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ABSTRACT

We consider the problem of finding feasible systems with respect to a stochastic constraint when the
performance of each system needs to be evaluated via simulation. We develop a new procedure, referred
to as the Indifference-Zone Relaxation procedure, to lessen inefficiencies of existing procedures derived
under the assumption that all systems are exactly the tolerance level away from the threshold. Specifically,
our procedure introduces a set of relaxed tolerance levels and simultaneously implements two subroutines
for each relaxed tolerance level: one to identify clearly feasible systems and the other to exclude clearly
infeasible systems. As a result, the proposed procedure allows early determination of feasibility for some
systems, while maintaining the statistical guarantee. The efficiency of the procedure is investigated through
experimental results.

1 INTRODUCTION

Ranking and selection (R&S) procedures have been developed and used for finding a system with the best
performance among finitely many systems when the performance is evaluated by stochastic simulation.
General approaches to R&S fall in several categories, including fully-sequential indifference-zone (IZ)
procedures (Kim and Nelson 2006), optimal computing budget allocation (OCBA) procedures (Chen et al.
2000), and Bayesian procedures (Chick 2006).

Constrained R&S involves selecting the best system with respect to a primary performance measure
while satisfying stochastic constraints on secondary performance measures. Andradóttir and Kim (2010)
and Batur and Kim (2010) develop fully-sequential IZ feasibility check procedures (FCPs) to find a set of
feasible systems with respect to a constraint and multiple constraints, respectively. These FCPs are employed
as subroutines to select a system with the best performance among systems satisfying constraints on one
or more secondary performance measures. Andradóttir and Kim (2010) and Healey et al. (2013) propose
statistically valid procedures that select the best feasible system with at least a pre-specified probability
under a stochastic constraint. Healey et al. (2014) extend the procedures to handle multiple stochastic
constraints and to find the best system among the feasible systems. As OCBA procedures, Lee et al.
(2012) provide a procedure that allocates a finite simulation budget to maximize the probability of correctly
selecting the best system satisfying multiple stochastic constraints. Furthermore, Hunter and Pasupathy
(2013), Pasupathy et al. (2015), and Gao and Chen (2017) enhance a feasibility determination for multiple
stochastic constraints considering the OCBA and the large deviation theory. Solow et al. (2021) handle
the constraints using Bayesian concepts. In this paper, we focus on the fully-sequential IZ procedures in
the presence of a stochastic constraint.

The fully-sequential IZ FCPs introduce one tolerance level, that specifies how much the decision maker
is willing to be off from the constant threshold for checking the feasibility of the systems. This is the least
absolute difference in the performance measure and the constant threshold that the decision maker wants
to detect. In practice, the true expected performance measure is unknown. When a system’s performance
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measure is very close to the constant threshold, distinguishing this small difference requires a huge number
of replications until the decision maker determines its feasibility. The tolerance level helps avoid such
situations. Nevertheless, when the tolerance level is too small relative to the difference between the true
expected performance measure and the constant threshold, computational costs for feasibility checks may
be unnecessarily high. Therefore, a small value of the tolerance level may aggravate the computational
burden when the number of systems becomes large and their performance measures quite vary. Lee et al.
(2018) propose the adaptive feasibility check procedure that uses existing FCPs (Batur and Kim 2010)
with different thresholds as its subroutines and introduce a decreasing sequence of tolerance levels within
the subroutines. The procedure is designed to self-adjust tolerance levels regarding each system and each
constraint by introducing two independent FCPs with different thresholds and the same tolerance level.
Even though the procedure shows strong empirical performance in numerical and practical examples, it
is found that the procedure may terminate without keeping the statistical guarantee when the expected
performance measure is very close to the constant threshold.

In this paper, we propose a new FCP, referred to as the Indifference-Zone Relaxation (IZR) procedure,
that (i) introduces a set of relaxed tolerance levels and (ii) simultaneously runs two subroutines with different
thresholds and the relaxed tolerance levels. In particular, a subroutine of IZR mainly distinguishes clearly
infeasible systems, and the other subroutine distinguishes clearly feasible systems. Then, the algorithm
makes the feasibility decision of the system whenever the two subroutines provide the same feasibility
decision (i.e., either feasible or infeasible) for the same tolerance level. As a result, the feasibility decision
of different systems may be made with different tolerance levels and this leads to saving computational
costs while keeping the statistical guarantee with respect to the original tolerance level.

