and techniques for these four operators that have been devised up to the time of writing of that survey.
Also, it is more common in the MCTS literature to refer to the “simulation” operator as a “roll-out”. Both
terms refer to a depth first search from a leaf node using a Monte Carlo sampling policy until the end
of the decision horizon or a state that requires no further evaluation. We used the term “simulation” to
emphasize that roll-out is essentially a simulated sample path of an MDP. We briefly describe these four
operators below and will illustrate them using a decision-tree example shortly:

• “Selection” corresponds to choosing a move at a node or an action in a decision tree in the traversal
down the already grown tree to a leaf node. The selection operator is repeatedly invoked until a
leaf node is reached for expansion of the tree.

• “Expansion” corresponds to the growth of decision tree from a leaf node, which corresponds to a
state transitioned into after a move or action, for example, after an opponent’s move in a game.
It is modeled by a probability distribution that is a function of the state reached after the chosen
move or action (corresponding to the transition probability in an MDP model).

• “Simulation/Evaluation” corresponds to returning the estimated value at a given node, which could
correspond to the actual end of the horizon or game, or simply to a point where the current estimation
may be considered sufficiently accurate so as not to require further simulation.

• “Backup” corresponds to the backwards dynamic programming algorithm employed in decision
trees and MDPs.

2.3 Illustration of MCTS with a Simple Decision Tree

We now illustrate how a tree structure can be used to support decision making. Assume Bob has ten dollars
and wants to use the ten dollars to buy a lottery ticket. There are two lottery tickets Bob is considering: 1)
a PowerRich lottery ticket that would allow him to win $100 million with a probability of 0.01 or nothing
otherwise; and 2) a MegaHaul lottery ticket that would allow him to win $1 million with a probability of
0.05 and nothing otherwise. The third option is not to buy a lottery ticket and keep the ten dollars.

Figure 1 depicts a classical decision tree to help Bob make a decision. Following the usual convention,
squares represent decision nodes and circles represent outcome nodes. This is a one-period decision tree
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Figure 1: Decision tree for lottery choices.

with the initial state being the only decision node. The decisions are shown on the edges going from
decision node to outcome node. The edges leaving the outcome node could be considered as a game move
by “nature”, and the corresponding probabilities are given on the edges. These edges lead to termination,
because this is a one-period decision tree. The edges would lead to another decision node in a multi-period
decision tree. The payoff is the money on hand at termination.

For simplicity, assume that Bob will take the decision that maximizes expected payoff, which in this
case can be easily determined (buy MegaHaul). In reality, we know that human behavior generally does
not follow the principle of maximizing expected value but it suffices for illustrative purposes.

However, what if Bob does not know the winning and losing probabilities of PowerRich and/or
MegaHaul, or even not the payoff if he wins the lottery, or if he realizes that he can use any amount of
money that he wins to buy more lottery tickets and thus there would be a sequence of decisions for him to
make? When all of these complications need to be taken into account, Bob no longer knows, or at least
easily, what would be the expected payoff associated with buying a PowerRich or MegaHaul lottery ticket.
The decision tree now becomes the one in Figure 2, where the outcome nodes are replaced by two black
boxes “BB1” and “BB2”. The black boxes can be queried to return probabilistically an outcome of buying
a PowerRich or MegaHaul lottery ticket, i.e., Bob can use the simulation operator of MCTS to simulate a
realization of the random lottery payoff without knowing the probabilities of winning the lottery, or even
the amount of the money he would win if it turns out to be his lucky day.
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Figure 2: Decision tree for lottery choices with black boxes BB1 and BB2.
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Bob’s decision-making process would then involve querying these two black boxes repetitively to learn
more about the expected payoff of PowerRich and MegaHaul. Each time Bob is going to run another query,
Bob needs to decide if he should select PowerRich or MegaHaul for simulation. This is what the selection
operator of an MCTS is for. It would need to balance the exploration and exploitation trade-off, e.g., to
consider both the uncertainty in the estimated payoff for PowerRich and MegaHaul, as well as how much
the expected payoff is.

