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ABSTRACT

Contextual ranking & selection is attracting increasing attention in simulation and other fields. A successful
approach to addressing related challenges uses arm allocation indices that compute the Bayesian expected
value of information of one-step look-ahead policies. We recall recent work on such indices for linear
contextual bandits that take advantage of structural information about the nature of the covariates that
describe contexts. Such indices can be computed exactly with a finite number of contexts and no delay in
observing outcomes, but may require Monte Carlo simulation otherwise. Our contribution is to describe and
quantify the benefits of two variance reduction techniques (conditional Monte Carlo and common random
numbers) to estimate such allocation indices for contextual ranking & selection problems when some
covariates are continuous or outcomes are observed with delay. We find that both techniques significantly
improve estimates and the speed of inference, but conditioning is particularly useful.

1 INTRODUCTION

The contextual Ranking & Selection (R&S) problem attempts to identify the best alternative as a function
of one or several context variables (Shen et al. 2021; Xiong 2020; Li et al. 2020). The expected value of
information (EVI) / knowledge gradient (KG) is a well-known heuristic to developing sampling policies
for R&S problems (Chen et al. 2015). EVI methods rely on the computation of so-called allocation indices
(hereafter, indices) that represent the expected improvements in value from observing one or more samples
for a given context and alternative. Numerically stable techniques have been been developed to compute
such indices accurately for R&S problems (Frazier et al. 2008) and certain contextual R&S problems
(Pearce and Branke 2018; Ding et al. 2021; Alban et al. 2021).

This paper studies how we can estimate such indices, when some assumptions of previous work on
contextual R&S do not hold, through Monte Carlo simulation. In particular, we study how the estimation is
affected when context variables may be either discrete or continuous and when there is a delay in observing
the outcome. Here, we assume that subjects arrive, their context is observed, and allocation decisions are
made on the basis of choosing the arm with the largest index. After all outcomes are observed for a fixed
sample size, an implementation decision is made. Here, an implementation decision is the choice of a
function from covariates to finite set of alternatives (arms).

Alban et al. (2021) discuss two of the differences between contextual R&S applied to simulation
optimization and to clinical trials: the potential for delays in observing outcomes while new allocations
are being made, and the process in observing the context variables. Simulation optimization chooses the
context to simulate that maximizes learning, while clinical trials may have random draws of the context
from the population of patients as they enroll. Both of those effects can slow the speed of inference. While
Alban et al. (2021) focused on the random contexts, here we account for delayed observations, in addition
to random contexts, and allow for continuous covariate values. These extensions imply that Monte Carlo
methods are useful for indices, and we also explore variance reduction techniques for those estimates here.
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The contextual R&S literature has mainly studied the problem with finitely many values of the covariates
(Gao et al. 2019; Cakmak et al. 2021). Shen et al. (2021) allows for continuous covariates and proposes a
two-stage indifference zone procedure. Ding et al. (2021) and Pearce and Branke (2018) present procedures
to estimate EVI indices with Monte Carlo simulation that are equivalent to the algorithm we study in this
paper for a special case: when outcomes are observed prior to the next allocation, i.e., no delay.

When there is a delay in observing the outcomes, the sampling policy must choose an alternative to
allocate before observing the outcome of the latest past samples, but knowing the context and chosen
alternatives of those samples. We refer to those samples that are already in progress, but whose outcomes
have not yet been observed, as samples in the pipeline. As an example of the effect of delays on a sampling
policy, consider the alternative with the most uncertainty. If there are many samples in the pipeline that are
sampling this alternative, the procedure needs to take into account the uncertainty that will be left after the
samples in the pipeline are observed, and likely assign a higher value of information to another alternative
that would be left with more uncertainty after the pipeline clears. We assume that all pipeline samples are
eventually observed.

Wu and Frazier (2016) and Wang et al. (2020) study EVI procedures for the R&S problem when the
sampling policy makes observations in parallel or in batches, i.e., the sampling policy selects a batch of
alternatives to sample in parallel. Batch sampling is similar to delays in that the sampling policy chooses
alternatives predicting the uncertainty that will be left after the samples in the batch are observed. However,
they study the problem without covariates. Chick et al. (2017) study delays with only two alternatives and
Chick et al. (2019) considers delays with multiple arms, both without covariates.

Alban et al. (2024) studied the same multi-arm contextual R&S problem that we pose in this paper
and proposed a Monte Carlo (MC) algorithm to estimate those indices to create an arm allocation index
called f EVI-MC ( f for function estimation because in contextual R&S we learn a function of covariates
to the best alternative; EVI for allocation indices based on the expected value of information; MC for the
estimation of those indices). That algorithm estimates allocation indices while using two variance reduction
techniques (VRTs): common random numbers (CRN) to sharpen contrasts between indices for each arm
and conditional Monte Carlo to enable a numerical integration through a novel use of the h(·)-function
proposed by Frazier et al. (2009) for the correlated knowledge gradient (cKG).