The rest of the paper is organized as follows: Section 2 provides the background for our problem.
Section 3 proposes our IZR procedure and Section 4 presents numerical results for our procedure and
compares its performance with that of an existing procedure. Concluding remarks are provided in Section
5. Note that Zhou et al. (2024) provide additional details for this paper, including the proof of the statistical
guarantee of the procedure.

2 BACKGROUNDS

We consider k systems whose performance can be observed through stochastic simulation and one constraint
on a performance measure. Let Θ denote the set of all systems (i.e., Θ = {1, 2, . . . , k}) and Yij for
j = 1, 2, . . . , denote the jth simulation observation associated with the performance measure of system i.
For any given system i, yi denotes the expectation of Yij (i.e., yi = E[Yij ]) and σ2

i denotes the variance
of Yij (i.e., σ2

i = Var[Yij ]). Let q be a given constant threshold in the constraint. System i is defined as
feasible if yi ≤ q, and infeasible otherwise. Our problem is to determine the set of systems with yi ≤ q.
We assume that the observations satisfy the following assumption throughout the paper:

Assumption 1. For each i = 1, 2, . . . , k,

Yij
iid∼ N(yi, σ

2
i ),

where iid∼ denotes independent and identically distributed, and N denotes a normal distribution.

To define a correct decision event, Andradóttir and Kim (2010) introduce a tolerance level, denoted
by ϵ, which is a user-specified positive real number. System i falls in one of the following three sets:

D ≡ {i ∈ Θ | yi ≤ q − ϵ} ;
A ≡ {i ∈ Θ | q − ϵ < yi < q + ϵ} ; and

U ≡ {i ∈ Θ | q + ϵ ≤ yi} .

The systems in the sets D, A, and U are called desirable, acceptable, and unacceptable systems, respectively.
A correct decision for system i is denoted by CDi and it is defined as declaring system i feasible if i ∈ D
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Figure 1: A triangular continuation region for system i.

and infeasible if i ∈ U . Any decision is considered as a correct decision for i ∈ A. It is noted that the
acceptable region (which is equivalent to the IZ) is defined as the interval from q − ϵ to q + ϵ. Then,
a correct decision for the problem is defined as the event that the correct decisions for all systems are
simultaneously made (CD = ∩k

i=1CDi), and a statistically valid procedure should satisfy P(CD) ≥ 1−α
where α is a confidence level.

Procedure F due to Andradóttir and Kim (2010) is one of the statistically valid procedures for feasibility
determination. It is based on a fully-sequential R&S procedure in Fabian (1974) and Kim and Nelson
(2001). Specifically, the procedure requires keeping track of a monitoring statistic that is a cumulative
sum of the difference between Yij and q. An observation is sampled at each stage of the procedure while
the statistic sojourns within a boundary called the continuation region. When this statistic first exits the
continuation region, the feasibility decision is made. Figure 1 shows a sample path of the monitoring
statistics for system i (dashed line) and the boundary of the continuation region (bold line). As shown in
the figure, if the statistic first exits through the upper boundary, then we conclude that system i is infeasible
regarding the constraint. On the other hand, if it first exits through the lower boundary, system i is declared
as feasible regarding the constraint.

As our procedure is related to F , we provide the detailed description of F which requires additional
notation as follows:

n0 ≡ the initial sample size for each system (n0 ≥ 2);

r ≡ the current stage number (r ≥ n0);

S2
i ≡ the sample variance of Yi1, . . . , Yin0 for system i (i = 1, 2, . . . , k);

M ≡ the set of systems whose feasibility is not determined yet; and

F ≡ the set of systems declared as feasible.

