
Proceedings of the 2024 Winter Simulation Conference
H. Lam, E. Azar, D. Batur, S. Gao, W. Xie, S. R. Hunter, and M. D. Rossetti, eds.

EVALUATING SOLVERS FOR LINEARLY CONSTRAINED SIMULATION OPTIMIZATION

Natthawut Boonsiriphatthanajaroen1, Rongyi He1, Litong Liu1,2, Tinghan Ye1,2,
and Shane G. Henderson1

1School of Operations Research and Information Engr., Cornell University, Ithaca, NY, USA
2H. Milton Stewart School of Industrial and Systems Engr., Georgia Tech, Atlanta, GA, USA

ABSTRACT

Linearly constrained simulation optimization problems are those that include deterministic linear constraints
in addition to an objective function that can only be evaluated through simulation. We provide several
solvers for linearly constrained simulation optimization that all rely on gradient estimates of the objective
function. We compare these solvers on random instances of 4 test problems from SimOpt.

1 INTRODUCTION

During the COVID-19 pandemic, a simulation model was used to help decide how to allocate a limited
testing capacity across subgroups of the Ithaca campus and surrounding population of Cornell University
(Frazier et al. 2022). In that setting, a fixed daily budget of testing capacity was to be shared between
alternative groups. This is an instance of a linearly constrained simulation optimization problem (LCSOP),
where a simulation model is used to estimate an objective function (here, risk-weighted expected infections
across groups) that we wish to optimize over a linearly constrained feasible region.

We define LCSOPs to be of the form

min
x∈[l,u]

f (x) = E f (x,ξ )

s.t. Aex = be ∀e ∈ E

Aix≤ bi ∀i ∈ I.

(1)

Here the deterministic bound vectors l,u could be finite or infinite, Ae and Ai are deterministic row vectors
for each e ∈ E and i ∈ I, be and bi are deterministic constants, and E and I are finite sets. Moreover, the
distribution of the random element ξ does not depend on the decision vector x.

This formulation encompasses many problems, e.g., see Section 3. Still, it is not completely general;
objective functions that are built on quantiles do not fall into this class, nor do objective functions that are
nonlinear functions of means of random variables.

We compare a selection of solvers that are designed to solve such problems using gradient estimates of
the function f (·). We chose these solvers because they are readily implemented and are available in SimOpt
(Eckman et al. 2023b). Other solvers, such as a variant of L-BFGS designed for stochastic problems
(Bollapragada et al. 2018) might also be implemented and compared in future work. For the comparison
we use computational results on a variety of test problems. Our goals are as follows.

1. To further develop a collection of solvers for linearly constrained simulation optimization; the
solvers presented here were substantially improved during the course of our experimentation.

2. To showcase the availability, capability and limitations of these solvers.
3. To promote the use of disciplined modeling; some of our test problems are convex, which makes

it easier to assert near global optimality of solutions and allows simplification of solver logic.

3482979-8-3315-3420-2/24/$31.00 ©2024



Boonsiriphatthanajaroen, He, Liu, Ye, and Henderson

4. To showcase the benefits of SimOpt (Eckman et al. 2023a, 2023b) in comparing solvers on classes
of simulation optimization problems, with the goal of inspiring similar work.

A related study (Dong et al. 2017) used an early version of SimOpt to compare a variety of solvers for
box-constrained or unconstrained simulation optimization problems. Compared to that study, in this paper
we specialize to solvers for LCSOPs that exploit gradient estimates, the solvers in question have undergone
more development, and we showcase some recent SimOpt features such as the ability to automatically
generate random instances of test problems and diagnostic plots.

The remainder of this paper is organized as follows. Section 2 presents several solvers for linearly
constrained simulation optimization when gradient estimates for the objective are available. Section 3
reviews the test problems we use to compare the solvers, including how each problem is randomized to
generate additional problems. Section 4 explains our experimental design, provides the computational
results and comparison plots, and discusses the results.