Bob will then keep applying the selection operator until he uses up a simulation budget. Alternatively,
instead of working with a fixed simulation budget, Bob may want to find out how many simulations it would
take to achieve a fixed precision, e.g., with 99% confidence that Bob could determine which decision is
the best subject to a small estimation error with an amount that he is indifferent to, e.g., a payoff different
of one cent. In both cases, once all given or required simulations have finished, Bob will then compare the
simulation results for PowerRich and MegaHaul to make the best decision he can using the noisy simulation
estimates. This becomes the well-studied Ranking & Selection (R&S) problem in the simulation literature
(Fu 2015).

This simple decision tree has just a single stage, with the three leaf nodes in the tree being terminal
nodes in the decision process. If Bob wants to entertain the possibility of using any money he may win
from the lottery ticket to buy more lottery tickets, he will then solve a sequential decision-making under
uncertainty problem that would require an expansion of the tree to incorporate downstream decisions and
outcomes as shown in Figure 3. Suppose one simulation of the black box “BB1” in the tree in Figure 2
returns an outcome of Bob winning $100M. This creates a new decision node with a state of $100M.
The expansion operator of an MCTS then adds to this node three outcome nodes, with two of them again
requiring black box simulations. Suppose Bob again chooses buy PowerRich using all of his $100M, which
would be enough for 10M PowerRich tickets. The black box simulation now will return the random payoffs
for all of these 10M PowrRich tickets. This outcome will then be used to update the payoff of the first
decision to buy PowerRich using the backup operator of MCTS.

We note that the outcome of a decision in this example is assumed to be randomly generated by “nature”
with (unknown) probabilities. When “nature” is the opposing player, we land at a game setting, for which
MCTS is a popular algorithm for combinatorial board games like Othello and Go (Browne et al. 2012). In
the game setting, the “selection” operator determines the action to evaluate from a decision node, whereas
a “simulation” operator generates the opponent’s subsequent move.
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Figure 3: Expansion of the decision tree for two-stage lottery choices.
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3 MCTS SELECTION OPERATOR

Reviewing the decision-tree example presented in the last section, we would recognize that among the four
MCTS operators, the “selection” operator is the one that requires the most thought and determines how
the tree would be expanded during the decision-making process. For problems with large decision space
and state space, it is not possible to build a complete decision tree. Therefore, the selection operator is
expected to have a major effect on the performance of MCTS for any given applications. Of course, the
fidelity of the “simulation” operator is also vital to the performance of the MCTS algorithm. However, it
is highly problem dependent, whereas a good “selection” operator may be applied to virtually all MCTS
applications.

A widely used selection operator is UCT, which is based on UCB (Auer et al. 2002) and closely
resembles the adaptive multistage sampling algorithm (AMS) for MDPs developed by Chang et al. (2005).
For each possible action, UCT is a function of the current estimated value (e.g., probability of winning)
plus a “fudge” factor. UCB is designed to minimize cumulative regret in an MAB setting. However, for
MCTS applications such as AlphaGo, the objective is to select the action that would give the player the
highest probability of winning a game, not any type of “cumulative regret” that the player may incur as
the game goes on. Therefore, although UCT was used by AlphaGo, there is a misalignment between what
UCT is designed for and what AlphaGo is trying to accomplish with the selection operator. In this section,
we discuss two MCTS selection operators that are designed with different objectives in mind.

3.1 Adaptive Multistage Simulation Sampling Algorithm

Consider a finite-horizon MDP with finite state space S, finite action space A, non-negative bounded reward
function R such that R : S×A → R+, and transition function P that maps a state and action pair to a
probability distribution over state space S. We denote the feasible action set in state s ∈ S by A(s)⊂ A and
the probability of transitioning to state s′ ∈ S when taking action a in state s ∈ S by P(s,a)(s′). In terms
of a game tree, the initial state of the MDP or root node in a decision tree corresponds to some point in a
game where it is our turn to make a move. A simulation replication or sample path from this point is then
a sequence of alternating moves between a player and the opponent, ultimately reaching a point where the
final result is “obvious” (win or lose) or “good enough” to compare with another potential initial move,
specifically if the value function is precise enough.

