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ABSTRACT

A digital twin is a virtual representation of a physical system, continuously updated with data from
the physical system, enabling dynamic information exchange and decision-making. This bidirectional
interaction, the key distinction from traditional simulations, introduces unique challenges to simulation
optimization. These challenges encompass streaming data, system nonstationarity, and real-time decision-
making. This tutorial reviews recent advancements and methodologies aimed at addressing these issues,
with a focus on data-driven simulation optimization under streaming data.

1 INTRODUCTION

A digital twin is “a set of virtual information constructs that mimics the structure, context, and behavior of
a natural, engineered, or social system (or system of systems), is dynamically updated with data from its
physical twin, has a predictive capability, and informs decisions that realize value.” (National Academies
of Sciences, Engineering, and Medicine 2024). Digital twin emerges as an appealing and perhaps the sole
feasible tool for modeling, comprehending, and optimizing complex real-life systems. It has significant
potential in many engineering and science domains.

At the core of many digital twins is a stochastic simulation model or a system of such models. More
detailed descriptions of digital twins and their connection with simulation are available in recent tutorial
papers, such as Li et al. (2020), Biller et al. (2022), Matta and Lugaresi (2023). The defining feature
of a digital twin, distinguishing it from conventional simulations, is its bidirectional interaction with the
physical system. The physical system continually provides its digital twin with real-time data, enhancing
the fidelity of the simulation model(s), while predictions and decisions based on these models are provided
to the physical system. This process occurs repeatedly at a much faster pace than conventional simulation
analysis and optimization. Therefore, digital twins present new challenges to simulation analysis and
optimization, necessitating data-driven techniques that previously have not been much explored in the
simulation literature.

This tutorial aims to provide an overview of the rapidly evolving research area of data-driven simulation
optimization, outlining the challenges and opportunities presented by digital twins. It introduces some
recent developments and primarily focuses on the types of data used for estimating probability distributions
in stochastic simulation models. While other data types, such as contextual information or environmental
variables, are also of interest, they are beyond the scope of this tutorial.

2 CHALLENGES IN DATA-DRIVEN SIMULATION OPTIMIZATION

Traditional simulation optimization, which assumes access to a fixed simulator, already faces numerous
challenges such as expensive and noisy evaluation of objective functions and lack of knowledge about the
objective function structures. The literature on simulation optimization has been advancing the frontier in
this field (Fu 2015). However, the emergence of digital twins and data-driven applications brings additional
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challenges to simulation optimization. In the following sections, we will discuss these new challenges in
greater detail and review existing work that addresses them.

2.1 Input Data vs. Observable Contexts

Let’s begin by discussing the types of data commonly encountered in data-driven simulation optimization.
The first type comprises data or observations stemming from randomness within the physical system.
Examples of such data include customer demands and lead times in revenue management applications,
and passenger arrival times and transit times in transportation networks. These data are frequently utilized
to estimate the input distributions of the simulator, hence often referred to as input data. The second
type consists of observable contexts, often termed contextual variables, covariates, or side information.
For instance, personal characteristics such as tumor biomarkers and gene expressions serve as observable
contexts for personalized treatment decisions in cancer treatment (Shen et al. 2021); in finance, underlying
risk factors like stock prices and interest rates act as contexts for monitoring and minimizing portfolio risks
(Jiang et al. 2019).

These two types of data play distinct roles in simulation optimization. Input data, observed from an
unknown underlying distribution, introduce uncertainty for decision-makers, who must therefore consider
hedging against this input uncertainty in the decisions deployed to the physical system. Conversely, covariates
are observed beforehand, and decisions are made based on the realized covariate. Typically, decision-makers
seek to identify an optimal decision for each possible realization of the covariate. Mathematically, the
first problem entails finding a single decision that accounts for the uncertainty of the unknown underlying
distribution, while the second involves identifying an optimal policy — a function that maps from the
covariate space to the decision space.

In recent years, active research has focused on ranking and selection (R&S) under a fixed batch of
input data. R&S is a type of simulation optimization problems with categorical decision variables. One
line of research aims to screen out as many inferior designs as possible in the presence of input uncertainty,
as demonstrated by works such as Corlu and Biller (2013), Corlu and Biller (2015), Song and Nelson
(2019). Another stream of work takes a distributionally robust optimization (DRO) approach by assuming
that the true input distribution is contained in a finite set of known distributions (i.e., ambiguity set), with
a goal of selecting the design with the best worst-case performance over the ambiguity set, such as Gao
et al. (2017), Xiao and Gao (2018), Xiao et al. (2020), Fan et al. (2020). Different from the mainstream
DRO approach, Wu and Zhou (2017) aims to select the true best design instead of the worst-case optimal.
Recognizing the overly conservative nature of DRO, which solely considers the worst case, Wu et al. (2018)
proposes a Bayesian risk optimization (BRO) approach for general simulation optimization problems. Unlike
constructing an ambiguity set, BRO utilizes the Bayesian posterior distribution on the input distribution
parameter to quantify input uncertainty and subsequently applies a risk functional (with respect to the
posterior) of the original objective function. There is also active research ongoing for contextual-dependent
R&S and general simulation optimization, such as Shen et al. (2021), Gao et al. (2019), Jin et al. (2020),
Li et al. (2020), Liu et al. (2021), Li et al. (2022), Cakmak et al. (2024).