2 SOLVERS

We explore 12 different solvers. These are obtained through all combinations of 3 gradient-based solvers
(projected gradient descent, an active-set method, and away-step Frank-Wolfe), and 4 different line search
methods (backtracking, adaptive step search, interpolation, and zoom). Adaptive step search is not a line
search method because it uses a single step size in each iteration, but it replaces the line search, so we
consider it as such. All of these solvers maintain feasibility (both active-set and Frank-Wolfe solvers use
a ratio test to prevent infeasible step sizes) and seek optimality, so a comparison can be made purely on
objective function values. None of these solvers use stopping rules because, in SimOpt, solvers are run
until a problem-specific budget of simulation replications is exhausted, to facilitate comparisons. Solvers
determine how much of the budget to expend on each iteration, which influences the accuracy of the function
and gradient estimates. Implementations of the solvers can be found in the SimOpt Library (2024).

All descriptions use the notation xk as the current iterate at step k, f̂ (xk) and ĝ(xk) as the estimated
objective function and estimated gradient at xk, and X as the feasible region of the optimization problem.

2.1 Projected Gradient Descent

Algorithm 1, Projected Gradient Descent (PGD), adapted from Iusem (2003), moves in the direction of
the negative gradient, and uses an L2 projection PX back to the feasible region to retain feasibility. The
projection is obtained by solving a quadratic program using CVXPY (Diamond and Boyd 2016, Agrawal
et al. 2018). Stepsizes are constrained to an iteration-specific maximum stepsize that is chosen adaptively.

2.2 Active-set Method

Algorithm 2 (AS) is a tailored version of an active-set method originally designed for linearly constrained
convex quadratics (Nocedal and Wright 2006, §16.5). AS maintains a subset of constraints (Wk) that
are active, i.e., those that hold as equalities. In each iteration, we solve the quadratic direction-finding
subproblem

min
dk∈Rn

1
2
||dk||22 + ĝ(xk)

T d s.t. Aidk = 0 ∀i ∈Wk, (2)

which ensures that the constraints in the active set are enforced as equalities.
For a nonzero direction dk, we determine how far we can go while remaining in the feasible space

through a ratio test. If the obtained step size leaves us tight on a blocking constraint then we include
the blocking constraint in the active set for the next iteration. When we obtain a zero direction from the
subproblem, AS leverages the Lagrange multipliers associated with the subproblem’s constraints to decide
whether to drop a redundant constraint from the active set; otherwise a solution is identified that satisfies
the Karush–Kuhn–Tucker (KKT) conditions.

3483



Boonsiriphatthanajaroen, He, Liu, Ye, and Henderson

Algorithm 1 Projected Gradient Descent (PGD)
Initialize feasible solution x0 ∈X ; maximum step size γmax

0 ∈ [1,∞); step size discount factor r ∈ (0,1)
for k = 0,1,2, ... do

dk← −ĝ(xk)
||ĝ(xk)||2

yk+1← xk + γmax
k dk

if yk+1 is NOT feasible then
yk+1←PX (yk+1)

dk← (yk+1−xk)
γmax

k
end if
Let γk = argminγ∈[0,γmax

k ] f̂ (xk + γdk) (line search)
if γk = γmax

k then
γmax

k ← γmax
k
r

else
γmax

k ← rγmax
k

end if
xk+1← xk + γkdk

end for

2.3 Frank-Wolfe

Algorithm 3 is developed from the Frank-Wolfe algorithm. The original algorithm (Frank and Wolfe 1956)
determines the direction for each step by solving a linear program to find the vertex of the feasible region
that improves a linear approximation of the objective function the best. The current solution is represented
in terms of a convex combination (vertices’ representation) of a subset of the vertices V of the feasible
region, i.e., xk = ∑u∈V α

(k)
u u. Define the active vertex set at iteration k, S (k), to be all vertices such that

the coefficients are positive, i.e. S (k) = {v ∈ V |α(k)
v > 0}. In each iteration, we limit the step size to a

value γmax
k that ensures feasibility. It is possible that the algorithm may alternate between several vertices,

resulting in zigzagging behavior, which is inefficient. This motivates “away steps" (Julien and Jaggi 2015),
where we replace the search direction with a step in a direction that moves away from a “bad" vertex.