The AMS algorithm of Chang et al. (2005) chooses to sample in state s an optimizing action in A(s)
according to the following:

max
a∈A(s)

(
Q̂(s,a)+

√
2ln n̄
Ns

a

)
, (1)

where Ns
a is the number of times action a has been sampled thus far (from state s), n̄ is the total number

of samples thus far, and

Q̂(s,a) = R(s,a)+
1

Ns
a

∑
s′∈Ss

a

V̂ (s′),

where Ss
a is the set of sampled next states thus far (|Ss

a|= Ns
a,i) with respect to the distribution P(s,a), and

V̂ is the value function estimate (as a function of the state). The argument in (1) is the UCB of action a.
It combines the value (Q-function) of taking action a at state s with a bonus term that favors an action
that has been less sampled. Therefore, AMS encourages sampling actions that have higher returns (larger
Q̂(s,a)) and/or are less frequently sampled (smaller Ns

a). Under the MAB setting, UCB has been shown
to minimize the cumulative regret (Auer et al. 2002). Algorithms that focus on minimizing regret tend to
discourage exploration as can be explained as follows. Suppose at some point an action was taken and
the player received a small reward. To minimize regret, the player would be discouraged from taking
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this action again. However, the small reward could be due to the randomness in the reward distribution.
Mathematically, Lai and Robbins (1985) showed that for MAB algorithms, the number of times the optimal
action is taken is exponentially more than sub-optimal ones.

3.2 Optimal Computing Budget Allocation Algorithm

The exponential dominance of sub-optimal actions by the optimal action in AMS/UCT is optimal for
minimizing cumulative regret. However, when the goal is to select the best action with high probability, as
in the setting of board games such as Go, AMS/UCT may overly exploit while failing to explore sufficiently.
Li et al. (2022) developed an MCTS selection operator based on a popular framework for fixed-budget
R&S known as optimal computing budget allocation (OCBA) (Chen et al. 2000; Chen and Lee 2011),
which aims to maximize the probability of correctly selecting the best action under a fixed sampling budget.
Li et al. (2022) adapted OCBA to MCTS, and in doing so, also removed the known-and-bounded-support
assumption on the reward distribution that is required by UCT.

In MCTS-OCBA, we denote by â∗(s) the action that has the highest Q(s,a) value,

â∗(s) = arg max
a∈A(s)

Q̂(s,a). (2)

Let δ (s,a) = Q̂(s, â∗(s))− Q̂(s,a). Also, let σ2(s,a) be the sample variance of the simulation estimate of
Q(s,a), where with a slight abuse of notation, we use Q(s,a) to denote the simulation samples that provide
the information to calculate Q̂(s,a). Compared to AMS/UCT, a key difference of MCTS-OCBA is the role
of σ2(s,a) in determining the sample size Ns

a, which needs to satisfy the following equations:

Ns
a

Ns
a′

=
δ 2(s,a′)/σ2(s,a′)
δ 2(s,a)/σ2(s,a)

, ∀a,a′ ∈ A(s),a,a′ ̸= â∗(s) (3)

Ns
â∗(s) = σ

2(s, â∗(s))

√√√√ ∑
a∈A(s),a̸=â∗(s)

Ns
a

2

σ2(s,a)
. (4)

Equation (4) implies that OCBA samples non-optimal actions at a rate almost proportional to the
sampling rate for the optimal action, which is a sharp contrast to the exponential dominance of sampling
the optimal action over non-optimal actions in AMS/UCT. This increase in exploration translates to better
performance of MCTS when applied to search for the best action at the root decision node as shown by
Li et al. (2022).

4 MCTS APPLIED TO OTHELLO

4.1 Othello in a Nutshell

Othello is a classic two-player combinatorial board game played on an 8x8 board. It is also known as
Reversi (Wikipedia 2024) to some players. Similar to Go, it is a deterministic zero-sum game with perfect
information. It has been frequently used as a test case in the development of AI algorithms for game play
(Browne et al. 2012). We demonstrate the differences in sampling allocation and performance of MCTS
with AMS/UCT or OCBA selection operator when applied to Othello here. In Othello, the goal is to have
the most tokens at the end of the game. To do this, players take turns making moves. Each move a player
makes consists of placing a token in an empty space that outflanks opponent tokens, then flipping opponent
tokens to your color. Outflanking opponent tokens means placing a token on the board such that a row,
column or diagonal of the opponent’s token are bordered at each end by a token of your color. Figure 4a
shows a white token indicated by an arrow was placed strategically. This white token then join the three
white tokens already on the board to outflank all black tokens in three different directions and flip them
into white tokens as shown in Figure 4b. In addition, players are not allowed to skip over their own color
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(a) A white token is placed indicated by an arrow. (b) The token placed flipped black tokens into white.