2.2 Streaming Input Data

A critical aspect of digital twin is the synchronization of the physical system and its digital twin via the
use of streaming data in real time (Biller et al. 2022). Streaming data arrive sequentially in batches, often
of random and varying sizes. Figure 1 compares the process of traditional simulation optimization and
digital-twin-based simulation optimization. Specifically, traditional simulation assumes a fixed simulation
model, which is built with a batch of pre-collected data. Digital twin, in contrast, is a dynamic simulator that
is frequently updated with the new incoming input data. This leads to the need of running more simulations
under time-heterogeneous models and dynamically update the decisions. Moreover, the decisions may
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impact the data (i.e., data are endogenous to the decision), creating an even more complicated relationship
between data, model, and decisions.
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Figure 1: Traditional versus Digital-Twin-based Simulation Optimization.

Despite extensive research on simulation optimization with input data, most existing work focuses on
fixed input data, as summarized in the previous subsection. The study of streaming data in this context
is relatively limited and recent. Wu et al. (2022) consider streaming input data in R&S problems, and
propose a data-driven approach that aims to achieve a specified probability of correct selection (PCS) of
the best design. Wang and Zhou (2022) consider the R&S problem with streaming input data give a fixed
simulation budget at each time stage, and develop an optimal budget allocation procedure to maximize the
PCS. Additionally, He et al. (2024) and Liu et al. (2024) study continuous simulation optimization with
streaming input data. The former paper estimates the unknown input parameter via a maximum likelihood
estimator with i.i.d. (independent and identically distributed) streaming data, while the latter adopts a
Bayesian approach and also accounts for decision-dependent streaming data.

Furthermore, some data can be actively acquired using financial or temporal resources, leading to
questions about how to allocate budgets for data collection across different input distributions and how to
allocate resources jointly to data collection and simulation runs. With this consideration, Wu and Zhou
(2017) and Xu et al. (2020) explore budget allocation for input data collection and simulation under shared
resources. Wu and Zhou (2017) adopt a two-stage approach that first collects sufficient input data and then
allocates the remaining budget to running simulations. Xu et al. (2020) consider scenarios where the cost
of data collection is random and compare situations where simulation costs are negligible or significant
compared to data collection costs. Later, Kim and Song (2022) and Wang and Zhou (2023) consider two
separate budgets for data collection and simulation. Kim and Song (2022) solve the two budget allocation
problems separately and develop a sequential allocation procedure with the selection criterion of the most
probable best design. In contrast, Wang and Zhou (2023) jointly formulate and optimize the two resource
allocations.
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2.3 Decision-dependent Uncertainty and System Nonstationarity

Most of the relevant work in the simulation optimization literature focus on exogenous distributions that
are independent of the decision variables. However, as illustrated in Figure 1, decisions may affect some
random factors in the system, meaning that these random factors are endogenous to decisions. This implies
that data observed from endogenous uncertainty over time are not i.i.d. but rather correlated and differently
distributed. For instance, in revenue management problems, the price (decision) of a product can influence
the distribution of customer demands, and the customer demand data may, in turn, affect the price if dynamic
pricing is adopted by the retailer. In a broader context, endogenous uncertainty or decision-dependent data
can be seen as a special case of system nonstationary. Other cases of system nonstationarity include abrupt
changes, structural changes, and small and possibly random perturbations in the system.

System nonstationarity has been seldom considered in simulation optimization. To the best of our
knowledge, the only work in simulation optimization that considers decision-dependent input distribu-
tion/data are Liu et al. (2024) and its earlier conference paper Liu et al. (2021). They propose an algorithm
that jointly estimates the input distribution parameter via Bayesian posterior distribution and updates the
decision by applying stochastic gradient descent (SGD) iterations on the Bayesian average of the objective
function. They show that the Bayesian posterior distribution is a consistent estimator of the input distribution
parameters even with non-i.i.d. decision-dependent data, and consequently the algorithm converges to the
optimal solution under the true input distribution.