2.4 Line Search Methods

Our four line search methods aim for a sufficient decrease in the function values (assuming minimization
problems). Another condition that is sometimes used is the curvature condition where we check if the
directional derivative in the search direction at the current step is sufficiently small.

2.4.1 Backtracking

Backtracking in Algorithm 4 starts with the maximum stepsize, and progressively scales it by r ∈ (0,1)
until we obtain sufficient decrease with parameter θ ∈ (0,1) as in Nocedal and Wright (2006). During the
line search, if we run out of simulation budget or hit a budget on the number of backtracking steps, we
will return the final stepsize, i.e., rtγmax

k , where t is the number of backtracks.

2.4.2 Adaptive Step Search

Adaptive step search in Algorithm 5 uses a single step size in each iteration, increasing the step size when
sufficient descent occurs, and decreasing it otherwise (Berahas et al. 2021; Jin et al. 2021).

3484



Boonsiriphatthanajaroen, He, Liu, Ye, and Henderson

Algorithm 2 Active-set Method (AS)
Initialize feasible solution x0 ∈X ; maximum step size γmax ∈ [1,∞); initial active set W0 = E
for k = 0,1,2, ... do

Generate direction dk and Lagrange multipliers πk from Equation (2)
if dk = 0 (no feasible direction) then

if πk
i ≥ 0 for all i ∈Wk∩ I then

Break (KKT conditions satisfied)
else

Let q = argmin{πk
i : i ∈Wk∩ I}

Wk+1←Wk \{q} and xk+1← xk (drop one of the constraints from the active set)
end if

else
if Aidk ≤ 0 for all i /∈Wk (there are no blocking constraints) then

Let rk = argminγ∈[0,γmax] f̂ (xk + γdk) (line search)
Wk+1←Wk and xk+1← xk + rkdk

else
αk←mini/∈Wk:Aidk>0{bi−Aixk

Aidk
} := {bq−Aqxk

Aqdk
} (ratio test)

if αk > γmax then
Let rk = argminγ∈[0,γmax] f̂ (xk + γdk) (line search)
Wk+1←Wk and xk+1← xk + rkdk

else
Let rk = argminα∈[0,αk] f̂ (xk +αdk) (line search)
if rk = αk (the optimal step is tight on the blocking constraint) then

Wk+1←Wk∪{q} (add one of the blocking constraints to the active set)
end if
xk+1← xk + rkdk

end if
end if

end if
end for

2.4.3 Interpolation

In Algorithm 6, we use a quadratic function q(s) to interpolate f̂ (xk + sdk) in iteration k. If the optimal
step size γk for q(s) is too small, we reduce the maximum step size and interpolate again (Nocedal and
Wright 2006).

2.4.4 Zoom

The Zoom line search method (Algorithm 7) returns a step size that satisfies both the sufficient decrease
and the curvature condition (Nocedal and Wright 2006). The method starts from a small step size and
increases until it hits the maximum step size.
The Zoom(γℓ,γh) function in the algorithm accepts two past step sizes in to form an interval that contains
the optimal step size. The inputs for Zoom should satisfy the following properties.

1. The interval (γℓ,γh) contains a step size that satisfy both sufficient decrease and curvature condition.
2. γℓ is the step size that gives the smallest (if minimization) function evaluation so far.
3. γh is picked so that φ ′(γℓ)(γh− γℓ)< 0, where φ(s) = f̂ (xk + sdk) and φ ′ denote the derivative over

the step size s.

3485



Boonsiriphatthanajaroen, He, Liu, Ye, and Henderson

Algorithm 3 Away-Step Frank-Wolfe (FW)

Initialize x0 to be a vertex v and set α
(0)
v = 1 and all other coefficients to 0

for k = 0,1,2, ... do
sk← argmins∈X ĝ(xk)

T s
vk← argmaxu∈X ĝ(xk)

T u (the “bad” vertex)
dFW

k ← sk− xk (FW direction)
dA

k ← xk− vk (away direction)
if −ĝ(xk)

T dFW
k ≥−ĝ(xk)