Figure 4: A strategically placed white token flipped all black tokens by outflanking them.

token to flip other tokens. In the example shown in Figure 5, the newly placed black token identified by
the arrow will only flip one white token (the token marked by “1”) from white to black.

Figure 5: No skipping over own color token to flip other token.

4.2 Simulation Operator for Othello

We test two simulation policies: i) random play, ii) a heuristic policy. The heuristic policy builds upon
Othello domain knowledge (Lee and Mahajan 1990) and uses the number of corners, X-squares (the squares
directly diagonal to corners), number of moves, and potential mobility (p-mob, the total number of empty
spaces next to opponent pieces) to estimate the desirability of a move using the equation below:
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(# of your corners−# of enemy corners)∗400+(# of enemy X-squares−# of your X-squares)∗100

+(# of your moves)/(# of opponent moves)∗50+(your p-mob)/(enemy p-mob)∗80.

We illustrate these key positions in Figure 6, where X squares are indicated with a red X. Corner squares
are indicated with a red C. The potential mobility is indicated by the yellow squares (squares adjacent to
the opponent token). In this case, black has a potential mobility of 13 because there are 13 yellow squares.
It is worth pointing out that the heuristic simulation policy used here is a reasonable one, but certainly not
the best. Neither does MCTS requires a strong simulation policy to achieve strong performance. Silver
et al. (2016) described the performance improvement of using a weakly trained policy network as the
simulation policy for AlphaGo. Silver et al. (2017) further explained how AlphaZero training was done
with MCTS using just random play without any human knowledge and achieved superior performance for
both Go and Chess.

Figure 6: Key board positions considered in the heuristic simulation policy.

4.3 Results

We first compare how AMS/UCT and OCBA sample different moves using over 1000 different Othello
positions. We ran MCTS with AMS/UCT or MCTS with OCBA to determine the move to take from
these positions. Table 2 reported the percentage of simulation budget spent on the most visited five moves.
Results showed that MCTS with OCBA tends to explore more while MCTS with AMS/UCT tends to spend
much more budget on the most visited move at the expense of collecting more information from other
promising moves.

To get a better understanding of how OCBA and AMS/UCT evaluate moves, we show a sample position
with 3 legal moves in Figure 7. In the figure, X indicates black, O indicates white, and * indicates a legal
move from that position. It is the turn for the player with white tokens to make a move.
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Table 1: Percentage of budget spent on the top 5 most visited moves.

Nth Most visited move AMS/UCT OCBA
Most visited move 29.469% 19.768%

2nd most visited move 19.917% 14.891%
3rd most visited move 13.616% 12.267%
4th most visited move 9.725% 10.271%
5th most visited move 6.887% 8.267%

Figure 7: Evaluations of moves from a sample Othello board position by MCTS with OCBA or AMS/UCT.

Table 2 reports results from playing 250 games between MCTS with OCBA and MCTS with AMS/UCT.
We experimented with different number of simulations used by each algorithm to evaluate moves in each
play of the game. We did not report ties in the table. We observe that MCTS with OCBA consistently
outperformed MCTS with AMS/UCT with random simulation policy, delivering 60.2% wins, 3.4% ties with
a simulation budget of 50 simulations, 54.0% wins, 2.2% ties with a simulation budget of 100 simulations,
and 52.0% wins, 3.8% ties for a simulation budget of 500 simulations.

OCBA also has better performance than AMS/UCT when the heuristic simulation policy is used, with
60.8% wins and 2.2% ties with 50 simulations budget, 59% wins and 1.4% ties with 100 simulations
budget, and 50.8% wins and 3.6% ties with 500 simulations budget. OCBA’s advantage is generally larger
when simulation budget is relatively small or when using heuristic simulation policy.
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Table 2: Number of wins by MCTS with OCBA vs. MCTS with AMS/UCT from 250 games between
(ties not reported) with different simulation budget for each position evaluation.