2.4 Online Decision Making

Traditional simulation optimization is proficient in offline decision making, but is almost impossible to
use for online decision making due to the long computation time to run simulations of a complex system.
Some pioneering works, including (Nelson 2016; Lin and Nelson 2016; Hong and Jiang 2019; Jiang et al.
2019; Shen et al. 2021; Jin et al. 2020; Liu et al. 2021), address the problem of online decision-making
with offline estimation. In this approach, the simulation model is fixed and run offline to simulate multiple
scenarios. Then, in online applications, when a new scenario is observed, a predictive model is utilized to
determine the optimal decision for the observed scenario based on the offline simulation results of known
scenarios.

This approach, which combines online decision-making with offline estimation or simulation, is
primarily suited for contextual data. However, it is challenging to apply to many digital twin applications
where the simulator dynamically changes over time. A possible adaptation involves parameterizing the
simulator using input parameters, typically continuous variables. This adaptation, though, could result in a
high-dimensional parameter space, and the predicted simulation outputs might exhibit significant bias. In
contrast, most studies dealing with streaming input data take the approach of offline decision-making with
online estimation and simulation, as summarized in Section 2.2. However, the problem becomes much more
challenging when online decision-making is coupled with online estimation, as online estimation (with
streaming input data) modifies the underlying simulation model. Consequently, online decision-making
within a dynamically evolving simulation model remains a largely open area. To address this, we anticipate
a need to not only develop sophisticated simulation optimization algorithms but also to harness emerging
techniques and infrastructures, such as machine learning tools and high performance computing.

2.5 Uncertainty Quantification

It is important to quantify the uncertainty of simulation outputs and the decisions made out of those outputs.
There have been extensive study on input uncertainty quantification with a fixed batch of input data. These
methods include Bayesian methods (e.g., Chick (2001), Zouaoui and Wilson (2003), Zouaoui and Wilson
(2004), Xie et al. (2014)), frequentist methods (e.g., Barton and Schruben (1993), Barton and Schruben
(2001), Cheng and Holloand (1997)), delta methods (e.g., Cheng and Holloand (1997)), meta-model assisted
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methods (e.g., Barton et al. (2013), Xie et al. (2014)), and some more recent ones (e.g., Lam (2016), Zhu
et al. (2020), Lam and Qian (2016), Lam and Qian (2018), Lin et al. (2015), Feng and Song (2019)).

In spite of the flourishing research on input uncertainty quantification, there is almost no work con-
sidering streaming input data. Probably the only exception is by Liu and Zhou (2019), who propose a
two-layer importance sampling framework that incorporates streaming data for online input uncertainty
quantification. Moreover, little work has been done on quantifying the uncertainty of a solution or objective
value of a simulation optimization problem with input data. In this regard, Lam and Zhou (2015) consider
replacing the unknown input distribution by the empirical distribution of the input data, namely sample
average approximation (SAA), and propose several approaches to quantify the uncertainty in the optimal
objective value, including the empirical likelihood method, nonparametric Bayesian approach, and bootstrap
approach. Later, Lam and Zhou (2017) delve more into the empirical likelihood method.

Lastly, we want to conclude this section by noting that there are more challenges than those mentioned
here. For example, data could be high-dimensional, come from multiple sources, have different resolutions,
and exist in different formats. Additionally, models of different scales and different fidelity levels may
be available for complex systems. Integrating these diverse data and models is a challenging task for the
successful application of digital twins to real-world problems.

3 CURRENT RESEARCH IN DATA-DRIVEN SIMULATION OPTIMIZATION

In this section, we provide a gentle and brief introduction to some recent developments in the aforementioned
areas. We apologize that the focus will be on the author’s own work. Notations and technicality are kept
to a minimum, while emphasis is placed on intuitive understanding.

3.1 Simulation Optimization

We start with describing the problem setting. A general simulation optimization problem can be mathe-
matically formulated as

max
x∈X

h(x) := E[H(x,ξ )], (1)

where x is the decision variable, X is the feasible region for the decision variable, H is a deterministic
performance function specified by a simulation model, h is the mean performance measure of the system,
and ξ is a random vector that models the randomness in the system. The feasible region X could be an
explicitly specified set or implicitly determined by constraints on the decision variable. The performance
function H usually lacks a closed-form expression and must be evaluated through simulation that is often
computationally expensive — a key feature and challenge of simulation optimization.