T dA
k then

dk← dFW
k and γmax

k ← 1 (normal FW case)
else

dk← dA
k and γmax

k ← α
(k)
vk /(1−α

(k)
vk ) (away-step FW)

end if
γk← argminγ∈[0,γmax

k ] f̂ (xk + γdk) (line search)
xk+1← xk + γkdk
Update the weights α(k) giving the vertex representation of xk+1 to α(k+1)

end for

Algorithm 4 Backtracking Line Search (iteration k)
Given max step size γmax

k , a starting point xk, and a direction dk
Given parameters θ , r ∈ (0,1)
Initialize γk← γmax

k
while f̂ (xk + γkdk)≥ f̂ (xk)+θγkĝ(xk)

T dk do
γk← rγk

end while

Algorithm 5 Adaptive Step Search (iteration k)
Given max step size γmax, a step size γk, a starting point xk, and a direction dk
Given parameters θ , r ∈ (0,1), κ > 0
if f̂ (xk + γkdk)≤ f̂ (xk)−θγk||dk||2 +2κ (modified Armijo condition) then

γk+1←min{ γk
r ,γ

max}
else

γk+1← rγk
end if

Algorithm 6 Interpolation Line Search (iteration k)
Given max step size γmax

k , a starting point xk, and a direction dk
Given parameters θ , r ∈ (0,1)
Initialize γk← γmax

k
while f̂ (xk + γkdk)> f̂ (xk)+θγkĝ(xk)

T dk do
Use f̂ (xk), f̂ (xk + γmax

k dk), and the directional derivative ĝ(xk)
T dk to get the quadratic q

γk← argminγ∈[0,γmax
k ] q(γ)

γmax
k ← rγmax

k
end while

3 PROBLEMS

Here we sketch the test problems. Detailed descriptions can be found in the SimOpt Library (2024).

3486



Boonsiriphatthanajaroen, He, Liu, Ye, and Henderson

Algorithm 7 Zoom Line Search (iteration k)
Given max step size γmax

k , a starting point x, and a direction dk
Given parameters θ ,r,ρ ∈ (0,1), δ > 1.
Initialize γk,0← 0 and γk,1 ∈ (0,γmax

k ).
Let φ(γk) = f̂ (xk + γkdk)
while True do

if φ(γk,i)≥ φ(0)+θγk,iφ
′(0) then

return Zoom(γk,i−1,γk,i)
end if
if |φ ′(γk,i)| ≤ −ρφ ′(0) then

return γk,i
end if
if φ ′(γk,i)≥ 0 then

return Zoom(γk,i,γk,i−1)
end if
γk,i+1← δγk,i
if γk,i+1 ≥ γmax

k then
return γmax

k
end if

end while

Algorithm 8 Zoom(γℓ,γh)

while True do
Interpolate with a quadratic function as in Algorithm 6 and get γk,i+1 as an optimizer between γℓ,γh
if φ(γk,i+1)≥ φ(0)+θγiφ

′(0) then
γh← γk,i+1

else
if |φ ′(γk,i+1)| ≤ −ρφ ′(0) then

return γk,i+1
end if
if φ ′(γk,i+1)(γh− γℓ)≥ 0 then

γh← γℓ

end if
γℓ← γk,i+1

end if
i← i+1

end while

3.1 Constrained Stochastic Activity Network (SAN)

Consider a stochastic activity network (SAN) with m nodes and n arcs. Each arc Ai is associated with a task
with random duration Xi that is exponentially distributed with mean θi. Task durations are independent.

Let T (θ) be the duration of the longest path from a distinguished source node to a distinguished sink
node. Suppose we can choose the mean task duration θi > 0 for each arc i. The objective is to minimize
E[T (θ)], subject to ∑i θi ≥ L, where L is a lower bound for the sum of the arc means. This is a convex
optimization problem. To get gradient estimates we use infinitesimal perturbation analysis (IPA).

To generate random instances, we randomly sample a fixed number of arcs included in the network,
{Ai}n

i=1, the lower bound L, and the simulation-replication budget B.

