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ABSTRACT

Plausible inference is a growing body of literature that treats stochastic simulation as a gray box when
structural properties of the simulation output performance measures as a function of design, decision or
contextual variables are known. Plausible inference exploits these properties to allow the outputs from values
of decision variables that have been simulated to provide inference about output performance measures
at values of decision variables that have not been simulated; statements about the possible optimality
or feasibility are examples. Lipschitz continuity is a structural property of many simulation problems.
Unfortunately, the all-important—and essential for plausible inference—Lipschitz constant is rarely known.
In this paper we show how to obtain plausible inference with an estimated Lipschitz constant that is also
derived by plausible inference reasoning, as well as how to create the experiment design to simulate.

1 INTRODUCTION

Stochastic simulation is used to explore and compare the performance of complex systems, ideally in a
cost-effective and efficient manner. These comparisons can be thought of as determining the set of system
configurations that have acceptable performance. The two forms of “acceptable” that we consider here are
feasible and optimal.

We assume that each system (also called decision, solution, scenario or configuration) is specified
by a vector of decision variables, xxx ∈X ⊂ ℜq. For any setting of the decision variables, independent
and identically distributed (i.i.d.) replications of the primary simulation output, Yj(xxx), j = 1,2, . . . , can be
generated. The performance measure of interest is the expectation µ(xxx) = E(Yj(xxx)). We assume that larger
performance is better. In feasibility checking, the goal is to find the subset of systems whose expected
performance is above some prescribed threshold. Optimality checking seeks to find the system or systems
that attain the maximum performance in X .

Because we observe Yj(xxx) rather than µ(xxx), it is not possible to determine the acceptable systems
with certainty, even if every alternative is simulated. Instead, the goal is to employ simulation to indicate
with high confidence whether a system is acceptable or not. If, with high confidence, the system fails to
satisfy the acceptability goal then it is excluded from the set of “plausibly acceptable” systems; we call
this process screening.

Of course the set X of possible decision variable values may be very large or even infinite. If there
is no known structural information to link performance measures from simulated systems to unsimulated
ones, then every configuration must be simulated. However, if the computational cost of simulation is high,
or there are an infinite number of possible systems, then simulating every one is impractical or impossible.
To infer µ(xxx) at unsimulated systems we exploit structural information about µ(xxx) as a function of xxx,
specifically that it is Lipschitz continuous. Exploiting Lipschitz continuity in this way is not a new idea
(see Section 2), but we further assume that the value of the Lipschitz constant, λ , is not known. One of
the contributions of this paper is the derivation of an estimator of the Lipschitz constant that is compatible
with plausible inference.

Here is a summary of the plausible inference approach: By restricting the set of performance functions
µ(·) to Lipschitz continuous functions with the inferred Lipschitz constant, a hypothesis test on the
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performance function at unsimulated values of xxx given the simulated ones is established. For each xxx, given
the data, if there exists a performance function that satisfies the performance constraint for xxx and is not
rejected by the hypothesis test, then xxx is considered an acceptable system. However, if all performance
functions that satisfy the performance constraint for xxx are rejected by the hypothesis test, then xxx is screened
out. Notice that both simulated and, importantly, unsimulated systems can be screened out. Further, every
system is screened with a confidence guarantee on the set of retained systems. This means that the set of
screened out systems can be rejected with a user specified confidence level. All of this assumes that λ is
known. When it is not—which is our case—we provide a plausible estimator of it that improves as more
systems are simulated.

We organize the remainder of the paper as follows: Section 2 is a brief overview of existing work
on plausible screening and Lipschitz optimization methods. Section 3 gives a mathematical development
of the screening procedure described above. Section 4 derives our estimator of λ that is then employed
for screening in the sequel. Section 5 presents methods for sequentially choosing which systems (“design
points”) to simulate, our second major contribution. By sequentially adding new design points, rather
than employing a fixed design, the screening power can be increased. Two numerical illustrations are
summarized in Section 6.

2 LITERATURE REVIEW

Screening of systems without exhaustive simulation at all configurations is a nascent field. Plumlee and
Nelson (2018) first established the underlying method that is used in this paper. Their work was focused
on cases where the performance functions µ(·) are convex or Lipschitz and acceptable performance is
optimality. Eckman et al. (2020) extended these results by considering a wider range of metrics on which
to screen. Eckman et al. (2022) created a general framework that allows for a greater variety of functional
information than convexity or Lipschitz continuity. Further, they developed optimization formulations to
reduce many screening problems to the solution of linear programs. Their framework provides the basis
for our screening algorithms described in later sections. Eckman et al. (2021) used gradient estimates
to enhance screening under the assumption that the performance functions are convex. Altogether the
methodology described above is called “plausible inference.”