Ranking and Selection (R&S) is a special type of simulation optimization problems defined on a finite
solution space. R&S deserves its own dedicated study, distinct from continuous simulation optimization. This
is due to the finite solution space inherent to R&S, which permits the simulation of every potential solution
multiple times. As a result, R&S can employ different methodologies that yield stronger convergence results
compared to those typically achieved in continuous simulation optimization. Moreover, the finite solutions
are often categorical, distinguishing R&S from a discretized version of a continuous simulation optimization
problem. Specifically, R&S wants to identify the solution with the smallest expected performance among
K solutions (also often called alternatives or designs). Denote by K := {1,2, . . . ,K} the enumeration of
all alternatives, and assume all the alternatives share the same randomness. Then, with other notations
same as (1), the optimal solution or the best alternative is defined as

b := argmin
i∈K

E[H(i,ξ )], (2)

where b is often assumed to be unique to avoid technicality. Since it is impossible to identify the best
alternative with 100% confidence unless all alternatives are simulated for an infinite number of times, the
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realistic goal of R&S often falls into two types: fixed confidence and fixed budget. The fixed confidence
setting aims to minimize the simulation effort to achieve a pre-specified probability of correct selection
(PCS) of the best alternative, while the fixed budget setting aims to maximize PCS when exhausting a
given simulation budget.

Please note that the performance measure considered in this tutorial is the mean/expectation of the
performance function. There could be other performance measures, such as quantiles (also often called
Value-at-Risk (VaR) in finance and risk analysis), and Conditional Value-at-Risk (CVaR), or a probability
of the performance function.

3.2 Input distribution, Input Data, Input Uncertainty

We now introduce some important concepts and notions regarding data-driven simulation optimization.
The expectation in (1) or (2) is taken with respect to the distribution of the random vector ξ . In practice,
the “correct” or true distribution Fc is almost never known and often needs to be estimated from input data.
The estimated distribution F̂ , called the input model, is the actual distribution used to run the simulation.

As a result, a typical stochastic simulation experiment faces two types of uncertainties: 1) simulation
uncertainty due to the simulation noise in performance evaluation (also referred to as the intrinsic uncertainty
or aleatoric uncertainty, because it is caused by the stochastic nature of the system); and 2) input uncertainty
in the input model F̂ (also referred to as model/parameter uncertainty or epsidemic uncertainty). The
performance estimation error due to simulation uncertainty can be “simulated away”, i.e., we can decrease
the error by increasing the number of simulation replications. In contrast, the input uncertainty is often
uncontrollable, subject to the limited amount of input data available and/or the arrival rate of streaming
data.

This first raises the question of how to address the input uncertainty when solving simulation optimization.
Secondly, as streaming input data continues to arrive over time, it brings up additional questions about how
to assimilate this data to improve the accuracy of the input model, and how to update the simulation-based
performance estimates and decisions accordingly. In the next few subsections, we will introduce recent
works that tackle these questions.

3.3 Simulation Optimization with Fixed Input Data

We first discuss the problem of how to find an “optimal” solution with a fixed batch of input data. As the
correct input distribution is unknown, the optimal solution to the true problem (1) is also not possible to
obtain; instead we need to re-define the optimality. One choice is the optimal solution to the empirical
problem:

min
x∈X

EF̂ [H(x,ξ )]. (3)

However, such a solution to this empirical problem (3) may perform poorly for the true problem (1),
especially when the size of input data is small, because the empirical problem completely ignores the input
uncertainty and treats the empirical distribution as if it were the true distribution.

To account for the input uncertainty, a popular class of approaches under the name of “distributionally
robust optimization (DRO)” aims to find a robust solution that optimizes the worst-case scenario in an
ambiguity set, which is often constructed to contain the true distribution with a prescribed high probability.
That is,

min
x∈X

max
F∈F

EF [H(x,ξ )], (4)

where F denotes the ambiguity set. A significant amount of efforts have been spent on the construction
of ambiguity sets. However, DRO’s reliance on the ambiguity set can be a double-edged sword: it may
lead to overly conservative solutions, as the worst case usually has a small probability to occur in reality.

In between the range of options from optimistically ignoring the distributional uncertainty as the empirical
optimization (3) to pessimistically fixating on the worst case as DRO (4), Zhou and Xie (2015) and Wu et al.
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(2018) propose a Bayesian risk optimization (BRO) approach that strikes the middle ground. Compared
with DRO, BRO has the following two features: 1) it adopts the Bayesian posterior distribution, instead of
an ambiguity set, to characterize the input uncertainty; and 2) it uses a general risk functional, rather than
the worst-case, to provide more flexibility towards the risk attitude. For computational convenience, let’s
first assume the input distribution takes a parametric form {Fθ | θ ∈ Θ} that admits the probability density
function (pdf) f (·|θ), where Θ is the parameter space and θ c ∈ Θ is the unknown true parameter. Then they
take a Bayesian perspective to estimate the unknown parameter. That is, the parameter vector θ is assumed
to be random whose probability distribution is supported on the set Θ and follow a prior probability density
p(θ). Given the data (sample) ξ