(White vs Black, 250 games) No Heuristic Heuristic
OCBA vs AMS/UCT (50 simulations) 149 - 93 144 - 102
AMS/UCT vs OCBA (50 simulations) 89 - 152 83 - 160

OCBA vs AMS/UCT (100 simulations) 142 - 102 149 - 96
AMS/UCT vs OCBA (100 simulations) 117 - 128 102 - 146
OCBA vs AMS/UCT (500 simulations) 130 - 111 134 - 109
AMS/UCT vs OCBA (500 simulations) 110 - 130 119 - 120

5 MCTS IN GOOGLE DEEPMIND’S ALPHAGO AND ALPHAZERO

Go is the most popular two-player board game in East Asia, traing its history back to China more than
2,500 years ago. It is also thought to be the oldest board game still played today. Since the size of the
board is 19×19, as compared to 8×8 for a chess board, the number of board configurations for Go far
exceeds that for chess, with estimates at around 10170 possibilities, exceeding even the number of atoms
in the universe (https://googleblog.blogspot.nl/2016/01/alphago-machine-learning-game-go.html).

Intuitively, the objective is to have “captured” the most territory by the end of the game, which occurs
when both players are unable to move or choose not to move, at which point the winner is declared as the
player with the highest score, calculated according to certain rules. Unlike chess, the player with the black
(dark) pieces moves first in Go, but same as chess, there is supposed to be a slight first-mover advantage
(which is actually compensated by a fixed number of points decided prior to the start of the game). As
a result of the far smaller number of possibilities, traditional exhaustive game tree search that works for
chess is doomed to failure for Go.

The realization that traversing the entire game tree was computationally infeasible for Go meant that
new approaches were required, leading to a fundamental paradigm shift, the main components being Monte
Carlo sampling (or simulation of sample paths) and value function approximation, which are the basis of
simulation-based approaches to solving Markov decision processes (Chang et al. 2007; Chang et al. 2013),
which are also addressed by neuro-dynamic programming (Bertsekas and Tsitsiklis 1996); approximate
(or adaptive) dynamic programming (Powell 2007); and reinforcement learning (Sutton and Barto 2018).
However, the setting for these approaches is that of a single decision maker tackling problems involving
a sequence of decision epochs with uncertain payoffs and/or transitions. The game setting adapted these
frameworks by modeling the uncertain transitions – which could be viewed as the actions of “nature” – as
the action of the opposing player. As a consequence, to put the game setting into the MDP setting required
modeling the state transition probabilities as a distribution over the actions of the opponent. Thus, as we
shall describe later, AlphaGo employs two deep neural networks: one for value function approximation
and the other for policy approximation, used to sample opponent moves.

AlphaGo’s two neural networks are depicted in Figure 8. The value network estimates the “value” of
a given board configuration (state), i.e., the probability of winning from that position. The policy network
estimates the probability distribution of moves (actions) from a given position (state).

The subscripts σ and ρ on the policy network correspond to two different networks used, using supervised
learning and reinforcement learning, respectively. The subscript θ on the value network represents the
parameters of the neural net. AlphaGo’s two neural networks employ 12 layers with millions of connections.
AlphaGo Zero has a single neural network for both the policy network and value network.

In terms of MDPs and Monte Carlo tree search, let the current board configuration (state) be denoted
by s∗. Then we wish to find the best move (optimal action) a∗, which leads to board configuration (state)
s, followed by (sampled/simulated) opponent move (action) a, which leads to board configuration (new
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sampled state-action pairs (s, a), using stochastic gradient ascent to 
maximize the likelihood of the human move a selected in state s
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∝
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σp a slog

We trained a 13-layer policy network, which we call the SL policy 
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of 
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from 
other research groups of 44.4% at date of submission24 (full results in 
Extended Data Table 3). Small improvements in accuracy led to large 
improvements in playing strength (Fig. 2a); larger networks achieve 
better accuracy but are slower to evaluate during search. We also 
trained a faster but less accurate rollout policy pπ(a|s), using a linear 
softmax of small pattern features (see Extended Data Table 4) with 
weights π; this achieved an accuracy of 24.2%, using just 2 µs to select 
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy 
network by policy gradient reinforcement learning (RL)25,26. The RL 
policy network pρ is identical in structure to the SL policy network, 

and its weights ρ are initialized to the same values, ρ = σ. We play 
games between the current policy network pρ and a randomly selected 
previous iteration of the policy network. Randomizing from a pool 
of opponents in this way stabilizes training by preventing overfitting 
to the current policy. We use a reward function r(s) that is zero for all 
non-terminal time steps t < T. The outcome zt = ± r(sT) is the termi-
nal reward at the end of the game from the perspective of the current 
player at time step t: +1 for winning and −1 for losing. Weights are 
then updated at each time step t by stochastic gradient ascent in the 
direction that maximizes expected outcome25
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∂
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t