3487



Boonsiriphatthanajaroen, He, Liu, Ye, and Henderson

3.2 Stochastic Max Flow (SMF)

Consider a maximum flow problem with a source node s and a sink node t, where each arc i has an assigned
initial capacity xi > 0. Each arc i also has a normally distributed random noise ni (independent across
arcs), and the actual capacity for each arc equals max{xi−ni,0}. The (non-convex) problem is to select x
to maximize the expected total flow out of the source node s, while satisfying ∑i xi ≤C, an upper bound
for the total initial arc capacities. To get gradient estimates we use IPA, exploiting duality.

To generate a random instance we sample the arcs {Ai}n
i=1 in the network. We also sample the budget

B to align with the problem dimension. The noise terms remain as independent normal random variables.

3.3 Convex Stochastic Max Flow (SMFCVX)

Consider the same stochastic maximum flow problem, except that the realized capacity of arc i is now
nixi, where the (independent across arcs) noise factors ni are now Erlang distributed. This is a convex
optimization problem. Gradient estimates and random instances are obtained as before.

3.4 Cascade Network (Cascade)

Let G = (V,E) be a directed acyclic graph. Each edge e ∈ E has a weight that corresponds to the activation
probabilities pe,∀e ∈ E; each node v has an activation cost cv and an initial node activation probability
uv ∈ [0,1],∀v ∈V . If edge e = (i, j) is activated then if node i is activated, so is node j.

Progressive cascades of the network are simulated through the independent cascade model (Kempe
et al. 2003). Specifically, we first generate the activated edges, each with probability pe, to form a subgraph
of G. After that, we identify the nodes that are activated at the start of the cascade, each with probability uv.
Then, we perform the cascade, progressively activating inactive nodes that are connected by an activated
edge to an activated node. Lastly, we count the total number of nodes in the connected components of the
initially activated nodes.

The objective is to choose the node activation probabilities uv that maximize the expected number of
post-cascade activated nodes, subject to ∑v cvuv ≤C, where C is a budget on the total node activation cost.
We do not believe this problem is convex. To get gradient estimates, we use finite differences.

To generate a random instance, we generate a random acyclic directed graph G, randomly sample the
activation costs cv, the cost budget C, and the simulation-replication budget B.

Two excluded problems: In our initial experiments, we included two additional problems — an
open Jackson network problem and a network queuing system design problem. We later discarded these
problems because the objective curves were too flat in our particular random instances to generate interesting
problems for solver comparisons. Furthermore, it was challenging to obtain accurate gradient estimates
in the network queuing problem due to the large variance of the likelihood ratio gradient estimator used
therein.

4 EXPERIMENTS

We first present our experimental design, then give selected results and discuss what we have learned.

4.1 Experimental Design

We generate 5 random instances for each of the 4 simulation problems mentioned in Section 3, resulting in
20 problems in total. Generating random instances of the same problem allows us to investigate how solver
performance varies when handling problems with different parameters and hence different complexities.
Each problem is solved by the 12 solvers introduced in Section 2. All problems are run using common
random numbers across all solvers, to ensure a fair comparison.

Based on SimOpt’s random number generator, we ensure different random problem instances to be
generated using different substreams, and each distinct problem factor and model factor has its own

3488



Boonsiriphatthanajaroen, He, Liu, Ye, and Henderson

individual subsubstream. With this allocation of streams there is dependence in the generated problems
across different problem classes, but that dependence should not have any bearing on our results.

To evaluate the solvers we use 30 macroreplications of a fixed replication budget and 50 postreplications
for each problem-solver pair. We selected these numbers from initial experiments which indicated that the
values were small enough to permit tolerable computation times while also giving informative results.

All problems and solvers come from the SimOpt architecture. For each problem, we evaluate the
performance of different solvers by examining their mean objective progress curves and terminal objective
violin plots. In addition, we generate summary plots that aggregate the solver performances on all problems.
This includes α-solvability profile curves and area-under-progress-curve scatter plots (Eckman et al. 2023b).

All experiments were conducted on a Linux server equipped with dual Intel Xeon Gold 6226 CPUs
at 2.7 GHz and 384 GB of RAM. The implementation of all problems and solvers can be found in the
SimOpt Library (2024), along with information on how to replicate our results.