Our aim in this paper is to assess the importance of each of those two VRTs with respect to the expected
opportunity cost as a function of the sample size of a sequential learning experiment for contextual bandits,
such as with clinical trials for precision medicine.

In Section 2, we introduce the preliminary model of a sequential learning experiment with covariates
using a Bayesian linear regression to estimate effect of covariates and alternatives on the outcomes. Section 3
presents the f EVI policy and the definition of the f EVI-indices. In Section 4, we propose a generic Monte
Carlo algorithm to estimate the indices that can use the two VRTs (conditioning and CRN) in combination
or alone. Section 5 presents a simulation experiment, motivated by a clinical trial design in personalized
medicine, to quantify the benefits of the VRTs. We show that both VRTs considered can reduce the expected
opportunity cost of the policy that uses the indices from the Monte Carlo algorithm, particularly the VRT
based on conditioning. We can recommend the f EVI-MC algorithm with both VRTs for contextual R&S
applications, and identify parameter values for the algorithm that worked well.

2 MODEL

We model the decision making process of an experimenter with a budget for T observations. The experimenter
assigns sequentially subjects with covariates Xt ∈ Rm for t = 1,2, . . . ,T , where m is the dimension of the
covariates vector. A subject may be a user of a website, a configuration of an engineering system, a
patient in a clinical trial, or other contexts in a sequential learning problem. We assume that subjects
arrive sequentially in equally spaced intervals. Each subject is assigned to an alternative Wt ∈ {1,2, . . . ,n},
where the n is the number of available alternatives. After a fixed delay of ∆ ≥ 0 subject arrivals, the
experimenter observes the outcome Yt . To make a choice of the alternative Wt+1, the experimenter uses
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all information available to her, which includes prior information K0, the pairs of covariate values and
alternatives for enlisted subjects (Xt ′ ,Wt ′) for t ′ = 1,2, . . . , t, the outcomes that have already been observed
Yt ′ for t ′ = 1,2, . . . , t−∆, and the covariates of the current subject Xt+1.

After all subjects have been assigned and their outcomes have been observed, which happens at time
T +∆, the experimenter selects a treatment strategy: a function that maps covariates to an alternative,
to implement on a future population of subjects. The experimenter selects the treatment strategy that
maximizes expected rewards for each covariate value. We now discuss how we learn from observations
and summarize the information in a knowledge state that is a sufficient statistic.

2.1 Bayesian Linear Regression and Knowledge State

The outcomes are noisy observations that are normally distributed around the mean rµµµ(Xt ,Wt) = E[Yt |
µµµ,Xt ,Wt ], where µµµ is the set of unknown parameters. We assume that rµµµ(x,w) is a linear function of the
interactions of the covariates and alternatives:

rµµµ(x,w) = µ0,0ξ0,0 +
n

∑
i=1

1w=iµi,0ξi,0 +
m

∑
l=1

xlµ0,lξ0,l +
n

∑
i=1

m

∑
l=1

1w=ixlµi,lξi,l, (1)

where 1a is the indicator function of event a and ξi, j ∈ {0,1} induce the information about which terms
are potentially active (ξi, j = 1) or are known to be inactive (ξi, j = 0). Inactive terms do not have any effect
on the outcome of the subject, while potentially active terms are estimated from the trial data. We may
choose some terms to be inactive so that (1) is not overparameterized or to include expert information
about certain terms that are known not to affect the outcome.

To simplify notation and perform matrix and vector multiplication, the vector of unknown coefficients
is assumed to have the following structure:

µµµ =
(

µ0,0,µ0,1, . . . ,µ0,m︸ ︷︷ ︸
associated with no alternative

, µ1,0, . . . ,µ1,m︸ ︷︷ ︸
associated with alternative 1

, . . . , µn,0, . . . ,µn,m︸ ︷︷ ︸
associated with alternative n

)⊤
.

Similarly, the vector of features that interacts alternative with covariates is given by the following use of
the ⊗ operator:

w⊗x =
(

ξ0,0,ξ0,1x0,1, . . . ,ξ0,mx0,m︸ ︷︷ ︸
associated with no alternative

,ξ1,01w=1, . . . ,ξ1,m1w=1xm︸ ︷︷ ︸
associated with alternative 1

, . . . ,ξn,01w=n, . . . ,ξn,m1w=nxm︸ ︷︷ ︸
associated with alternative n

)
.

With these notations, we can write
rµµµ(x,w) = (w⊗x)µµµ.