469



Park, Andradóttir, Kim, and Zhou

Moreover, we need the following functions to define the continuation region as in Kim and Nelson (2001):

R(r; v, w, z) = max
{
0,

wz

2cv
− v

2c
r
}
, for any v, w, z ∈ R, v ̸= 0,

g(η) =
c∑

ℓ=1

(−1)ℓ+1

(
1− 1

2
I(ℓ = c)

)
×
(
1 +

2η(2c− ℓ)ℓ

c

)−(n0−1)/2

,

where c is a user-specified positive integer and I(·) is an indicator function. Then, a detailed description
of the existing procedure F is shown in Algorithm 1.

Algorithm 1: Procedure F

[Setup:] Choose initial sample size n0 ≥ 2, confidence level 0 < 1 − α < 1, c ∈ N+, and Θ =
{1, 2, . . . , k}. Set tolerance level ϵ > 0 and threshold q. Calculate h2B = 2cηB(n0 − 1), where ηB > 0
satisfies

g(ηB) = βB =

{
1− (1− α)1/k, if systems are independent;
α/k, otherwise.

(1)

[Initialization:] Obtain initial observations Yi1, Yi2, . . . , Yin0 and compute S2
i for each i ∈ Θ. Set

r = n0, M = {1, 2, . . . , k}, and F = ∅.
[Feasibility Check:] Set Mold = M .
for i ∈ Mold do

If
∑r

j=1(Yij − q) ≤ −R(r; ϵ, h2B, S
2
i ), move i from M to F .

Else if
∑r

j=1(Yij − q) ≥ R(r; ϵ, h2B, S
2
i ), eliminate i from M .

end for
[Stopping Condition:] If M = ∅, return F . Otherwise, set r = r + 1, take one additional observation
Yir for each system i ∈ M , then go to [Feasibility Check].

Remark 1. To implement Procedure F , Kim and Nelson (2001) recommend the choice of c = 1. In this
case, g(ηB) = 1

2

{
1 + 2ηB

}−(n0−1)/2 and the solution to equation (1) is ηB = 1
2

[
(2βB)

−2/(n0−1) − 1
]
.

3 PROPOSED PROCEDURE

In this section, we provide an overall description of our procedure, denoted by IZR. The IZR procedure
introduces T relaxed tolerance levels, denoted by ϵ(τ) for τ = 1, 2, . . . , T , satisfying ϵ(1) > · · · > ϵ(T ) = ϵ.
For each relaxed tolerance level ϵ̃ ∈ {ϵ(1), ϵ(2), . . . , ϵ(T )}, our procedure utilizes two subroutines: FU and
FD. SubroutineFU uses threshold q+ϵ−ϵ̃with tolerance level ϵ̃while subroutineFD uses threshold q−ϵ+ϵ̃
with tolerance level ϵ̃. Subroutines FU and FD simultaneously check the feasibility of each system i for all
tolerance levels using the monitoring statistics, (

∑r
j=1 Yij)− r(q+ ϵ− ϵ̃) and (

∑r
j=1 Yij)− r(q− ϵ+ ϵ̃),

respectively. If both FU and FD result in the same feasibility decision (declaring system i as either feasible
or infeasible) with some ϵ̃ ∈ {ϵ(1), ϵ(2), . . . , ϵ(T )}, then the procedure stops taking more observations
from system i and returns that feasibility decision for system i. Otherwise, the procedure keeps taking
more observations from the system. Subroutines FU and FD maintain their own sets of relaxed tolerance
levels, denoted by EUi and EDi, respectively. For each system i, the sets EUi and EDi are initialized as
{ϵ(1), ϵ(2), . . . , ϵ(T )} whereas they are updated during feasibility checks. These two sets may be different
because (i) ϵ(τ) needs to be removed from EUi or EDi once the monitoring statistics of FU and FD first
exit the continuation region with ϵ̃ = ϵ(τ) which is defined by R(r; ϵ̃, h2, S2

i ), and (ii) their exit times may
be different if τ < T (i.e., ϵ̃ = ϵ(τ) > ϵ).