Importantly, the work on plausible screening has assumed a structure that is fully known, which in the
Lipschitz case means that λ is available. While Lipschitz continuity itself is a relatively benign assumption
that is applicable to nearly all simulation problems, it is rare to know the Lipschitz constant. In this paper,
we propose a method for estimating the Lipschitz constant that is compatible with plausible screening.

The field of global optimization has exploited Lipschitz continuity to aid in the search for optimal
solutions when objective functions are evaluated without noise. The work in this area can be partitioned by
whether the Lipschitz constant is known or must be estimated. Shubert (1972) and Piyavskii (1972) both
proposed optimization algorithms when λ is known. Since then, a significant literature has been dedicated
to new algorithms and their properties in the known-Lipschitz-constant case. See Hansen and Jaumard
(1995) for a broad overview. When λ is not known, Wood and Zhang (1996) derived an asymptotically
valid distribution of the maximum slope for sampled points. Malherbe and Vayatis (2017) provided an
algorithm that sequentially updates an estimate of λ . Fazlyab et al. (2019), among others, provided methods
for estimating λ tailored to neural networks. These methods assume noiseless observations which are not
applicable in our context of stochastic simulation.

3 PROBLEM OVERVIEW

Because our work builds on the framework established by Eckman et al. (2022), we briefly review their
methods applied to the feasibility and optimization definitions of acceptability.

Recall that the simulated systems are indexed by xxx ∈X . The functions µ(xxx) and σ2(xxx) are the
mean and variance, respectively of the output replications Yj(xxx). The space, X , can be continuous or
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discrete. In the optimization screening problem, we define the set of acceptable systems to be A = {xxx ∈
X |µ(xxx) = maxxxx′∈X µ(xxx′)}. In the feasibility screening problem, we define the set of acceptable systems
to be A = {xxx ∈X |µ(xxx)≥ c}, for some specified constant c. Consistent with Eckman et al. (2022), we
assume that Yj(xxx) ∼ N(µ(xxx),σ2(xxx)), and outputs are independent across replications and across xxx ̸= xxx′.
While we assume normality, the theorems in the paper only require that the sample means of the replications
generated from each xxx to be approximately normal. This is often satisfied due to the Central Limit Theorem
for non-normal Yj(xxx).

Consider the feasibility case. Let Mλ be the set of all Lipschitz continuous functions with Lipschitz
constant λ and let λ ⋆ denote the true Lipschitz constant of µ(·). If λ ⋆ is known then we can assess
whether any xxx ∈X is acceptable by only considering the acceptability of xxx for functions in Mλ ⋆ . Define
Gλ ⋆(xxx) = {φ ∈Mλ ⋆ |φ(xxx)≥ c} to be the set of candidate functions for µ(·) in which xxx is acceptable.

To determine the acceptability of xxx, simulations are performed at a collection of decision-variable values,
Dk = {xxx1,xxx2, . . . ,xxxk}, which we call the experiment design or design points. The elements of Dk may or
may not be randomly chosen from X . Then for each xxxi ∈Dk, nk(xxxi) replications Yj(xxxi), j = 1,2, . . . ,nk(xxxi)
are generated. For any φ ∈ Mλ ⋆ , if the discrepancy between the output values and the values of φ at
the design points is sufficiently large, then the function φ is considered “implausible”. If all functions
φ ∈ Gλ ⋆(xxx) are considered implausible, then it is unlikely that xxx is acceptable and it is screened out.

The choice of discrepancy measure and cutoff for when a function is considered implausible is further
explored in Eckman et al. (2022). For simplicity, we choose the discrepancy measure to be the standardized
absolute value of the differences between φ and the sample means of the replications. Specifcally, let
Ȳ = {Ȳ (xxx1), . . . ,Ȳ (xxxk)} be the set of sample means at the design points and let σ̂ = {σ̂(xxx1), . . . , σ̂(xxxk)} be
the corresponding set of sample standard deviations. We define the standardized discrepancy metric as

d1(φ , Ȳ, σ̂) =
k

∑
i=1

√
nk(xxxi) |φ(xxxi)− Ȳ (xxxi)|

σ̂(xxxi)
.

For an appropriately chosen discrepancy cutoff, D1−α , any xxx ∈X is classified as acceptable only if

inf
φ∈Gλ⋆ (xxx)

d1(φ , Ȳ, σ̂)≤ D1−α . (1)

Controlling the probability of incorrectly classifying xxx as unacceptable if xxx ∈A requires choosing D1−α

such that

sup
xxx∈A

P
(

inf
φ∈Gλ⋆ (xxx)

d1(φ , Ȳ, σ̂)> D1−α

)
≤ α.