We use Bayesian linear regression to learn the parameters µµµ . The prior distribution is given by

µµµ ∼N (θθθ 0,Σ0),

where (θθθ 0,Σ0) is the prior information. The noise is normally distributed with fixed sampling variance σ2:

Yt | µµµ,Xt ,Wt
i.i.d.∼ N ((Wt ⊗Xt)µµµ,σ

2).

The posterior parameters depend on data for subjects whose outcomes have already been observed. To
keep track of covariates and assignments of alternatives for enlisted subjects whose outcomes have not
been observed due to the delay, we define the pipeline state as follows:

Jt :=


/0, for ∆ = 0 or t = 0 or t = T +∆

(X1,W1, . . . ,Xt ,Wt), for 1≤ t ≤ ∆

(Xt−∆+1,Wt−∆+1, . . . ,Xt ,Wt), for ∆+1≤ t ≤ T
(Xt−∆+1,Wt−∆+1, . . . ,XT ,WT ), for T +1≤ t ≤ T +∆−1.
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The knowledge state Kt must also include the information about the pipeline: Kt := (θθθ t ,Σt ,Jt). The
inference model has a conjugate prior distribution so that µ | Kt ∼ N (θθθ t ,Σt) and we can update the
parameters for t > ∆ (when we observe outcomes) as follows (Powell and Ryzhov 2012, Sec. 8.2.2):

θθθ t = θθθ t−1 +
Yt−∆− (Wt−∆⊗Xt−∆)θθθ t−1

σ2 +(Wt−∆⊗Xt−∆)Σt−1(Wt−∆⊗Xt−∆)⊤
Σt−1(Wt−∆⊗Xt−∆)

⊤ (2a)

Σt = Σt−1−
Σt−1(Wt−∆⊗Xt−∆)

⊤(Wt−∆⊗Xt−∆)Σt−1

σ2 +(Wt−∆⊗Xt−∆)Σt−1(Wt−∆⊗Xt−∆)⊤
. (2b)

To enable the use of CRN to simulate allocation indices across arms, it will be useful to describe the
distribution of the posterior means to be realized after the pipeline outcomes are observed relative to a
standard normal random variable. It can be shown that (Alban et al. 2024)

θθθ t |Kt−1,Xt ,Wt ∼N (θθθ t−1, σ̃σσ t σ̃σσ
⊤
t ),

where the preposterior standard deviation is given by

σ̃σσ t =
Σt−1(Wt−∆⊗Xt−∆)

⊤√
(σ2 +(Wt−∆⊗Xt−∆)Σt−1(Wt−∆⊗Xt−∆)⊤)

. (3)

Therefore, by letting Zt ∼N (0,1) represent the noise of the outcome of subject t−∆, we can show that
the posterior mean is conditionally distributed as follows:

θθθ t |Kt−1,Xt ,Wt ∼ θθθ t−1 + σ̃σσ tZt . (4)

Moreover, we can update the posterior variance matrix using the preposterior standard deviation:

Σt = Σt−1− σ̃σσ t σ̃σσ
⊤
t . (5)

3 VALUE, POLICY, AND INDICES

A policy π is a mapping from the knowledge state and the covariate values of the current subject to a
probability distribution over the available alternatives, i.e., π(w | k,x) = P(Wt = w |Kt−1 = k,Xt = x). The
implemented strategy f̃θθθ (x) for a given posterior mean θθθ maps the covariate values to the alternative that
maximizes the expected outcome: f̃θθθ (x) = argmaxw(w⊗x)θθθ .

We use expected value of information methods to design heuristic policies to maximize value:

V π = Eπ
[
rµµµ(X̃, f̃θθθ T+∆

(X̃))
]
, (6)

where X̃ is a random variable with the distribution of the covariates in the population, Fx̃.
The functional Expected Value of Information ( f EVI) policy is a heuristic policy that samples the

alternative with the largest one-step look-ahead value, which we will refer to as the f EVI-index.

νt(x,w) = E[( f̃θθθ t+∆+1(X̃)⊗ X̃)µµµ |Kt ,Xt+1 = x,Wt+1 = w]−E[( f̃θθθ t+∆
(X̃)⊗ X̃)µµµ |Kt ]

= E
[

max
w̃

(w̃⊗ X̃)θθθ t+∆+1 |Kt ,Xt+1 = x,Wt+1 = w
]

︸ ︷︷ ︸
implement after one more subject and pipeline clears

−E
[

max
w̃

(w̃⊗ X̃)θθθ t+∆ |Kt

]
︸ ︷︷ ︸

implement after pipeline clears

. (7)

This f EVI-index assesses the increment in the value of the optimal strategy selected after the data of the
pipeline plus one subject is observed, relative to that if only pipeline data are observed.