We explain how the IZR procedure with subroutines FU and FD works using a simple example.
One of the simplest ways for selecting relaxed tolerance levels ϵ(τ) is to multiply ϵ by powers of ξ > 1.
More specifically, one can set ϵ(τ−1) = ξϵ(τ) for τ = 2, 3, . . . , T with ϵ(T ) = ϵ. When ξ = 2 and T = 2,
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Figure 2: An example of thresholds and acceptable regions for FU and FD with ξ = 2 and T = 2.

Figure 2(a) presents the acceptable regions (i.e., the IZs) of FU and FD for ϵ(1) = 2ϵ with the red-dotted
and blue-checkered intervals, respectively. Additionally, the original acceptable region with threshold q
and tolerance level ϵ is shown as a gray-shaded interval. From the figure, one can see that the threshold of
FU is q + ϵ− 2ϵ = q − ϵ, and the upper bound of its red-dotted acceptable region of FU matches that of
the original gray-shaded acceptable region. Similarly, the threshold of FD is q − ϵ+ 2ϵ = q + ϵ, and the
lower bound of its (blue-checkered) acceptable region matches that of the original (gray-shaded) acceptable
region. Figure 2(b) presents the acceptable regions of FU and FD when ϵ(2) = ϵ. As ϵ(2) is the same as
the original tolerance level, FU and FD become identical and have the same acceptable region as F .

Then we can consider a possible decision for system i with ϵ(1) = 2ϵ and ϵ(2) = ϵ:

Case 1: If yi ≤ q − 3ϵ, system i becomes desirable for both FU and FD under the relaxed tolerance level
ϵ(1) = 2ϵ and is likely to be declared feasible by both subroutines, which is a correct decision for
system i.

Case 2: If q − 3ϵ < yi ≤ q − ϵ, system i is acceptable for FU but desirable for FD under the relaxed
tolerance level ϵ(1). Therefore, FD is likely to declare system i feasible while FU can declare system
i either feasible or infeasible. If they make the same decision (i.e., feasible decision), then the
procedure stops and declares system i feasible, which is a correct decision. Otherwise, it proceeds
with the subroutines FU and FD using the smaller tolerance level ϵ(2).

Case 3: If q − ϵ < yi < q + ϵ, system i is acceptable for both subroutines under the relaxed tolerance
level ϵ(1). Thus, if both subroutines make the same decision, any decision is a correct decision for
system i. Otherwise, it proceeds with subroutines using the smaller tolerance level ϵ(2).

Case 4: If q + ϵ ≤ yi < q + 3ϵ, system i is unacceptable for FU but acceptable for FD under the relaxed
tolerance level ϵ(1). By similar arguments as in Case 2, if the two subroutines make the same
infeasible decision, then the procedure stops and declares system i infeasible, which is a correct
decision. Otherwise, it proceeds with the subroutines using the smaller tolerance level ϵ(2).

471



Park, Andradóttir, Kim, and Zhou

Case 5: If yi ≥ q + 3ϵ, system i becomes unacceptable for both subroutines under the relaxed tolerance
level ϵ(1) and is likely to be declared infeasible by both subroutines, which is a correct decision
for system i.

A detailed description of our proposed procedure is given in Algorithm 2.

Algorithm 2: Procedure IZR

[Setup:] Choose initial sample size n0 ≥ 2, confidence level 0 < 1 − α < 1, c ∈ N+, and
Θ = {1, 2, . . . , k}. Set tolerance level ϵ > 0, threshold q, and relaxed tolerance sets, EUi = EDi =
{ϵ(1), . . . , ϵ(T )} for each i ∈ Θ where T ∈ N+ and ϵ(1) > · · · > ϵ(T ) = ϵ. Calculate h2 = 2cη(n0 − 1),
where η > 0 satisfies

g(η) = β =

{ [
1− (1− α)1/k

]
/T, if systems are independent;

α/(kT ), otherwise.
(2)

[Initialization:] For each i ∈ Θ,
obtain initial observations, Yi1, Yi2, . . . , Yin0 , and compute S2

i ; and
set Z(ϵ̃)

Ui = Z
(ϵ̃)
Di = 0 for each ϵ̃ ∈ EUi(= EDi).