We evaluated the performance of the RL policy network in game  
play, sampling each move ∼ (⋅| )ρa p st t  from its output probability  
distribution over actions. When played head-to-head, the RL policy 
network won more than 80% of games against the SL policy network. 
We also tested against the strongest open-source Go program, Pachi14, 
a sophisticated Monte Carlo search program, ranked at 2 amateur dan 
on KGS, that executes 100,000 simulations per move. Using no search 
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised 

Figure 1 | Neural network training pipeline and architecture. a, A fast 
rollout policy pπ and supervised learning (SL) policy network pσ are 
trained to predict human expert moves in a data set of positions.  
A reinforcement learning (RL) policy network pρ is initialized to the SL 
policy network, and is then improved by policy gradient learning to 
maximize the outcome (that is, winning more games) against previous 
versions of the policy network. A new data set is generated by playing 
games of self-play with the RL policy network. Finally, a value network vθ 
is trained by regression to predict the expected outcome (that is, whether 

the current player wins) in positions from the self-play data set.  
b, Schematic representation of the neural network architecture used in 
AlphaGo. The policy network takes a representation of the board position 
s as its input, passes it through many convolutional layers with parameters 
σ (SL policy network) or ρ (RL policy network), and outputs a probability 
distribution ( | )σp a s  or ( | )ρp a s  over legal moves a, represented by a 
probability map over the board. The value network similarly uses many 
convolutional layers with parameters θ, but outputs a scalar value vθ(s′) 
that predicts the expected outcome in position s′.
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Figure 2 | Strength and accuracy of policy and value networks.  
a, Plot showing the playing strength of policy networks as a function 
of their training accuracy. Policy networks with 128, 192, 256 and 384 
convolutional filters per layer were evaluated periodically during training; 
the plot shows the winning rate of AlphaGo using that policy network 
against the match version of AlphaGo. b, Comparison of evaluation 
accuracy between the value network and rollouts with different policies. 

Positions and outcomes were sampled from human expert games. Each 
position was evaluated by a single forward pass of the value network vθ, 
or by the mean outcome of 100 rollouts, played out using either uniform 
random rollouts, the fast rollout policy pπ, the SL policy network pσ or 
the RL policy network pρ. The mean squared error between the predicted 
value and the actual game outcome is plotted against the stage of the game 
(how many moves had been played in the given position).
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Figure 8: AlphaGo’s two deep neural networks (Adapted by permission from Macmillan Publishers Ltd.:
Nature, Figure 1b, Silver et al. 2016, copyright 2016).

“post-decision” state) s′, i.e., a sequence of a pair of moves can be modeled as

s∗ a∗−→ s a−→ s′,

using the notation consistent with Figure 8.
AlphaGo’s use of MCTS is described on the 1st page of their 2016 Nature article in the following

three excerpts (Silver et al. 2016, p.484):

“Monte Carlo tree search (MCTS) uses Monte Carlo rollouts to estimate the value of each
state in a search tree. As more simulations are executed, the search tree grows larger and
the relevant values become more accurate. The policy used to select actions during search
is also improved over time, by selecting children with higher values. Asymptotically, this
policy converges to optimal play, and the evaluations converge to the optimal value function.
The strongest current Go programs are based on MCTS...

“We pass in the board position as a 19 × 19 image and use convolutional layers to construct
a representation of the position. We use these neural networks to reduce the effective depth
and breadth of the search tree: evaluating positions using a value network, and sampling
actions using a policy network.
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“Our program AlphaGo efficiently combines the policy and value networks with MCTS.”

Figure 8 shows the corresponding p(a|s) for the policy neural network that is used to simulate the
opponent’s moves and the value function v(s′) that estimates the value of a board configuration (state) using
the value neural network. The latter could be used in the following way: if a state is reached where the
value is known with sufficient precision, then stop there and start the backwards dynamic programming;
else, simulate further by following the UCB prescription for the next move to explore.