(N) = (ξ1, ...,ξN), the posterior distribution is determined by Bayes’ rule

p(θ |ξ (N)) =
f (ξ (N)|θ)p(θ)∫

Θ
f (ξ (N)|θ)p(θ)dθ

,

where f (ξ (N)|θ) = ∏
N
i=1 f (ξi|θ) is the conditional density of the data by assuming ξi’s are i.i.d.. Let

θN denote a random vector that follows the posterior distribution p(θ |ξ (N)). This leads to the following
Bayesian Risk Optimization (BRO) formulation

min
x∈X

ρθN

(
Eξ |θN [H(x,ξ )]

)
, (5)

where ρθN is a risk functional (such as expectation, mean-variance, Value-at-Risk, Conditional Value-at-
Risk) taken with respect to the posterior distribution p(θ |ξ (N)), and Eξ |θ is the expectation taken with
respect to f (ξ |θ) conditional on θ . For example, if ρ is chosen to be the expectation, then the objective
function in (5) equals

∫
Θ

∫
Ξ

H(x,ξ ) f (ξ |θ)p(θ |ξ (N))dξ dθ .
Leveraging the well-known Bayesian consistency and Bayesian central limit theorem (a.k.a. the

Bernstein-von Mises theorem), Wu et al. (2018) show that the BRO formulation converges almost surely
to the true problem (1) as the data size N goes to infinity and that the BRO objective roughly equals a
weighted sum of the posterior mean performance and the confidence interval width of the actual performance.
Furthermore, numerical methods for solving (5) have been developed in Cakmak et al. (2021) and Cakmak
et al. (2020). The former method is based on stochastic gradient descent, and the latter is based on Bayesian
optimization.

The parametric assumption on the input distribution may bring in additional model uncertainty in
some application problems where we do not have a strong reason for the chosen parametric family. To
hedge against this model uncertainty (mis-specification of the parametric family) while still maintaining the
advantage of Bayesian estimation when data are limited, Shapiro et al. (2023) propose a new formulation
termed Bayesian Distributionally Robust Optimization (Bayesian-DRO), which poses robustness against
the model uncertainty of the assumed parametric distributions. Bayesian-DRO constructs an ambiguity
set by taking the parametric distribution as the reference distribution and optimizes the worst-case of the
Bayesian average of the true problem. More specifically, for every θ ∈ Θ let M θ be a set of probability
distributions centered around f (ξ |θ). For example, M θ can be constructed as a ball with radius defined
by the Kullback-Leiber (KL) divergence from the reference distribution f (ξ |θ). Then the Bayesian-DRO
formulation is as follows:

min
x∈X

EθN

[
sup

Q∈MθN

EQ|θN [G(x,ξ )]

]
,

whereEθN denotes the expectation with respect to the posterior distribution p(θ |ξ (N)), EQ|θ is the expectation
with respect to distribution Q of ξ conditional on θ , and Mθ is referred to as the ambiguity set of input
distribution familiy. Please note that the posterior distribution depends on choice of the prior density p(θ)
and parametric model f (·|θ). The choice of p(θ) and f (·|θ) could both be subject to ambiguity, and in
that paper they mainly deal with ambiguity with respect to the parametric model.
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It should be mentioned that there have been other attempts to extend the BRO framework to non-
parametric input distributions. For example, Wang et al. (2021) uses Dirichlet processes as the posterior
process for estimating the input distribution in a non-parametric way.

3.4 Simulation Optimization with Streaming Input Data

The Bayesian updating offers a natural way to assimilate data that sequentially arrive over time, and thus,
the BRO framework mentioned in the last section can be naturally extended to solve simulation optimization
problems with streaming input data and possibly for online decision making. Liu et al. (2024) consider such
a problem in two scenarios: decision-independent (exogenous) data, and decision-dependent (endogenous)
data. For the scenario of decision-dependent uncertainty, the true problem is

min
x∈X

E f (·;x,θ c)[H(x,ξ )] (decision-dependent uncertainty) (6)

As the distribution parameter θ c is unknown, the decision maker observes data yt = {yt,1, · · · ,yt,D
iid∼

f (·|xt ,θ
c)} that come at each time stage t. To solve this problem, Liu et al. (2024) propose an iterative

approach with the following main steps at each time stage t (only the algorithm for the decision-dependent
case is shown below):

1. Data: at time t, receive a batch of data yt = {yt,1, · · · ,yt,D
iid∼ f (·|xt ,θ

c)}.
2. Estimation: update the Bayesian posterior

pt(θ |y1, . . . ,yt) ∝ pt−1(θ |y1, . . . ,yt−1) ·
D

∏
j=1

f (yt, j|xt ,θ). (7)

3. Optimization: consider the Bayesian average problem

Eθt [Eξ |θt [H(x,ξ )]], (8)

where θt ∼ pt(θ |y1, . . . ,yt). Take one or more iterates of SGD for solving (8), so the decision is
updated via

xt+1 := ProjX
{

xt −αt

(
∇xH(xt ,ξt)+H(xt ,ξt)

∇x f̂t (ξt ;xt)

f̂t (ξt ;xt)︸ ︷︷ ︸
unbiased gradient estimator

)}
,

where f̂t(·;x) = Eθt [ f (·|x,θ)], ξt ∼ f (·|xt ,θt).