Evaluating the probability on the left-hand side of the inequality above requires knowledge of µ . However,
if Yj(xxx)∼ N(µ(xxx),σ2(xxx)), then for the true mean vector µ , d1(µ, Ȳ, σ̂) follows a known distribution: the
sum of the absolute value of k independent t distributions with respective degrees of freedom nk(xxxi)−1.
Therefore, if D1−α is the 1−α quantile of d1(µ, Ȳ, σ̂), then

sup
xxx∈A

P
(

inf
φ∈Gλ⋆ (xxx)

d1(φ , Ȳ, σ̂)> D1−α

)
≤ sup

xxx∈A
P
(
d1(µ, Ȳ, σ̂)> D1−α

)
= P

(
d1(µ, Ȳ, σ̂)> D1−α

)
= α.

Thus, the screening procedure defined above controls the pointwise Type I error rate of classifying any
acceptable xxx as unacceptable. Of course, evaluation of the infimum in Equation (1) requires knowledge of
λ ⋆. As discussed in the introduction, it is typically easier to use the structural information of the problem
to determine whether µ(·) is Lipschitz continuous than it is to determine the Lipschitz constant of µ(·).
The estimation of λ ⋆ is discussed in the next section.

Remark: There is a corresponding development for the optimality screening case, and we can employ any
of the discrepancy measures in Eckman et al. (2022), including those that allow simulation with common
random numbers.
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4 ESTIMATION OF λ ⋆

Methods for estimating λ ⋆ typically assume that µ(xxx) can be evaluated without noise for any xxx ∈X . Such
methods often use the maximum slope of the observed values of any pair of design points, maxi̸= j(µ(xxxi)−
µ(xxx j))/s(xxxi,xxx j), where s(·, ·) is the distance metric. For example, Wood and Zhang (1996) derive the
asymptotic distribution of the maximum slope to provide an upper confidence bound on λ ⋆. In this section,
we propose an estimator that is applicable to the case when µ(·) is observed with and without noise. When
there is no noise, our proposed estimator reduces to this maximal slope estimator.

When only noisy estimates of µ(xxx) are available, estimating the Lipschitz constant becomes a more
difficult task. A naïve method is to use maxi ̸= j(Ȳ (xxxi)− Ȳ (xxx j))/s(xxxi,xxx j) as the estimator. However, as
more design points are chosen, limk→∞ mini ̸= j s(xxxi,xxx j)→ 0; this leads to a badly behaved and inconsistent
estimator whose variance increases to infinity as k→ ∞.

Huang et al. (2023) propose a consistent estimator that separates the decision variable space into
a number of disjoint hypercubes. For each hypercube, a linear regression is run to “approximate” the
Lipschitz constant over the hypercube. The maximum slope among the linear regressions is used as the
Lipschitz constant. This method is clearly cumbersome; we propose a different method that exploits the
plausible inference framework.

For a given value of λ , recall that Mλ is the set of Lipschitz continuous functions with Lipschitz
constant λ . To assess the feasibility of any λ , we measure how well the observed data adheres to Mλ .
Specifically, for λ to be feasible, we require that infφ∈Mλ

d1(φ , Ȳ, σ̂2) be sufficiently small. Let β ∈ [0,1]
and define λ̂1−β , the 1−β plausible Lipschitz estimator as,

λ̂1−β = inf
λ

s.t inf
φ∈Mλ

d1(φ , Ȳ, σ̂2)≤ D1−β .

In words, λ̂1−β , is the smallest λ for which there exists a λ -Lipschitz continuous function having discrepancy
with respect to the observed simulation data below the specified quantile.

Theorem 1 proves that, under some mild assumptions, λ̂1−β is a (1−β )100% lower confidence bound
on the true Lipschitz constant of µ(·). Because λ ⋆ is unknown, for xxx ∈X that are not in Dk the values
of µ(xxx) at these unobserved xxx’s can be arbitrarily large and small, and therefore λ ⋆ can be arbitrarily
larger than the maximum slope of the mean values of the design points. Thus, we can only obtain a lower
confidence bound.

To prove Theorem 1, we assume the following:
Assumption 1 µ(·) is a Lipschitz continuous function with constant λ ⋆ and Yj(xxx) ∼ N(µ(xxx),σ2(xxx)),
independent across replications j and across configurations xxx ̸= xxx′.

Theorem 1 Under Assumption 1, P
(

λ̂1−β > λ ⋆
)
≤ β .

Proof. Because Yj(xxx)∼ N(µ(xxx),σ2(xxx)), d1(µ, Ȳ, σ̂2) = ∑
k
i=1

√
nk(xxxi) |µ(xxxi)− Ȳ (xxxi)|/σ̂(xxxi) is the sum

of the absolute value of k independent t distributed random variables. Therefore, because D1−β is the 1−β

quantile of the sum of the absolute value of k independent t random variables, P
(
d1(µ, Ȳ, σ̂2)> D1−β

)
≤ β .

Under Assumption 1, if λ̂1−β > λ ⋆ then infφ∈M⋆
λ

d1(φ , Ȳ, σ̂2) > D1−β . Since infφ∈M⋆
λ

d1(φ , Ȳ, σ̂2) ≤
d1(µ, Ȳ, σ̂2), P

(
λ̂1−β > λ ⋆

)
≤ P

(
d1(µ, Ȳ, σ̂2)> D1−β

)
≤ β .