The objective is to effectively and efficiently (through appropriate parametrization) approximate the
value function approximation and represent the opposing player’s moves as a probability distribution, which
degenerates to a deterministic policy if the game is easily solved to completion assuming the opponent
plays “optimally.” However, at the core of these lies the Monte Carlo sampling of game trees or what our
community would call the simulation of sample paths. Although the game is completely deterministic,
unlike other games of chance such as those involving the dealing of playing cards (e.g., bridge and poker), the
sheer astronomical number of possibilities precludes the use of brute-force enumeration of all possibilities,
thus leading to the adoption of randomized approaches. This in itself is not new, even for games, but the
Go-playing programs have transformed this from simple coin flips for search (which branch to follow)
to the evaluation of a long sequence of alternating moves, with the opponent modeled by a probability
distribution over possible moves in the given reached configuration. In the framework of MDPs, Go can be
viewed as a finite-horizon problem where the objective is to maximize an expected reward (the territorial
advantage) or the probability of victory, where the randomness or uncertainty comes from two sources: the
state transitions, which depend on the opposing player’s move, and the single-stage reward, which could
be territorial (actual perceived gain) or strategic (an increase or decrease in the probability of winning), as
also reflected in the estimated value after the opponent’s move.

For chess, AlphaZero uses MCTS to search 80K positions per second, which sounds like a lot. However,
Stockfish, considered in 2017 by many to be the best computer chess-playing program (way better than any
human that has ever lived) considers about 70M positions per second, i.e., nearly three orders of magnitude
more, and yet AlphaZero did not lose a single game to Stockfish in their December 2017 100-game match
(28 wins, 72 draws). “Instead of an alpha-beta search with domain-specific enhancements, AlphaZero uses
a general-purpose Monte-Carlo tree search (MCTS) algorithm.” (Silver et al. 2017, p.3)

6 CONCLUSIONS

MCTS provides the foundation for training the DNNs of AlphaGo, as well as the single DNN engine
for its successor AlphaZero. The roots of MCTS are contained in the more general AMS algorithm for
MDPs published by Chang et al. (2005) in Operations Research, where dynamic programming (backward
induction) is used to estimate the value function in an MDP. A game tree can be viewed as a decision
tree (simplified MDP) with the opponent in place of “nature” in the model. In AlphaZero, both the policy
and value networks are contained in a single DNN, which makes it suitable to play against itself when the
net is trained for playing both sides of the game. Thus, an important takeaway message to be conveyed
is that OR played an unheralded role, as the MCTS algorithm is based on the UCB algorithm for MDPs,
with dynamic programming (backward induction) used to calculate/estimate the value function in an MDP
(game tree, viewed as a decision tree with the opponent in place of “nature” in the model).

We have also shown that research originating from the simulation literature, and specifically the
R&S area, has offered valuable ideas to improve the algorithmic performance of MCTS, which serves to
complement the ML/AI community’s focus on the DNN models used as the policy network and value
network, or the single DNN trained using MCTS generated data as in AlphaZero. The OCBA selection
operator discussed in Section 3.2 provides such an example, with the improved performance of MCTS
demonstrated using the game of Othello. OCBA also removes the bounded and known support assumption
for the reward distribution, enlarging the applicability of MCTS to more problems. Another important
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insight from OCBA is variance information is as important as estimating the average performance of a
move.

In terms of future research, an obvious direction in AI would be to consider MCTS for games that
are inherently stochastic. Both Go and chess are deterministic games, whereas games such as bridge
and poker involve uncertainty both in terms of future outcomes (how an opponent plays) and imperfect
information (not knowing what cards the opponents hold). The latter is what makes both bridge and poker
more challenging; otherwise, they would be relatively easier to solve. Thus, in these settings, the inherent
uncertainty dominates. Even so, in January 2017, an AI system called Libratus, developed by Tuomas
Sandholm and his PhD student Noam Brown at CMU, bested four of the world’s top human players,
apparently deriving strategies using more traditional AI approaches and not MCTS, so an interesting
question is whether or not using MCTS could improve the performance. As mentioned in the introduction,
other connections between simulation optimization and AI are explored in the recent INFORMS TutORial
by (Peng et al. 2023).
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