Set r = n0, M = {1, 2, . . . , k}, and F = ∅.
[Feasibility Check:] Set Mold = M .
for i ∈ Mold do

[Subroutine FU :]
for ϵ̃ ∈ EUi do,

If (
∑r

j=1 Yij)− r(q + ϵ− ϵ̃) ≤ −R(r; ϵ̃, h2, S2
i ), set Z(ϵ̃)

Ui = 1 and EUi = EUi \ {ϵ̃};

Else if (
∑r

j=1 Yij)− r(q + ϵ− ϵ̃) ≥ R(r; ϵ̃, h2, S2
i ), set Z(ϵ̃)

Ui = −1 and EUi = EUi \ {ϵ̃}.

If Z(ϵ̃)
Ui = Z

(ϵ̃)
Di = 1, move i from M to F . Else if Z(ϵ̃)

Ui = Z
(ϵ̃)
Di = −1, eliminate i from M .

end for
[Subroutine FD:]
for ϵ̃ ∈ EDi do,

If (
∑r

j=1 Yij)− r(q − ϵ+ ϵ̃) ≤ −R(r; ϵ̃, h2, S2
i ), set Z(ϵ̃)

Di = 1 and EDi = EDi \ {ϵ̃};

Else if (
∑r

j=1 Yij)− r(q − ϵ+ ϵ̃) ≥ R(r; ϵ̃, h2, S2
i ), set Z(ϵ̃)

Di = −1 and EDi = EDi \ {ϵ̃}.

If Z(ϵ̃)
Ui = Z

(ϵ̃)
Di = 1, move i from M to F . Else if Z(ϵ̃)

Ui = Z
(ϵ̃)
Di = −1, eliminate i from M .

end for
end for
[Stopping Condition:] If M = ∅, return F . Otherwise, set r = r + 1, take one additional observation
Yir for each system i ∈ M , then go to [Feasibility Check].

The statistical property of Algorithm 2 is provided in the following theorem whose proof is found in
Zhou et al. (2024).
Theorem 1 Under Assumption 1, IZR guarantees

P (CD) ≥ 1− α.

Remark 2. Similar toF , the choice of c = 1 is recommended forIZR, resulting inη = 1
2

[
(2β)−2/(n0−1) − 1

]
where β is given in equation (2). Large T may reduce the efficiency of IZR because of the value of η.
We recommend to use T ∈ {2, 3}. It should be noted that IZR is identical to F if T = 1.
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Table 1: Initial sets of EU and ED for T ∈ {2, 3} and ξ ∈ {2, 3, 4, 5}.

ξ = 2 ξ = 3 ξ = 4 ξ = 5

T = 2 {0.04, 0.02} {0.06, 0.02} {0.08, 0.02} {0.10, 0.02}
T = 3 {0.08, 0.04, 0.02} {0.18, 0.06, 0.02} {0.32, 0.08, 0.02} {0.50, 0.10, 0.02}
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Figure 3: The PCD values of F and IZR.

4 NUMERICAL EXPERIMENTS

In this section, we provide experimental results to compare IZR with F . We consider one system (i.e.,
k = 1) and thus drop the subscript i. The mean of the system varies y ∈ {0.02, 0.03, 0.05, 0.1, 0.5} and the
variance is fixed to σ2 = 1. The threshold is set to q = 0 and thus the constraint is y ≤ 0. The tolerance
level for F is ϵ = 0.02 and thus we set the final tolerance level for IZR as ϵ(T ) = ϵ = 0.02 as well. For
IZR, we test T ∈ {2, 3} and ξ ∈ {2, 3, 4, 5}. Therefore, there are a total of eight possible combinations
of T and ξ, and the different sets EU and ED of relaxed tolerance levels for each combination are given in
Table 1. We set α = 0.05 and make 10,000 macro replications to report the estimated probability of CD
(PCD) and the average total number of observations (OBS).

Figure 3 shows the values of PCD for procedures F and IZR with different T and ξ for various
values of y. Both F and IZR result in PCD greater than or equal to the nominal level 1− α = 0.95 for
all settings.