Notice that if β = 1, then D1−β = 0 and λ̂0 = maxi ̸= j(Ȳ (xxxi)−Ȳ (xxx j))/s(xxxi,xxx j), the naïve estimator. On
the other hand, if β = 0, then D1−β = ∞ and λ̂ = 0. Thus, β can be used to tune the estimator.

While λ̂1−β is a 1− β lower confidence bound on λ ⋆, we next show that under some additional
assumptions it converges to λ ⋆ as the number of design points k→ ∞.
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Assumption 2 We assume the following.

(a) For all xxx ∈X , 0 < σ ≤ σ(xxx)≤ σ < ∞.
(b) For all k and xxx ∈Dk, nk(xxx)> 3.
(c) There exists λ ′ such that for all k and xxx,xxx′ ∈Dk, maxxxx,xxx′ |nk(xxx)−nk(xxx′)| ≤ λ ′s(xxx,xxx′) and nk(xxx) is

a non-decreasing function in k.
(d) X is compact.
(e) As the number of design points k increases, each xxxi is independently generated from probability

measure π with π having positive support in the entirety of X .

Assumption 2(c) ensures there are not both design points with no new replications added and design
points with their number of replications increasing to infinity as k does; this implies that no design points
are ignored. If only a finite number of replications are allocated to all design points, Assumption 2(c) is
satisfied. Assumption 2(e) ensures that λ ⋆ is identifiable, because if no xxx and xxx′ that achieve the maximal
slope of λ ⋆ are ever simulated then the estimator cannot converge to λ ⋆. This assumption is sufficient,
but not necessary; it is a simple way to ensure that the design does not place increasing weight on only a
subset of X resulting in parts of X being ignored asymptotically.
Theorem 2 Under Assumptions 1–2, for any ε > 0

lim
k→∞

P
(

λ̂1−β ≤ λ
⋆− ε

)
= 0.

Proof. Sketch of the proof: To establish Theorem 2, a uniform law of large numbers is proven for the
set of Lipschitz continuous functions. Then, the expected discrepancy is shown to be larger by a fixed
constant than the expected discrepancy of the true mean function for any Lipschitz continuous function
with constant smaller than λ ⋆− ε . Combining the two statements yields the result.

To compute the numerical value of λ̂1−β we use the plausible inference framework of Eckman et al.
(2022) to note that λ̂1−β is the solution to the following linear program:

min
m1,...,mk,λ

λ

s.t.
k

∑
i=1

√
nk(xxxi) |mi− Ȳ (xxxi)|

σ̂(xxxi)
≤ D1−β ,

mi−m j ≤ λ s(xxxi,xxx j) for all 1≤ i, j ≤ k,

where xxxi, nk(xxxi), Ȳ (xxxi), σ̂(xxxi), i = 1,2, . . . ,k, and D1−β are all observed or computed. The variables to be
optimized are m1,m2, . . . ,mk and λ , with λ̂1−β taken to be the optimal value of λ . Notice that the sum
constraint above can be made linear.

5 SEQUENTIAL DESIGN

Given knowledge of λ ⋆ or its estimator λ̂1−β , the choice of the design set, Dk, remains an impor-
tant problem. Depending on the choice of Dk, a significantly different number of systems may be
screened out. Sequential designs use previously simulated data to better decide which additional de-
sign points will be most informative. In this section we propose a method for sequentially choosing
design points in the optimization and feasibility settings. At one extreme our fully sequential design
adds design point xxxk+1 to obtain Dk+1 as a function of the locations and observed outputs from Dk, that
is, {(xxx1,xxx2, . . . ,xxxk),(Ȳ (xxx1),Ȳ (xxx2), . . . ,Ȳ (xxxk)),(σ̂(xxx1), σ̂(xxx2), . . . , σ̂(xxxk))}. Theorem 3 shows that a fully
sequential design does not affect the Type I error rate guarantees in the feasibility and optimization settings.
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Theorem 3 Under assumptions (A)–(B), for all sequential design choices to obtain Dk+1, including those
based on Dk,

sup
xxx∈A

P
(

inf
φ∈Gλ⋆ (xxx)

d1(φ , Ȳ, σ̂)> D1−α

)
≤ α.

Theorem 3 allows significant freedom in how the sequential design is chosen while maintaining the
Type I error rate. Specifically, even when the entirety of the simulation output is used to choose a new
design point, the pointwise guarantee is maintained. In addition to fully sequential designs, we also consider
batch-sequential designs in which we add b > 1 design points at each iteration. Both strategies use upper
and lower confidence bounds provided by plausible inference at potential design points.