The f EVI policy samples Wt+1 = argmaxw∈W νt(Xt+1,w), 0≤ t ≤ T −1. When covariates are discrete
and ∆ = 0, Alban et al. (2021) show how to compute the indices using ideas from Frazier et al. (2009).
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4 MONTE CARLO ALGORITHMS TO COMPUTE FEVI INDICES

The indices in (7) involve expectations that may be hard to numerically integrate with quadrature when
some covariates are continuous or when the observation delay is positive. We now give unbiased estimators
of those indices using Monte Carlo simulation in order to allow for continuous covariates and ∆ > 0.

Algorithm 1 ( f EVI-MC) presents a procedure that determines four different Monte Carlo estimation
techniques for the f EVI-indices. Each technique produces indices, and hence each represents a different
selection procedure for the contextual R&S problem. The four different allocation indices are defined by
two parameters (hflag and CRNflag, each valued true or false) that determine whether the algorithm uses
each of two VRTs (conditioning using the h(·)-function from Frazier et al. (2009) and CRN, respectively),
which we describe in more detail below. The algorithm further depends on two parameters that determine
the number of replications: ηon represents the number of sampled outcomes of experimental subjects and
ηoff represents the number of sampled subjects from the post-experiment population for each of the sampled
experimental subjects. Overall, ηon×ηoff samples of the indices are averaged to obtain the final estimate.

The first VRT is conditional Monte Carlo (or conditioning) using the h(·)-function from Frazier et al.
(2009). It conditions on the posterior parameters after clearing the pipeline and on the covariates in
the population, followed by integrating over the outcome of the current subject using the h(·)-function:
h(a,b) = E [maxi ai +biZ]−maxi ai, where Z ∼N (0,1), and ai and bi are the ith entries of vectors a
and b, respectively. In addition to variance reduction, the conditional Monte Carlo of f EVI-MC has two
advantages: 1) the estimates of the indices are guaranteed to be positive, and 2) it estimates the logarithm
of the indices, which is numerically more stable. For notational convenience, Algorithm 1 is presented to
compute the logarithm even when it does not use conditioning, but in that case it does not benefit from
numerically stable methods such as those used in computing the logarithm of the h(·)-function.

The second VRT is to use CRN for common draws of outcomes from the pipeline subjects and of
covariates of the future population of subjects to be treated, in computing the indices for each arm. Although
we use CRN across arms for a given t, independent draws are made for each time t.

Algorithm 1 can use both, either, or neither of the two VRTs, for a total of four possible combinations
of the VRTs, by activating the VRTs using the parameters hflag for conditioning and CRNflag for CRN.

The parameters ηon and ηoff represent the number of samples from random variables for the Monte
Carlo estimation. When conditioning, ηon represents the number of samples of the outcomes from the
pipeline, i.e, the samples Yt ′ for t ′ = t−∆+1, . . . , t (the algorithm samples the noise Ẑi instead of Yt ′). These
are from the subjects that have been assigned to an alternative but whose outcome has not been observed
yet due to the delay. Otherwise, ηon represents the number of samples of the outcomes from the pipeline,
but also includes the outcome of the subject whose allocation decision is being made, Yt+1. Conditioning
avoids the sampling of Yt+1 and numerically integrates conditional on the other sampled variables using
the h(·)-function from the cKG. Regardless of the VRTs, ηoff represents the number of samples of the
covariates from the population, X̃, whose samples are denoted in the algorithm by X̂i. Finally, the algorithm
averages ηon×ηoff unbiased samples of the f EVI-indices.

When conditioning and when there is no delay, the allocation of the replications between ηon and ηoff

is inconsequential, as long as the product of the two is the same. However, without conditioning, f EVI-MC
benefits from ηon, rather than ηoff, being larger, because the sample space of the outcome Yt+1 is more
widely explored. When there is a delay, ηon and ηoff balance more (random) exploration of the outcomes
of experimental subjects (larger ηon) and more exploration of the covariates in the population (larger ηoff).

Algorithm 1 here is equivalent to Algorithm 1 of Alban et al. (2024) when it uses both conditioning
and CRN. The algorithms of Pearce and Branke (2018) and Ding et al. (2021) do not account for delayed
observations, but are equivalent to Algorithm 1 with both VRTs for the special case of no delay, i.e., ∆ = 0.
When there is no delay and there are a finite number of covariate values, Alban et al. (2021) shows how
to compute the f EVI-indices exactly (up to numerical error), and we refer to this procedure as the exact
computation of the f EVI-indices (or the f EVI policy) when applicable.
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Algorithm 1 f EVI-MC: Monte Carlo estimates of f EVI-indices. The hflag parameter controls whether
we use conditioning with the h(·)-function. The CRNflag parameter controls whether we use CRN.