4.2 Results

In these results we name solvers “x-y,” where “x” is one of PGD (projected gradient descent), AS (active
set) and FW (Frank-Wolfe), and “y” is one of B (backtracking), SS (adaptive step search), I (interpolation)
and Z (zoom). Problems are named SAN (stochastic activity network), SMF (nonconvex stochastic max
flow), SMFCVX (convex stochastic max flow) and Cascade (cascade network). Figure 1 provides an
overview of how all the solvers performed across all problems, with 3 of the plots zooming in on the
top-performing solvers. Figures 2 (SAN and SMF) and 3 (SMFCVX, Cascade) provide a more detailed
view using terminal objective function plots and unnormalized progress curves for each of the solvers on
selected random instances of the problems.

The CDF solvability plot for all 12 solvers in Figure 1 indicates that no solver manages to solve more
than about 75% of the problems. Moreover, there is quite a bit of variability in how rapidly solvers can
get to approximately optimal solutions. Still, the plot is too cluttered to draw fine distinctions. The CDF
solvability plots for the top performing solvers are easier to interpret. There we see the strength of FW-I
and FW-SS for small budgets, and while the confidence intervals at the larger budget levels overlap, it does
appear that these solvers remain competitive at larger budgets. AS-B also performs strongly, though not
uniformly so, as the scatter plot indicates. So do the two PGD solvers that we selected, though not as well
for smaller budgets. The PGD solvers do better relatively in the plot of 0.2 solve times, suggesting good
performance for obtaining rough solutions.

The terminal progress plot and progress curve for the selected random problem instance of SAN in
Figure 2 suggest that the FW solvers struggle compared with the other solvers. FW-Z performs the best
out of the FW solvers, though with much slower progress compared with the non-FW solvers. The best
performers are AS-I and AS-SS. Similar observations apply for the results for other random SAN problems
(not shown).

The plots for the selected random problem instance of (non-convex) SMF in Figure 2 indicate that
while the non-Zoom FW solvers find the best solutions, their performance is highly variable compared
with the non-FW solvers. The other solvers mostly do well, though it appears that they identify a local
minimum on this non-convex problem. The PGD solvers are the most consistent solvers in terms of the
quality of the terminal objective, with little variability in their performance.

The plots for the selected random problem instance of SMFCVX in Figure 3 are puzzling, since we’d
expect most solvers to attain near-optimal solutions, yet there is a wide range of terminal objective function
values. The AS solvers mostly do well, though they have a nontrivial number of poor runs, while PGD
struggles rather consistently.

The plots for the selected random problem instance of Cascade indicate the strength of the non-Zoom
FW solvers, which dominate, though the non-Zoom AS solvers do very well. The stepwise progress of the
Zoom solvers is apparent relative to the non-Zoom solvers, which make more steady progress. FW-Z does

3489



Boonsiriphatthanajaroen, He, Liu, Ye, and Henderson

Figure 1: A CDF solvability profile at level 0.1 for all solvers (top left), an area scatter plot for solvers
viewed to be amongst the top performers (top right) and CDF solvability profiles for those selected solvers
at level 0.1 (bottom left) and 0.2 (bottom right). Solvability plots show the empirical cdf of the budgets
required to get within 10% (respectively, 20%) of the best solution found by any solver on any run. The
maximum height of the curves gives the fraction of problems solved to the stated accuracy. The shaded
regions give 95% bootstrapped confidence intervals. The area scatter plot gives the mean and standard
deviation of the area under normalized progress curves - better results lie in the bottom left of the plot.

very well for terminal progress on 2 instances, but otherwise isn’t as effective as the other FW methods.
On one of the Cascade instances that is not shown, the PGD solvers do the best out of all solvers.

4.3 Discussion

All the comments herein apply to our solver implementations only. We do not mean to imply that all
possible implementations of these solvers would share the traits we have observed.

No class of solvers or class of line searches dominates across all problems. Nevertheless, several
solvers gave strong all-round performance, including PGD-B, PGD-I, AS-B, FW-I and FW-SS.