5.1 Fully Sequential Design

We assume that after a design point, xxxk+1 is chosen, we generate nk+1(xxxk+1) replications at xxxk+1: Yj(xxxk+1), j =
1,2, . . . ,nk+1(xxxk+1). Then combining the new outputs, and all previous outputs, to form Dk+1, the next
design point xxxk+2 is chosen, and so on.

Let Dk0 be an initial design consisting of k0 design points. For example, Dk0 may be a space-filling
design in X . Then, given Dk, Ȳ and σ̂ , vectors that grow with k, the (k+ 1)st design point, xxxk+1 is
chosen. Similar to standard methods in Bayesian optimization, we propose using 1−α upper and lower
confidence bounds for µ(xxx) at each xxx ∈X as the basis for choosing xxxk+1. The 1−α upper confidence
bound for µ(xxx) is

U1−α(xxx,Dk, Ȳ, σ̂ , λ̂1−β ) = max
φ∈M

λ̂1−β

φ(xxx) s.t. d1(φ , Ȳ, σ̂)≤ D1−α .

Similarly, the 1−α lower confidence bound is

L1−α(xxx,Dk, Ȳ, σ̂ , λ̂1−β ) = min
φ∈M

λ̂1−β

φ(xxx) s.t. d1(φ , Ȳ, σ̂)≤ D1−α .

Notice that in the bounds above, if λ = λ ⋆ then the upper and lower confidence bounds are pointwise 1−α

confidence bounds for all µ(xxx). When λ ⋆ is unknown, we use λ̂1−β as a plug-in estimator. These bounds
represent a range of plausible values for µ(xxx) given the already simulated design points and Lipschitz
structural information. For ease of notation, we omit the arguments Dk, Ȳ, σ̂ and λ̂1−β and denote the
upper and lower bounds at xxx by U1−α(xxx) and L1−α(xxx), respectively.

Based on the upper and lower confidence bounds, an acquisition function that evaluates the suitability
of any xxx as the next design point, denoted g(xxx,U1−α(xxx),L1−α(xxx)), can be defined. This acquisition function
is used to select the next design point. For example, in the feasibility setting, where the feasibility threshold
is µ(xxx)≥ c, we employ

g(xxx,U1−α(xxx),L1−α(xxx)) = I(c ∈ [L1−α(xxx),U1−α(xxx)])(U1−α(xxx)−L1−α(xxx)) .

Here, g(xxx,U1−α(xxx),L1−α(xxx)) is the confidence interval width at xxx if the interval covers c and zero otherwise.
This choice of acquisition function targets decision variables which have both high uncertainty about their
mean performance and are plausible to obtain feasibility. Likewise, in the optimization setting we employ
the standard upper confidence bound strategy,

g(xxx,U1−α(xxx),L1−α(xxx)) =U1−α(xxx)

which reflects the potential optimality of xxx. The (k+1)st design point is then chosen as

xxxk+1 = argmaxxxx∈X g(xxx,U1−α(xxx),L1−α(xxx)).
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Because the upper and lower 1−α confidence bounds for any xxx ∈X can be computed using a linear
program (Eckman et al. 2022; Qiao et al. 2024), evaluation of g(xxx,U1−α(xxx),L1−α(xxx)) requires solving a
linear program. If |X | is finite, one can iterate through each xxx ∈X to find xxxk+1. If X is a hypercube in
ℜd , then it can be shown that xxxk+1 is the solution to a quadratically constrained quadratic program.

Algorithm 1 is the pseudocode implementation of the fully sequential design for the feasibility problem.
An analogous algorithm, requiring only minor modification, can be used for the optimization problem.

Algorithm 1 Feasibility Checking with Fully Sequential Design
Require: c,α,β ,k0,K,Dk0 , Ȳ = (Ȳ1, . . . , Ȳk0) and σ̂ = (σ̂1, . . . , σ̂k0)

D1−α ← The 1−α quantile of the sum of the absolute value of k0 independent t random variables
D1−β ← The 1−β quantile of the sum of the absolute value of k0 independent t random variables
λ̂1−β ← infλ s.t infφ∈Mλ

d1(φ , Ȳ, σ̂)≤ D1−β

for k ∈ {k0 +1, . . . ,K} do
xxxk← argmaxxxx∈X g(xxx,U1−α(xxx),L1−α(xxx)) ▷ Choose the next design point
Generate nk(xxxk) i.i.d. replications, Y1(xxxk), . . . ,Ynk(xxxk)(xxxk)

Ȳ (xxxk)← ∑
nk(xxxk)
j=1 Yj(xxxk)/nk(xxxk), σ̂k←

√
∑

nk(xxxk)
j=1 (Yj(xxxk)− Ȳk(xxxk))2/(nk(xxxk)−1)

Dk← (Dk−1,xxxk), Ȳ← (Ȳ,Ȳ (xxxk)), σ̂ ← (σ̂ , σ̂(xxxk))
Update D1−α and D1−β based on k random variables
λ̂1−β ← infλ s.t infφ∈Mλ

d1(φ , Ȳ, σ̂)≤ D1−β ▷ Update the Lipschitz Estimator
end for
Any xxx0 ∈X is declared unacceptable if U1−α(xxx0)< c

5.2 Batch-Sequential Design

In the formulation above, xxxk+1 was chosen based on all information obtained from design Dk. However,
it is frequently advantageous to choose the next set of design points as a batch, say xxxk+1,xxxk+2, . . . ,xxxk+b
prior to simulating any of them. For example, given a batch of b design points they can all be simulated
in parallel.