1: function f EVI-MC(t,Kt ,Xt+1;ηon,ηoff,hflag,CRNflag)
2: ∆′t ←min{t,∆} ▷ Compute length of pipeline.
3: τ ←max{t,∆} ▷ Compute the time step when we will next observe an outcome
4: Compute σ̃σσ τ+i for i = 1,2, . . . ,∆′t ▷ Prepost std dev in (3) for pipeline
5: for all j = 1,2, . . . ,ηon do ▷ Compute offline rewards for ηon replications
6: Ẑi ∼N (0,1) for i = 1,2, . . . ,∆′t +1 ▷ Noise vector of the outcomes of length ∆′t +1
7: θ̂θθ ← θθθ t +∑

∆′t
i=1 σ̃σσ τ+iẐi ▷ Repeated application of (4) to simulate a posterior mean θθθ t+∆

8: X̂i ∼ Fx̃ for i = 1,2, . . . ,ηoff ▷ Sample ηoff post-trial covariates
9: for all w ∈W do ▷ For each alternative that could be assigned

10: if not CRNflag then ▷ Without CRN, resample random variables for each alternative
11: Ẑi ∼N (0,1) for i = 1,2, . . . ,∆′t +1
12: θ̂θθ ← θθθ t +∑

∆′t
i=1 σ̃σσ τ+iẐi

13: X̂i ∼ Fx̃ for i = 1,2, . . . ,ηoff

14: end if
15: Wt+1← w ▷ Compute index assuming that the subject is assigned to alternative w. . .
16: Compute σ̃σσ τ+∆′t+1
17: for all i = 1,2, . . . ,ηoff do ▷ For each subject sampled from the population. . .
18: if hflag then
19: a← ((1,2, . . . ,n)⊗ X̂i)θ̂θθ ▷ Vector of means for n alternatives with covariates X̂i

20: b← ((1,2, . . . ,n)⊗ X̂i)σ̃σσ τ+∆′t+1 ▷ Prepost std dev for n alternatives w/ covariates X̂i

21: log(ν̂w, j,i)← log(h(a,b)) ▷ Conditional EVI, where log(h(a,b)) is the ν . . .
22: else ▷ . . . for cKG computed in Algorithm 2 in Frazier et al. (2009).
23: θ̂θθ ← θ̂θθ + σ̃σσ τ+∆′t+1Ẑ∆′t+1 ▷ Posterior mean

24: log(v̂w, j,i)← log
(
( f̃

θ̂θθ
(X̂i)⊗ X̂i)θ̂θθ

)
▷ Realized reward for a given posterior

25: end if
26: end for i
27: end for w
28: end for j
29: for all w ∈W do
30: log(ν̂w)← log

(
(1/(ηonηoff))∑

ηon

j=1 ∑
ηoff

i=1 νw, j,i

)
▷ Index for w, ave. over param uncertainty

31: end for
32: return Wt+1 = argmaxw∈W log(ν̂w) ▷ Pick alternative with largest f EVI-MC-index
33: end function ▷ (break ties uniformly at random)

5 SIMULATION RESULTS

We consider eight alternatives (n = 8), one categorical covariate with four categories, and one real-valued
covariate. The labeling ξξξ is such that 10 coefficients of the linear regression are active and need to be
estimated. The experiments were performed using the Julia language (Bezanson et al. 2017) on a 12th
Gen Intel Core i7 processor. This setup was also used for numerical experiments of Alban et al. (2024).

We aim to compare Algorithm 1 under the four combinations of the VRTs (both conditioning and
CRN, only conditioning, only CRN, and none) in terms of their computation time, accuracy, and expected
opportunity cost (EOC). The EOC is sometimes called the expected regret. Moreover, we provide some
guidance about the number of replications required.
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5.1 Scenario Where Exact Computation is Feasible

We first explore a scenario where we can compute the indices exactly (up to numerical error) using the
algorithm of Alban et al. (2021) by assuming that the real-valued covariate is discrete with three possible
values (0,1,2 with probabilities 1/4,1/2,1/4) and no delay (∆ = 0). This numerical experiment allows us
to compare the f EVI-MC algorithm to the exact computation, which will provide evidence of the usefulness
of the Monte Carlo method and the benefits of the VRTs.

We run 5,000 replications of a trial with a horizon T = 600 where we use the f EVI policy to make
allocation decisions. At each time step, we compute the indices with the four versions of the f EVI-MC
algorithm, each with ηon = 5,10,20,50, while keeping ηoff = 1.