On (non-convex) SMF, several solvers reach local optima and then fail to make further progress, sug-
gesting that some method for detecting local convergence and restarting might be an important enhancement.
(Regarding convergence to local optima, the progress plots in SimOpt would not provide much additional
information while a solver was exploring solutions that are inferior to the best local minimum found so

3490



Boonsiriphatthanajaroen, He, Liu, Ye, and Henderson

Figure 2: Terminal violin plots (left) and mean progress curves (right) for selected instances of SAN and
SMF.

far.) On SMFCVX, which is convex, all solvers appear to struggle, suggesting the need for further solver
development.

Zoom needs many simulation replications to make decisions, but often achieves substantial progress.
Accordingly, the solvers that use a Zoom line search have progress curves that are more “stilted" than those
solvers not using Zoom. The use of Zoom seems well-suited to problems requiring accurate solutions.

FW-style solvers work very well when the constraint set is reasonably “tight,” but these solvers did
poorly when large bounds were added to a problem (SAN) that was more naturally modeled as having an
unbounded feasible region. We believe this happens because FW solvers tend to select step sizes that are
appreciable fractions of the size of the polytope. For search directions that head away from the origin in
the SAN problems, this can lead to poor steps. On the other hand, it is also possible that FW solvers can
be dramatically faster than other solvers if the solvers start at a vertex that is far from optimal, because
FW solvers can move directly to a vertex that is close to optimal, while other solvers have to iteratively
update their step size. Perhaps a FW-style solver could be developed that explicitly accounts for unbounded
feasible regions. The paper Wang et al. (2022) is an interesting development in that direction, but only
applies to a very specific class of unbounded feasible regions.

3491



Boonsiriphatthanajaroen, He, Liu, Ye, and Henderson

Figure 3: Terminal violin plots (left) and mean progress curves (right) for selected instances of SMFCVX
and Cascade.

The interpolation line search method can struggle when function evaluations at two points are of
different magnitudes, since then the interpolated function can be inaccurate. We observed this behavior
with the SAN problems using the FW-I solver, for example.

ACKNOWLEDGMENTS

We thank David Eckman and Sara Shashaani for helpful discussions, and the many contributors who have
developed test problems and solvers in SimOpt; they are too numerous to mention individually, but we are
grateful! This research was partially supported by National Science Foundation grant CMMI-2035086.

REFERENCES
Agrawal, A., R. Verschueren, S. Diamond, and S. Boyd. 2018. “A rewriting system for convex optimization problems”. Journal

of Control and Decision 5(1):42–60.
Berahas, A. S., L. Cao, and K. Scheinberg. 2021. “Global convergence rate analysis of a generic line search algorithm with

noise”. SIAM Journal on Optimization 31(2):1489–1518.
Bollapragada, R., J. Nocedal, D. Mudigere, H.-J. Shi and P. T. P. Tang. 2018. “A progressive batching L-BFGS method for

machine learning”. In International Conference on Machine Learning, 620–629. PMLR.

3492



Boonsiriphatthanajaroen, He, Liu, Ye, and Henderson

Diamond, S. and S. Boyd. 2016. “CVXPY: A Python-embedded modeling language for convex optimization”. Journal of
Machine Learning Research 17(83):1–5.

Dong, N. A., D. J. Eckman, M. Poloczek, X. Zhao and S. G. Henderson. 2017. “Comparing the finite-time performance of
simulation-optimization algorithms”. In Proceedings of the 2017 Winter Simulation Conference, 2206–2217. Piscataway
NJ: IEEE.

Eckman, D. J., S. G. Henderson, and S. Shashaani. 2023a. “Diagnostic Tools for Evaluating and Comparing Simulation-
Optimization Algorithms”. INFORMS Journal on Computing 35(2):350–367.

Eckman, D. J., S. G. Henderson, and S. Shashaani. 2023b. “SimOpt: A testbed for simulation-optimization experiments”.
INFORMS Journal on Computing 35(2):495–508.

Frank, M. and P. Wolfe. 1956. “An algorithm for quadratic programming”. Naval Research Logistics Quarterly 3(1-2):95–110.
Frazier, P. I., J. M. Cashore, N. Duan, S. G. Henderson, A. Janmohamed, B. Liu, , et al. 2022. “Modeling for COVID-19

college reopening decisions: Cornell, a case study”. Proceedings of the National Academy of Sciences 119(2) https:
//doi.org/10.1073/pnas.2112532119.