A naïve approach for choosing a batch of design points is to find b unique design points in X which
attain acquisition values at least as large as any other points in X that have not already been included. A
problem with this approach is that if X is continuous, then finding these may not be possible. Further,
even if |X | is finite, it is likely that the chosen points will be clustered together because they do not take
into account the increased information from simulating the new design points. To address these issues we
adapt the “constant liar” heuristic used in Gaussian Process regression (Ginsbourger et al. 2010).

The idea is straightforward: We build the batch in a fully sequential manner—that is, adding one design
point at a time until the batch is complete—by imputing outputs for the not-yet-simulated design points in
the batch. We illustrate the approach for the feasibility problem. The imputed value used in Ginsbourger
et al. (2010) imputes the posterior mean for each batch design point. However, in the feasibility setting,
there exists no distribution to help choose an imputed value. Instead, we impute the feasibility threshold,
c. Theorem 4 below shows that in the noiseless case employing c for the imputed value does not affect
the feasibility of the remaining design points.

We now discuss the selection of, say, xxxk+i given the design points that have been simulated, xxx1, . . . ,xxxk
and the k+ i−1 already chosen batch design points, xxxk+1, . . . ,xxxk+i−1. To select xxxk+i, we define the upper
and lower confidence bounds using mean and standard deviation vectors consisting of both the sample
mean and standard deviation estimates of simulated design points together with the imputed values of the
unsimulated design points already chosen for the batch. For instance, the length k+ i−1 estimated mean
vector is Ỹ = (Ȳ (xxx1), . . . ,Ȳ (xxxk),c, . . . ,c) and the length k+ i− 1 estimated standard deviation vector is
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σ̃σσ = (σ̂(xxx1), . . . , σ̂(xxxk), σ̃ , . . . , σ̃). The standard deviation estimate σ̃ can simply be ∑
k
i=1 σ̂(xxxi)/k, or could

come from a fitted metamodel for σ2(·) to obtain more refined “lies.”
The imputed upper and lower confidence bounds are then

Ũ1−α(xxx) = max
φ∈M

λ̂1−β

φ(xxx) s.t. d1(φ , Ỹ, σ̃σσ)≤ D1−α

L̃1−α(xxx) = min
φ∈Mλ̂1−β

φ(xxx) s.t. d1(φ , Ỹ, σ̃σσ)≤ D1−α .

Using these imputed confidence bounds in the previously defined acquisition functions, the next chosen
design point is xxxk+i = argmaxxxx∈X g(xxx,Ũ1−α(xxx), L̃1−α(xxx)). We continue until the batch is complete.

Why might this “constant lie” be useful? As evidence, consider the noiseless case where σ2(xxx) = 0
for all xxx ∈X . Theorem 4 shows that if c is chosen as the value for the constant liar, then the addition of
the newly selected design point does not alter the feasibility of any other decision-variable value. Because
of this, a sequence of design points can be chosen without worrying about altering the apparent feasibility
of yet other design points.

Specifically, we define the set of apparently acceptable decision-variable values to be Â = {xxx ∈
X |U1−α(xxx) ≥ c}. The upper confidence bound, U1−α , used to construct Â is based on Dk and its
corresponding simulated outputs. When b batched design points are added to Dk, we define the set of
acceptable decision variables to be B̃ = {xxx ∈X |Ũ1−α(xxx)≥ c}. Recall that Ũ1−α(xxx) employs the imputed
value c. Theorem 4 demonstrates that the acceptable xxx values remain unchanged when adding new design
points so long as their imputed mean values are c.

Theorem 4 Suppose σ2(xxx) = 0, ∀xxx ∈X . Then for any b > 0, Â = B̃.

6 EMPIRICAL ILLUSTRATIONS

In this section, we present results from applying fully sequential and two-stage batch-sequential designs
to two different feasibility checking problems. In both problems we compare results when λ̂1−β is used as
a plug-in estimator to results that use the true Lipschitz constant, λ ⋆.