Table 2 presents the values of OBS and the percentages (in the parenthesis) of time that IZR stopped
with (ϵ(1), ϵ(2), . . . , ϵ(T )). For example, when T = 2, y = 0.02, and ξ = 2, (52.4%, 47.6%) means that
in 52.4 and 47.6 percentages of macro replications the procedure IZR terminated with ϵ(1) = 0.04 and
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Table 2: The OBS values of F and IZR and the percentages of times that IZR terminates with each
ϵ(τ).

T y F IZR
ξ = 2 ξ = 3 ξ = 4 ξ = 5

T = 2

0.02 4129.98 4574.07 4886.70 5108.77 5227.03
(52.4%, 47.6%) (25.2%, 74.8%) (17.0%, 83.0%) (12.3%, 87.7%)

0.05 2173.72 1797.65 1855.28 2174.93 2393.29
(93.9%, 6.1%) (64.2%, 35.8%) (39.3%, 60.7%) (27.0%, 73.0%)

0.1 1184.28 888.16 674.07 669.40 824.56
(99.9%, 0.1%) (97.9%, 2.1%) (86.0%, 14.0%) (67.4%, 32.6%)

0.5 258.91 179.21 122.04 94.44 77.48
(100%, 0%) (100%, 0%) (100%, 0%) (100%, 0%)

T = 3

0.02 4129.98 5130.24 5725.80 6038.10 6268.79
(13.8%, 41.5%, 44.7%) (5.3%, 21.4%, 73.4%) (3.4%, 12.9%, 83.7%) (1.4%, 9.6%, 89.0%)

0.05 2173.72 1791.77 2068.85 2498.42 2840.02
(38.1%, 57.8%, 4.1%) (8.6%, 58.8%, 32.7%) (3.9%, 36.0%, 60.1%) (1.7%, 23.7%, 74.6%)

0.1 1184.28 672.76 699.27 733.43 923.37
(88.5%, 11.5%, 0%) (21.5%, 77.1%, 1.4%) (7.2%, 81.8%, 11.0%) (2.7%, 65.8%, 31.6%)

0.5 258.91 109.20 55.76 43.38 58.81
(100%, 0%, 0%) (100%, 0%, 0%) (93.2%, 6.8%, 0%) (54.6%, 45.5%, 0%)

ϵ(2) = 0.02, respectively. In the table, we mark the OBS values in bold if IZR uses fewer observations
than F . When y = 0.02, F uses fewer observations than IZR under all settings. This is expected because
(i) IZR has a high chance of terminating with a small tolerance level and (ii) the continuation region of
FU and FD gets larger as the procedure proceeds with subroutines using a smaller tolerance level. It should
be noted that F is designed for this scenario (i.e., y = ϵ = 0.02) which unlikely happens in practice but
IZR is designed to be less conservative than F in practical problems where at least some systems are not
exactly the original tolerance level away from the threshold. Procedure IZR uses fewer observations than
F for ξ = 2, 3 when y = 0.05 and for all ξ when y = 0.1 or 0.5. This happens because IZR terminates
with a larger tolerance level than ϵ more often. For instance, when y = 0.1 or 0.5, IZR under the setting
of T = 2 and ξ = 2 shows over 99.9% chance to terminate with ϵ(1) = 0.04. As discussed in Section 3,
if either y < q + ϵ− 2ϵ(τ) (similar to Case 1) or y > q − ϵ+ 2ϵ(τ) (similar to Case 5), then IZR has a
high chance of terminating with ϵ(τ) > ϵ.

Unlike F with one fixed tolerance level, IZR is designed to detect feasibility early for a system whose
mean is far from the threshold. Therefore, the best choice of T and ξ for IZR depends on the expected
performance measure y, which is unknown. A thorough investigation on the selection of T or ξ is provided
in Zhou et al. (2024).

5 CONCLUSION

We consider the problem of finding feasible systems with relaxed tolerance levels and propose a statistically
valid procedure that returns a set that includes all desirable systems and excludes all unacceptable systems.
Our experimental results show that the proposed procedure performs well in reducing the number of required
observations especially for systems that are clearly desirable or clearly unacceptable.
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