In the approach outlined above, Step 1 receives a batch of data yt that follow a distribution f (·|xt ,θ
c)

dependent on both the current decision xt and the unknown parameter θ c. Step 2 estimates the unknown
parameter via Bayesian posterior pt , which is updated from the previous posterior pt−1 and the newly
received batch of data. Since the true objective function (6) is not available, Step 3 considers an alternative
objective — the Bayesian average problem (8), which is a special case of the BRO formulation (5) when the
risk functional ρ is set as the expectation. It then employs stochastic gradient descent (SGD) to solve the
Bayesian average problem, but given the limited time in each time stage, only a few iterates of SGD may
be carried out to yield an online decision xt+1 for the next time stage. If decision-independent uncertainty
is considered, the above algorithm simplifies by replacing f (·|xt ,θ

c) with f (·|θ c) and setting the unbiased
gradient estimator simply as ∇xH(xt ,ξt).

A careful reader may notice that the Bayesian updating in (7) is questionable, since classical Bayes’
rule assumes data are generated from the same distribution, whereas here the data {y1, . . . ,yt} come from
different and correlated distributions. Hence, a key question is whether the Bayes updating rule remains
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valid in the decision-dependent case. Liu et al. (2024) provide an affirmative answer to this question by
showing the strong consistency of the Bayesian posterior in (7) under some mild conditions. The main
condition can be intuitively interpreted as that for any decision x, the data generated from distributions of
different θ ’s are distinguishable. Based on the consistency of the posterior distributions, the convergence
of the decision sequence can be guaranteed.

3.5 Ranking and Selection with Streaming Input Data

Streaming data are also common in applications of R&S. Wu et al. (2022) consider a fixed confidence
ranking and selection (R&S) problem where new input data arrives over time in batches of possibly varying
and random sizes. In each time stage, the number of allowable simulation replications is limited, due to
the computational time of each simulation replication and the time constraint of each stage. The new data
batch can be used to update the input distribution of the simulation model so as to reduce input uncertainty.
Because of the limited simulation replications at each time stage, it is necessary to aggregate the simulation
outputs across different time stages to reduce estimation error in the performance estimate. More specifically,
during each stage the input parameter estimate is updated to θ̂t , and incremental simulations are run under
the input distribution F

θ̂t
. Their goal is to design a procedure which terminates after a number of stages

and outputs the true best design with probability at least (1−α), where α ∈ (0,1).
Figure 2 illustrates how simulation outputs are generated for a single design. Here are a few observations.

Stage 1 Stage 2 Stage 3

Figure 2: Illustration of simulating a single design with streaming input data, where ζ denotes input data,
θ̂ is the input parameter estimate, and X denotes simulation output.

First, the parameter estimates {θ̂t} are correlated since they are computed using the same stream of input
data. Second, since {θ̂t} are random variables that generally take different values, the simulation outputs
X are not identically distributed across different stages. Third, conditioned on {θ̂t}, the outputs X are
i.i.d. within the same stage and independent across stages, but unconditional independence no longer holds
since X are jointly affected by the correlation among {θ̂t}. In summary, the simulation outputs are neither
independent nor identically distributed.

To address the challenge associated with non-i.i.d. simulation outputs, they propose a moving-average
performance estimator. Let {Xi,r(θ̂t)}m(t)

r=1 denote the batch of simulation outputs of the ith design, generated
at stage t under the input distribution P

θ̂t
, where m(t) denote the number of simulation replications at time

t. Let M(t) = ∑
t
ℓ=1 m(ℓ) denote the total number of simulation replications up to time t. Then, the moving

average estimator is as follows:

µ̂i,t := [M(t)−M(tη)]−1
t

∑
ℓ=tη+1

m(ℓ)

∑
r=1

Xi,r(θ̂ℓ), (9)
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where η ∈ [0,1) is called the drop rate which controls the amount of effective samples used for computation,
and tη := ⌊ηt⌋ is the number of stages “discarded”. In words, the estimator in (9) only averages the latest
(1−η) portion of all the simulation outputs, hence the name “moving average”. The idea of throwing
away some earlier samples is motivated by the following two extreme cases.