The sequential procedures require the specification of the following parameters: the Type I error rate,
α , used for screening, the lower confidence bound confidence level, 1−β , used for λ̂1−β , the initial design
size, k0, the ending design size, K, the feasibility threshold, c, and the acquisition function, g(·). In both
problems, we set α = 0.05 and 1−β = 0.5. We set α to be small to protect against Type I error. On
the other hand, we set 1−β to be relatively large because λ̂1−β is a 1−β lower confidence bound for
λ ⋆. Setting the confidence level for this to be 50% helps λ̂1−β to act more like an estimator than a lower
confidence bound. Our distance metric is Euclidean.

For the two feasibility problems, we use the acquisition function,

g(x,U1−α(xxx),L1−α(xxx)) = I (c ∈ [U1−α(xxx),L1−α(xxx)])(U1−α(xxx)−L1−α(xxx)) ,

the confidence bound gap if it includes the feasible threshold, c. In practice, we have found this acquisition
function to perform well across a wide range of problems. Finally, we set the feasible threshold, c, to be
the 90th percentile of the mean performance measure across an integer grid of decision variables which
span X . Specifically, let T be an integer grid of X . Then c is the 90th percentile of {µ(t)| t ∈ T}.

To evaluate the performance of each procedure, we employ two metrics. The first is the power,
defined as the probability of correctly screening out infeasible systems. The second is the Type I error
rate, defined as the probability of incorrectly screening out feasible systems. Because these two metrics
depend on the possibly random initial design chosen by the procedure and the replications generated at
each design point, we run 100 macroreplications of the procedures. Across all 100 macroreplications,
we define the set of decision variables used in the power calculation to be A c = {t ∈ T |µ(t)< c} and
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the set of feasible decision variables to be A = {t ∈ T |µ(t)≥ c}. Therefore, we report the estimated
expected power as P̂ower = ∑

100
r=1 ∑t∈A c Ir(U1−α(t)< c)/(100 · |A c|), and the expected Type I error rate as

Êrror = ∑
100
r=1 ∑t∈A Ir(U1−α(t)≥ c)/(100 · |A |). When estimated Lipschitz values are used, we also report

the final sample average Lipschitz value.

6.1 Newsvendor Problem

The first problem considered is the single-period Newsvendor problem in Eckman et al. (2020). In this
problem, the newsvendor must choose an appropriate order quantity, x, of goods to sell to maximize
expected profit. The unknown demand for the goods, ξ , follows a Weibull distribution with scale parameter
50 and shape parameter 2. The purchase of each good incurs cost, corder, and the sale of each good incurs
revenue, psales. If the newsvendor orders more goods than are demanded, the extra goods are sold at a
per-unit revenue of psalvage. If the newsvendor orders fewer goods than are demanded, the unmet demand
incurs a per-unit cost of cshortage. The mean performance of decision variable x is,

µ(x) = E
(

psales min(x,ξ )+ psalvage max(0,x−ξ )− corderx− cshortage max(0,ξ − x)
)
.

In our experiment, we set psales = 9, psalvage = 1, corder = 3 and cshortage = 1. For these given values, µ(·)
is a Lipschitz continuous function with λ ⋆ = 7.

We set the initial design size to be k0 = 15. The initial design is a space-filling design of 15 equally
spaced design points across X . The final design size is K = 30. The space of decision variables is
X = [0,200]. The variance of the replications generated from the decision variables, σ2(x), is relatively
large with typical values as high as 36,000. Because of this, we set a relatively large number of replications,
nk(xxxi) = 300, for all design points, xxxi. This results in standard errors of around 10 for the sample means
of each design point. Finally, we used c = 192.7.

Figure 1 is an illustration of a single sample path of the initial design. The response sample mean at
each initial design point (red bullets) are shown together with the mean performance function, µ(·) (black
curve) and c (black horizontal line). Figure 2 plots a single path of the fully sequential and two-stage
designs side by side. To help with readability, only the subset of X that contains the sequential design
points is plotted. Notice that for the two-stage design all 15 sequential design points were chosen in one
batch, but they were still chosen in a specific order using the constant liar heuristic. The numbering of the
points represents that order.

A comparison of the performance of the fully sequential and two-stage designs is given in Table 1. As
a benchmark for comparison, we also show results from a non-sequential (one-shot) space-filling design
of the same total design size (K = 30). In both the estimated and known Lipschitz constant cases, the fully
sequential design outperforms the two-stage design, which outperforms the one-shot space-filling design.
In all cases, the Type I error rate is zero.

When using the estimated Lipschitz constant, it is difficult to isolate the screening performance of
each design procedure from the design procedure’s impact on the estimated Lipschitz constant. However,
in the known Lipschitz case, all three procedures utilize the same Lipschitz constant value of 7. In this
case, we still see that the fully sequential design outperforms the two-stage design which outperforms the
space-filling design.

6.2 (S,s) Inventory Problem

The second problem we consider is the multi-period (s,S) inventory problem. In this problem, inventory is
stocked according to an (s,S) policy stipulating that when inventory falls below the level s, the inventory
is replenished to the higher level S. Therefore, there are two decision variables which are represented as
xxx = (s,S− s).