Table 1 shows the computation time, fraction of replications in which the f EVI-MC would have
selected the same arm as the f EVI policy, and EOC. We observe that the computation time increases
close to linearly with ηon. CRN saves between 6-7% of computation time when also conditioning and
13-14% otherwise. Conditioning requires repeated computation of the h(·)-function, which increases the
computation time compared to the versions without conditioning. This increase does not exceed a factor
of two in this experiment. The exact computation requires 12 evaluations of the h(·)-function, one for each
context (a context here is a combination of the two covariates, which have three and four possible values).
For ηon = 5, the f EVI-MC algorithm with conditioning only performs five evaluations of the h(·)-function
and obtains a lower computation time. Due to other operations of the algorithm, mainly random number
generation, the algorithm requires more computation time when ηon = 10 despite using fewer evaluations
of the h(·)-function.

The fraction of arm choices that are the same as the arm choices of f EVI is substantially higher when
conditioning. CRN provides an increase in addition to conditioning. Without conditioning, CRN also
provides a small increase in terms of selecting the arm with the highest f EVI-index. For the range of ηon

considered here, the versions with conditioning obtain an increase of 5-6% in the fraction of decision that
select the arm with the highest f EVI-index as ηon increases, while the versions without conditioning only
obtain an increase of 2%. To raise the performance in this metric of the version without conditioning to
match the versions with conditioning, an increase of orders of magnitude in ηon would be required.

A more direct measure of performance of the algorithms is their ability to obtain larger value, or
equivalently, a lower EOC, defined as the difference between the value obtained by the policy and an oracle
that has perfect information about the coefficients:

EOCπ(T ) := Eπ

[
max
w∈W

(w⊗ X̃1)µµµ− ( f̃θθθ T+∆
(X̃1)⊗ X̃1)µµµ | θθθ ,Σ

]
. (8)

While the algorithms may not always select an arm with the largest f EVI-index, they often select an arm
with a “good” EVI, ultimately leading to high value (low EOC) of the policy. We again observe that both
versions with conditioning obtain a lower (better) EOC than the versions without. However, we do not
observe a significant improvement due to CRN in addition to conditioning. Both versions with conditioning
obtain an EOC that is statistically equivalent to that of the exact computation.

Figure 1 (left panel) shows the fraction of arm choices equal those of f EVI for the four versions of
the f EVI-MC algorithm (ηon = 50). The versions that do not use CRN have a low fraction for T = 0 but
for T = 1 have a jump to higher fractions. Both versions with conditioning have a relatively constant (with
some noise) fraction for the whole horizon, while the versions without conditioning have a decreasing
fraction until around T = 50 – the indices decrease exponentially, and so does the difference between
indices, making accurate identification of the highest index more difficult as the sample size increases. The
conditioning VRT is able to handle small values by estimating the logarithm of the indices as discussed in
Section 4. Without conditioning, estimating exponentially small indices becomes impractical as the sample
size increases, making arm choice effectively at random (Branke et al. 2007; Frazier et al. 2009).

Figure 1 (right panel) shows the EOC for the four versions of the f EVI-MC algorithm (ηon = 50 for all),
in addition to the f EVI policy, as a function of the sample size T . For all sample sizes, both versions with
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Table 1: Computation time (as a multiple of CPU time required for the exact f EVI computation, 0.102ms),
fraction of estimates that lead to the same decisions as the exact f EVI, and EOC at sample size T = 600,
for different versions of Monte Carlo algorithms for estimating f EVI indices. The CRN VRT denotes use
of the same pipeline outcomes and covariates from the population across each alternative index. The h(·)
VRT denotes use of the h(·)-function of cKG (Frazier et al. 2009) to integrate over outcomes of subject
t +1, conditional on sampled pipeline outcomes and population covariates.

VRTs ηon ηoff Computation time Fraction of arm choices EOC at T = 600
equal to those of f EVI

Exact f EVI - - 1 1 1.86e-03 ± 1.45e-04

h(·) and CRN

5 1 0.9156 0.9417 ± 0.0001 2.12e-03 ± 1.57e-04
10 1 1.7713 0.9822 ± 0.0001 1.76e-03 ± 1.33e-04
20 1 3.5182 0.9950 ± 0.0000 2.03e-03 ± 1.55e-04
50 1 8.7615 0.9966 ± 0.0000 1.97e-03 ± 1.49e-04

h(·)

5 1 0.9735 0.8215 ± 0.0002 1.83e-03 ± 1.37e-04
10 1 1.8940 0.8417 ± 0.0002 1.80e-03 ± 1.39e-04
20 1 3.7439 0.8587 ± 0.0002 1.63e-03 ± 1.32e-04
50 1 9.3170 0.8807 ± 0.0002 1.87e-03 ± 1.43e-04

CRN

5 1 0.4642 0.4323 ± 0.0003 3.63e-03 ± 2.36e-04
10 1 0.8999 0.4397 ± 0.0003 2.93e-03 ± 1.93e-04
20 1 1.7743 0.4479 ± 0.0003 3.15e-03 ± 2.11e-04
50 1 4.3925 0.4596 ± 0.0003 2.86e-03 ± 1.91e-04