(i) η = 0: Keeping all the outputs helps reduce simulation uncertainty but also retains all the biases
{µi(θ̂t)−µi(θ

c)} that accumulate over time.
(ii) η = 1: This roughly corresponds to keeping only the latest output Xi,m(t)(θ̂t), which has larger

variance due to the limited number of outputs in each time stage.

Hence, the drop rate η characterizes the trade-off between input uncertainty and simulation uncertainty,
and can be optimized to minimize the asymptotic variance of the estimator.

Using the moving average estimator, they then build on the sequential elimination (SE) framework to
perform R&S. SE was first developed by Even-Dar et al. (2002) and Even-Dar et al. (2006) for multi-armed
bandit problems. Ideally, design i will be eliminated if it is inferior to another alternative, i.e., ηi < η j, for
some j ̸= i. Considering the estimation error in performance estimates, design i would be eliminated if

δ̂i j,t +wi j,t = µ̂i,t − µ̂ j,t +wi j,t < 0, for some j ̸= i,

where δ̂i j,t = µ̂i,t − µ̂ j,t is the estimated performance difference between design i and design j at time t, and
wi j,t is a confidence band of the estimate δ̂i j,t . Hence, design i will be eliminated if the upper confidence
of performance difference δi j is below 0. Then, the key question is to derive the confidence bands {wi j,t}
to guarantee that the final PCS is at least 1−α . To do this, notice that the false selection happens at any
stage when the true optimal design is eliminated. Therefore, the probability of false selection (PFS) can
be written as:

PFS =P(The optimal design b is eliminated at some t)

=P

(
∞⋃

t=1

{The optimal design b is eliminated at t}
)

=
∞

∑
t=1

P(The optimal design b is eliminated at t)

≤
∞

∑
t=1

P

(⋃
i< j

{| δ̂i j,t −δi j(θ
c) |> wi j,t}

)
,

where the second equality follows from the fact that the events {The optimal design b is eliminated at t},
t = 1,2, . . . are disjoint, and the last inequality follows from

{The optimal design b is eliminated at t} ⊆
⋃
i< j

{| δ̂i j,t −δi j(θ
c) |> wi j,t}.

Hence, if one can find wi j,t such that

P

(⋃
i< j

{| δ̂i j,t −δi j(θ
c) |> wi j,t}

)
≤ 6α

π2t2 , (10)

then one has
∞

∑
t=1

P

(⋃
i< j

{| δ̂i j,t −δi j(θ
c) |> wi j,t}

)

≤
∞

∑
t=1

6α

π2t2 = α
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By deriving the exact confidence bands {wi j,t} that satisfy (10), PCS is achieved to be at least 1−α .
To further improve the efficiency of the SE procedure, Wu et al. (2022) also derive asymptotically

valid confidence bands, by utilizing the result of Multiple Comparisons with the Best (MCB) that was first
proposed by Chang and Hsu (1992). MCB is extended by Song and Nelson (2019) to construct confidence
bands accounting for input uncertainty, where they exploit the jointly asymptotic normality of pairwise
differences of performance estimators (referring to {δ̂i j,t} j ̸=i) that consist of samples under the current
estimated input distribution. Wu et al. (2022) extend this jointly asymptotic normality to the moving-average
estimator. Compared with the SEIU procedure (with exact confidence bands), the SEIU-MCB procedure
(with the asymptotically valid confidence bands) requires much less restrictive assumptions and achieves
higher efficiency. Furthermore, the MCB framework helps to avoid the usage of Boole’s inequality (or
union bound) across designs, and as a result, the asymptotic normality result yields much tighter confidence
bands to control the cumulative error across stages. In addition, the asymptotic normality result explicitly
characterizes how the drop rate η affects the trade-off between input uncertainty and simulation uncertainty.

3.6 Simultaneous Resource Allocation for Data Collection and Simulation

Collecting input data can be costly, and running simulations can be time-consuming, especially for complex
models. One direct approach is to wait until sufficient input data has been collected to accurately estimate
the input distribution before starting the simulation. However, since input data collection and simulation
require different resources (monetary/human resource and computing resource, respectively), conducting
both activities simultaneously may be more efficient.

Motivated by this observation, Wang and Zhou (2023) consider a simultaneous resource allocation
problem, where input data collection and simulation are conducted in parallel. They propose a multi-stage
procedure: at each stage, the input distributions are updated using the data collected from the previous
stage, and the design performance is updated using the simulation outputs from the previous stage. Based
on the current estimates of input distributions and design performance, resource allocation policies for input
data collection and simulation are computed and implemented within their respective stage-wise budgets.
These two allocation policies are interdependent, as they jointly influence the PCS.