In each time period, the unknown demand for goods, ξ , follows a Poisson distribution with mean 25.
If demand falls below the current inventory level, a per-unit holding cost of cholding is incurred. On the
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Figure 1: Sample means (red bullets) at the initial design points for a typical macroreplication, together
with the true function µ(x) (black curve).

Figure 2: A typical example of the sequential design procedures. The sample means for the points chosen
by the fully sequential design (left panel) and the points chosen by the two-stage design (right panel) are
numbered in the order they were chosen in blue. Red points are the sample means for the initial one-shot
space-filling design points.
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Table 1: Newsvendor Experiment Results.

Lipschitz Constant Design Type P̂ower Êrror Ave λ̂1−β

Estimated Fully Sequential 0.782 (0.002) 0 5.353 (0.016)
Two-Stage Sequential 0.780 (0.002) 0 5.320 (0.013)

Space-Filling 0.725 (0.002) 0 5.629 (0.010)
Known Fully Sequential 0.601 (.002) 0 7

Two-Stage Sequential 0.545 (.003) 0 7
Space-Filling 0.534 (.001) 0 7

other hand, if demand is above the current inventory level, a per-unit shortage cost of cshortage is incurred.
When inventory is restocked, a flat fee of cflat is charged along with a per-unit cost of corder. Let qi be the
inventory level at time period i with q1 = S. Set τ to be the total number of time periods. Then the mean
performance at decision variable xxx = (s,S− s) is the negative of the average cost incurred by the (s,S)
policy across the first τ time periods,

µ(xxx) =−1
τ
E

(
τ

∑
i=1

I(qi < x1)(cflat +(x2 + x1−qi)ccost)+max(0,qi−ξ )cholding +max(0,ξ −qi)cshortage

)
.

In our experiment, we set cflat = 32, ccost = 3. cholding = 1, cshortage = 5 and τ = 30. For these given values,
µ(·) is a Lipschitz continuous function with λ = 4.7.

We fix an initial design size of k0 = 16 and an ending design size of K = 49. We set X = [10,40]2. The
initial design, Dk0 , is the two dimensional grid of evenly spaced design points, [10,20,30,40]× [10,20,30,40].
In this problem, the variance of simulated response values Yj(xxx) averaged across all integer-valued decision
variables in X is approximately 18. Therefore, we set nk(xxx) = 5. The feasible threshold is set to c =−110.

Table 2 compares the (s,S) problem using the estimated versus known Lipschitz constant. For each
case, the fully sequential, two-stage and one-shot space-filling designs are compared. When the Lipschitz
constant is estimated, performances of the three different designs are similar. While the one-shot design
performs slightly better, this is most likely due to its estimated Lipschitz constant being smaller. When
the Lipschitz constant is the same across all three designs in the known-constant case, the one-shot design
performs worst. Importantly, the Lipschitz constant estimates in all three designs are significantly smaller
than the true Lipschitz constant of 4.7. This is the likely reason for the much better performance of all three
design procedures when the estimated Lipschitz constant is used: good Lipschitz estimates are, for the
most part, only needed locally at decision variable values whose mean performance is close to the feasible
threshold. If a decision variable’s mean performance is much larger or smaller than the feasible threshold,
it is unlikely that a too-small Lipschitz constant estimate will lead to a misclassification. For the decision
variables that have mean performance close to the feasible threshold, more accurate estimates are needed
to prevent misclassification. While these estimates need to be accurate, they only need to represent slopes
in a local region instead of attaining global accuracy. Using the true Lipschitz constant, a global maximum
slope, leads to overly conservative screening results. In contrast, because our Lipschitz estimator only uses
outputs from the design points, which are typically clustered in regions whose decision variables are on the
borderline of feasibility, it is more reflective of an aggregation of local slope values instead of a globally
maximum value.

The downside of using the true Lipschitz constant, an extremely conservative value, is apparent from
the results of Table 2: all power is lost when the true Lipschitz constant is used. None of the design
methods are able to screen any of the space. While other problems such as the newsvendor problem do
not suffer such a large decrease in power when the known Lipschitz constants are employed, using the
estimated Lipschitz constant instead of the known Lipschitz constant led to uniform increases in power
and no change in the Type I error rate.
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Table 2: (S,s) Experiment Results.

Lipschitz Constant Design Type P̂ower Êrror Ave λ̂1−β

Estimated Fully Sequential 0.561 (0.005) 0 1.050 (0.011)
Two-Stage Sequential 0.547 (0.006) 0 1.045 (0.009)

Space-Filling 0.614 (0.003) 0 0.962 (0.008)
Known Fully Sequential 0.002 (0) 0 4.7

Two-Stage Sequential 0.001 (0) 0 4.7
Space-Filling 0 (0) 0 4.7
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