Iusem, A. N. 2003. “On the convergence properties of the projected gradient method for convex optimization”. Computational
& Applied Mathematics 22:37–52.

Jin, B., K. Scheinberg, and M. Xie. 2021. “High Probability Complexity Bounds for Adaptive Step Search Based on Stochastic
Oracles”. arXiv preprint arXiv:2106.06454.

Julien, S. L. and M. Jaggi. 2015. “On the Global Linear Convergence of Frank-Wolfe Optimization Variants”. Conference on
Neural Information Processing Systems.

Kempe, D., J. Kleinberg, and É. Tardos. 2003. “Maximizing the spread of influence through a social network”. In Proceedings
of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, 137–146.

Nocedal, J. and S. J. Wright. 2006. Numerical Optimization. 2nd ed. Springer.
SimOpt Library 2024. “Simulation Optimization (SimOpt) Library”. https://github.com/simopt-admin/simopt/tree/WSC24.
Wang, H., H. Lu, and R. Mazumder. 2022. “Frank–Wolfe Methods with an Unbounded Feasible Region and Applications to

Structured Learning”. SIAM Journal on Optimization 32(4):2938–2968 https://doi.org/10.1137/20M1387869.

AUTHOR BIOGRAPHIES
NATTHAWUT BOONSIRIPHATTHANAJAROEN is a Ph.D. student in Operations Research and Information Engineering
at Cornell University. His research interests are stochastic optimization algorithms and applications of simulation. His email
address is nb463@cornell.edu and his homepage is https://natthab.github.io/.

RONGYI HE is a Master of Engineering student in Operations Research and Information Engineering at Cornell University.
Her email address is rh463@cornell.edu.

LITONG LIU is a Ph.D. student in the H. Milton Stewart School of Industrial and Systems Engineering at Georgia Tech.
The majority of Litong’s work on SimOpt was conducted while she was a Master of Engineering student in Operations
Research and Information Engineering at Cornell University. Her email address is ll936@cornell.edu and her homepage is
https://litongliu.github.io/.

TINGHAN (JOE) YE is a Ph.D. student in the H. Milton Stewart School of Industrial and Systems Engineering at Georgia
Tech. The majority of Joe’s work on SimOpt was conducted while he was an undergraduate student at Cornell University. His
email address is joe.ye@gatech.edu and his homepage is https://tinghan-joe-ye.netlify.app.

SHANE G. HENDERSON holds the Charles W. Lake, Jr. Chair in Productivity in the School of Operations Research and
Information Engineering at Cornell University. His research interests include simulation theory and a range of applications
including emergency services. He is an INFORMS Fellow. He is a co-creator of SimOpt, a testbed of simulation optimization
problems and solvers. His email address is sgh9@cornell.edu and his homepage is http://people.orie.cornell.edu/shane.

3493

https://doi.org/10.1073/pnas.2112532119
https://doi.org/10.1073/pnas.2112532119
https://github.com/simopt-admin/simopt/tree/WSC24
https://doi.org/10.1137/20M1387869
mailto://nb463@cornell.edu
https://natthab.github.io/
mailto://rh463@cornell.edu
mailto://ll936@cornell.edu
https://litongliu.github.io/
mailto://joe.ye@gatech.edu
https://tinghan-joe-ye.netlify.app
mailto://sgh9@cornell.edu
http://people.orie.cornell.edu/shane

	INTRODUCTION
	SOLVERS
	Projected Gradient Descent
	Active-set Method
	Frank-Wolfe
	Line Search Methods
	  Backtracking
	  Adaptive Step Search
	  Interpolation
	  Zoom


	PROBLEMS
	Constrained Stochastic Activity Network (SAN)
	Stochastic Max Flow (SMF)
	Convex Stochastic Max Flow (SMFCVX)
	Cascade Network (Cascade)

	EXPERIMENTS
	Experimental Design
	Results
	Discussion