None

5 1 0.5309 0.4297 ± 0.0003 3.13e-03 ± 2.14e-04
10 1 1.0353 0.4345 ± 0.0003 2.83e-03 ± 1.93e-04
20 1 2.0442 0.4390 ± 0.0003 3.12e-03 ± 2.01e-04
50 1 5.0785 0.4454 ± 0.0003 3.02e-03 ± 2.15e-04
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Figure 1: Fraction of arm choices equal to those of f EVI (left panel) and EOC (right panel) in a scenario
where indices can be computed exactly. Only results with ηon = 50 (used in the four versions of f EVI-MC)
are shown, because no substantial differences are observed for other values of ηon.

conditioning have approximately equal performance as the f EVI policy. The versions without conditioning
move farther apart from the f EVI policy as T increases. Both versions with conditioning require ≈400
observations to obtain the same EOC that the other two versions obtain with 600 observations. We do not
show the results for other values of ηon, as we do not observe significant differences.
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We highlight the following takeaways from this example. The conditional Monte Carlo VRT substantially
increases the accuracy of the Monte Carlo estimates with a modest increase in computation time. The
arm with the highest f EVI-index is selected with probability over 80% when conditioning but less than
50% otherwise. CRN provides an additional increase in the fraction of choices equal to those of f EVI
(10-12%) but is small compared to the increase provided by conditional Monte Carlo. The increase in
fraction of arm choices with the highest f EVI-index due to CRN does not translate into a lower EOC. While
the accuracy of the estimates may increase with VRTs, those improvements do not necessarily translate
into obtaining lower EOC. The f EVI-MC algorithm with VRTs may obtain statistically the same EOC as
f EVI, with lower computation time (in our experiment with ηon = 5). Finally, the additional computation
time for conditioning, due to the h(·)-function computations, does not exceed a factor of two, which can
be justified for (monetary or computationally) expensive experiments by the decrease in the EOC. (This
example suggests that two thirds of the samples are necessary to obtain the same EOC.)

5.2 Scenario with a Continuous Covariate and a Delay

We now study a scenario where the real-valued covariate is continuous and where a positive delay (∆ > 0)
is present. A positive delay decreases the value because it forces the policy to make allocation decisions
with less information at hand.

Alban et al. (2024) show that the f EVI-MC algorithm with conditioning and CRN is able to obtain
the statistically equivalent EOC with a delay (∆ = 50) and with no delay (∆ = 0) for large sample sizes
(above 150 in our experiments). Similarly, f EVI-MC without VRTs can obtain a statistically equivalent
EOC with a delay and with no delay for large sample sizes, but the EOC remains significantly higher than
that with VRTs (data not shown).

Table 2 shows the computation time and EOC at T = 600 with a delay ∆ = 50, which is a moderate
delay (8.3% of the horizon considered here). The table shows results for the different VRTs, ηon = 5,10
and ηoff = 5,10. Due to the delay and continuous covariates, obtaining the exact indices by quadrature
would be computationally challenging.

Both versions of the f EVI-MC algorithm that use conditioning obtain a statistically lower EOC than
the two versions that do not use conditioning. We observe a statistically significant difference in EOC
between the version with both VRTs and the version with only conditioning for ηon = ηoff = 10. However,
as we discuss below, this observation may be due to noise. Unlike the results in Table 1, we observe a
significant and large decrease in EOC when using CRN compared to not using any VRTs, suggesting that
CRN is particularly useful in scenarios with delay.

Figure 2 shows the EOC as a function of the sample size T for ∆ = 20 (left panel) and ∆ = 50 (right
panel) for ηon = ηoff = 10. For ∆ = 50, we observe that the version with both VRTs has a down-tick at
the end of the horizon, while the version with only conditioning has an up-tick, which can explain the
statistical difference observed in Table 2. Both figures illustrate that, in a scenario with moderate delays,
both versions with conditioning are superior and statistically equivalent. The version with only CRN is
significantly better than the version with no VRTs.

We highlight the following main takeaways. The f EVI-MC algorithm with conditioning is able to
effectively deal with delays, achieving approximately the same EOC for large sample sizes as when there
is no delay and outperforming the versions of f EVI-MC that do not use conditioning. CRN plays a more
important role in reducing EOC when the delay is positive than when the delay is zero.