More specifically, suppose that input data are actively collected with a cost of cs per unit for s= 1,2, . . . ,S,
where S is the total number of input distributions. Without loss of generality, assume running simulations
incurs computing resource at a cost of 1 per unit. At each stage t, one computes a stage-wise allocation
policy {mi,t} to allocate a stage-wise budget TS to run the simulation for designs under θ̂t , which is the
estimation of the input distributions at the beginning of stage t, to obtain samples X1

i (θ̂t), . . . ,X
mi,t
i (θ̂t). At

the same time, one also computes a stage-wise allocation policy {ns,t} to allocate a stage-wise budget TI

to collect input data and update the input parameter θ̂t+1. The moving average estimator (9) is used for
estimating performance of each design.

To derive the stage-wise budget allocation policies, let δi j(θ) = µi(θ)− µ j(θ) be the performance
difference between design i and j under input parameter θ , δ̂i j,t = µ̂i,t − µ̂ j,t be the sample approximation
of δi j(θ

c), and σ2
i (θ) = Var(Xi(θ)) be the performance variance of design i under θ . Assume that in

the long run, the budget allocated to a certain design i (or input distribution s) is approximately tm̄i (or
tn̄s). They apply the large deviations theory to derive the asymptotic exponential convergence rate of PCS,
and then formulate an optimization problem to maximize this rate subject to the two budget constraints
(∑S

s=1 csn̄s = TI , ∑
K
i=1 m̄i = TS). Ignoring the minor issue of tm̄i and tn̄s not being integers and relaxing them

to be continuous variables, thes rate optimization problem is a convex problem. Hence, the Karush-Kuhn-
Tucker (KKT) condition charaterzies its optimality condition, which presents the following three sets of
equations:

• (Local Balance) δ 2
bi(θ

c)

σ̃2
bi

=
δ 2

b j(θ
c)

σ̃2
b j

∀i ̸= j ̸= b
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• (Global Balance) m̄2
b = σ2

b (θ
c)∑i ̸=b

m̄2
i

σ2
i (θ

c)

• (IU Balance) 1
csn̄2

s
∑i̸=b

m̄2
i

σ2
i (θ

c)
g(i,s) = 1

cs′ n̄
2
s′

∑i ̸=b
m̄2

i
σ2

i (θ
c)

g(i,s′) ∀s ̸= s′,

where g(i,s) = ∂θsδbi(θ
c)⊺ΣD,s∂θsδbi(θ

c), σ̃2
i j = λI,η ∑

S
s=1 n̄−1

s g(i,s)+ λS,ηm̄−1
i σ2

i (θ
c)+ λS,ηm̄−1

j σ2
j (θ

c)),

∂θs is the partial derivative taken with respect to θs, λI,η =
(

2
1−η

+ 2η lnη

(1−η)2

)
and λS,η = 1

1−η
. Please note

that σ̃2
i j is the asymptotic variance of

√
tδ̂i j,t , as shown in the asymptotic normality result in their paper.

The "Local Balance" equation and the "Global Balance" equation, two of the three optimality equations
mentioned above, are similar in form to those in previous works that do not consider input uncertainty (Glynn
and Juneja (2004)) or use passively obtained streaming input data (Wang and Zhou (2022)). However, the
rate function in the “Local Balance" equation now includes both the allocation policy for the simulation
budget and the allocation policy for input data collection, since they jointly determine the variance term
σ̃2

bi. The third optimality equation, the “IU Balance” equation, can be used to allocate budget for input data
collection to reduce input uncertainty. The “IU Balance” equation suggests that the amount of input data
allocated to a particular distribution Fθ c

s
depends on three factors in addition to the cost: the simulation

effort m̄i, the simulation noise σ2
i (θ

c) for design i ̸= b, and its sensitivity g(i,s) to the input parameter
θ c

s . When the function g(i,s) is large, the performance of design i is more sensitive to the input parameter
θ c

s . If additionally m̄2
i

σ2
i (θ

c)
is also large, which means the simulation error of design i is small, more effort

should be devoted to data collection for input distribution θs to reduce input uncertainty.
Leveraging these optimality conditions (balance equations), they develop a fully sequential algorithm

using a ”Balancing” approach (Chen and Ryzhov 2022). This approach iteratively reduces the gap between
two sides of the balance equations, aiming to achieve the equations in the limit.

4 CONCLUSIONS

This tutorial discusses the new challenges in simulation optimization arising from digital twins. Distinct
from traditional simulators, digital twins synchronize with the physical system via streaming data and
decisions in real time. Therefore, data-driven simulation optimization plays an extremely important role in
the application of digital twins to real-world problems. Research on data-driven simulation optimization is
still in its infancy, and it can be envisioned that there will be a great need for new efficient methodologies
in this area.
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