5.3 Binning a Continuous Covariate in a Setting without Delay

We now consider a scenario with a continuous covariate but no delay. Here, we can obtain an estimate of
the f EVI-indices by first binning the continuous covariate into finitely many bins and then using the exact
algorithm. We aim to compare the EOC of the f EVI-MC algorithm to the exact algorithm with binning
and provide insights into the benefits when Monte Carlo estimates are most beneficial.
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Table 2: Computation time (relative to the computation time corresponding to the first row of the table,
which equals 1.075ms) and EOC for the four versions of the f EVI-MC algorithm with ∆ = 50 and different
values of ηon, ηoff.

VRTs ηon ηoff Computation time EOC at T = 600

h(·) and CRN

5 5 1.0000 2.19e-03 ± 1.61e-04
5 10 1.4541 2.09e-03 ± 1.54e-04

10 5 1.4578 1.98e-03 ± 1.56e-04
10 10 2.6669 1.76e-03 ± 1.36e-04

h(·)

5 5 1.0437 2.06e-03 ± 1.53e-04
5 10 1.5399 2.27e-03 ± 1.66e-04

10 5 1.5658 2.09e-03 ± 1.54e-04
10 10 2.8562 2.29e-03 ± 1.69e-04

CRN

5 5 0.7748 2.97e-03 ± 1.97e-04
5 10 0.9892 2.90e-03 ± 2.01e-04

10 5 0.9954 2.47e-03 ± 1.83e-04
10 10 1.5544 2.69e-03 ± 1.99e-04

None

5 5 0.8136 4.74e-03 ± 2.85e-04
5 10 1.0526 5.03e-03 ± 3.05e-04

10 5 1.0731 4.22e-03 ± 2.70e-04
10 10 1.7086 4.28e-03 ± 2.77e-04
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Figure 2: EOC with a continuous covariate and a delay (left ∆ = 20, right ∆ = 50). Here, ηon = ηoff = 10.

Figure 3 shows the EOC for the four versions of the f EVI-MC algorithm and the exact f EVI algorithm
that bins the covariates into three and five bins. The algorithm with three bins obtains a higher EOC than the
f EVI-MC algorithm with no VRTs, and with five bins statistically equivalent to the f EVI-MC with CRN
and no VRTs. The versions of f EVI-MC with conditioning obtain a lower EOC. The computation time of
the exact algorithm increases linearly with the number of bins because each bin requires the computation of
the h(·)-function. A linear increase is not a major concern when only one covariate is binned, as we do here.
However, binning several covariates can cause large increases in computation time because the number of
bins will increase exponentially with the number of covariates. The computation time for the Monte Carlo
algorithms is similar to those reported in Table 1, and the computation time of binning into three bins
is similar to the exact computation in Table 1. Thus, f EVI-MC may obtain a lower EOC (compared to
binning covariates and then using the exact f EVI) with shorter computation time in this experiment with
ηon = 5.
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Figure 3: EOC with a continuous covariate.

6 DISCUSSION

Computing the f EVI-indices of Bayesian selection procedures for contextual R&S problems with continuous
covariates or a delay in observing outcomes requires a challenging numerical integration over a high-
dimensional space. Monte Carlo simulation is a very effective method to estimate such multi-dimensional
integrals. We find that Monte Carlo methods with appropriate VRTs can obtain good estimates of the
indices, and we provide a policy that can obtain an EOC at least comparable to an exact computation of
the indices. Moreover, we find that it can properly handle scenarios with a moderate delay, which are the
scenarios where sequential sampling policies are most useful. In particular, the VRT that conditions on
the pipeline outcomes and the population covariates and uses the h(·)-function from the cKG algorithm
provides a significant improvement in the estimates of the f EVI-indices and improves the EOC.

In our experiments, we find that a small number of replications (ηon,ηoff) for the f EVI-MC algorithm
with VRTs are sufficient to obtain a statistically equivalent EOC. In particular, we find that the required
computation time of the f EVI-MC algorithm is comparable, and potentially even shorter, than an exact
computation of the f EVI policy, while maintaining a statistically equivalent EOC. Conditioning using
the h(·)-function increases computation time but reduces the EOC, justifying the use of conditioning for
expensive experiments. CRN does not necessarily improve the EOC of the f EVI-MC policy, but did not
deteriorate it, and it reduces the computation time of the indices. Thus, we would recommend using both
VRTs (conditioning and CRN) for use in practice. A further exploration of how to pick ηon,ηoff in general
is an area of future work.

Some modified versions of our model, such as when the outcomes are not normally distributed, may
not be amenable to the conditioning VRT as we present it here. In such scenarios, the f EVI-MC algorithm
without conditioning may still be appropriate. Without conditioning, we find that CRN can provide a
substantial improvement in EOC for the f EVI-MC policy, particularly when the delay is positive. Future
work can pursue how CRN, and potentially other VRTs, can improve the estimation of f EVI-indices under
non-Gaussian models. Related work discusses techniques to handle heteroscedastic or unknown variances
(Alban et al. 2024).
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