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ABSTRACT

We consider the problem of designing an early stopping clinical trial investigating the efficacy of a medical
intervention against the available standard of care. The standard approach is to determine a stopping rule
minimizing the expected number of patients required, subject to error rate constraints, not considering
costs explicitly depending on the magnitude of the treatment effect. In this paper we formulate an optimal
stopping problem for clinical trials with instantaneous continuous response, the objective being minimizing
an overall risk comprising loss functions accounting for costs involving the treatment effect that might
model ethical and economic costs. To solve the optimization problem we propose a feasible directions
simulation-based algorithm requiring new stochastic gradient estimators which we derive using Smoothed
Perturbation Analysis. We conduct simulation experiments to test the effectiveness of the simulation
optimization algorithm and to obtain insights on the effects of the various risk factors on the optimal
solution.

1 INTRODUCTION

A randomized clinical trial serves as a litmus test to assess the safety and efficacy of medical interventions
in human subjects. In its simplest form, a clinical trial investigates the efficacy of a new treatment by
comparing it with the control (placebo, or the currently available standard treatment) in an experiment
where participants are allocated to one of the two treatments according to a random mechanism. Owing to
the nature of participant entry to a trial, the recorded observations, which are assumed to be quantitative
and recorded instantaneously after administering the treatment, become available sequentially. When the
accumulating data in a clinical trial provides evidence of the inferiority/superiority of the drug under
investigation, should the trial be terminated, or should it continue as planned? If a trial is terminated
ahead of its scheduled end, what is the ethical and financial fallout of an incorrect decision? Both of these
questions are central to the design of a clinical trial. Consequently, clinical trials often include provisions
to analyze the accumulating data at interim time-points - subjects entering the trial are divided into groups,
and repeated significance testing of the accumulated data after processing each group of subjects is used to
decide whether to stop or continue the trial. A clinical trial designed to include such repeated significance
testing of the accumulating data at interim time-points is referred to as a group-sequential clinical trial,
and the critical values at each analysis together constitute a group-sequential boundary.

We focus on designing a group-sequential randomized controlled clinical trial with the provision to stop
early and declare efficacy (superiority of the investigational treatment). In addition to assuming the response
recorded from each subject to be continuously distributed and instantaneously available on administration
of a drug, we assume subjects enter the trial sequentially with no overlapping periods of followup . A
group-sequential design is specified by the total number of analyses K > 1 (of which K−1 are interim), the
size of each group of subjects recruited between successive analyses (nk, k = 1, . . . ,K), and the stopping
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boundaries (or critical values) at each analysis (bk, k = 1, . . . ,K). The total number of analyses K are fixed
in advance, as are the group size nk, k = 1, . . . ,K, leaving the group-sequential boundary b = (b1, . . . ,bK)
to be determined. Additionally, the group-sequential boundary for repeated significance testing of the
accumulating data must preserve the required false positive experiment-wise error rate.

Sequential analysis of data was first proposed by Wald (1945) during World War II. For a randomized
clinical trial, however, analyzing the data in groups is more pragmatic. Elfring and Schultz (1973)
and McPherson (1974) laid the foundations of group-sequential testing in clinical trials. Building on
this groundwork, Pocock (1977) and O’Brien and Fleming (1979) provided the impetus required for its
acceptance. Their group-sequential boundaries were easy to implement and could be extended to different
types of responses, including survival-time responses. An examination of the operating characteristics of
such boundaries was a natural stepping stone to the determination of optimal boundaries. A group-sequential
boundary was considered to be optimal if it minimized the Expected Sample Size (ESS) - the average
number of observations required to terminate the trial - at a specific difference in treatment effects with
controlled error rates. Pocock (1982) directly compared multiple boundaries, thoroughly examining their
ESS and statistical power at specific treatment effect differences. Jennison (1987) used numerical integration
techniques to derive group-sequential boundaries which minimized the ESS weighted over multiple values
of the treatment effect difference in the case of normally distributed responses with a known variance. Eales
and Jennison (1992) improved upon this by deriving the optimal group-sequential boundary as the solution
to an “unconstrained Bayes sequential decision problem”, minimizing an expected total cost involving a
constant loss function for an incorrectly concluded trial using dynamic programming. However, none of
these contributions consider the idea of incorporating the magnitude of the treatment effect into the loss
function associated with an incorrect decision.

The first contribution of this paper is extending optimal boundaries to additionally minimize losses which
depend explicitly on the magnitude of the treatment effect, thereby incorporating an interaction between
said treatment effect and the terminating time of the trial. The fallout from an incorrectly concluded trial is
both ethical and financial - prospective recipients are either supplied an ineffective drug, or continue on the
available standard of care despite the existence of a superior drug. From the economic standpoint, the trial
sponsor either fails to capture a market share and loses out on the possible revenue from a superior drug, or
it must bear the burden of marketing an ineffective drug. Naturally, the resulting loss is dependent on the
treatment effect difference. An optimal boundary is then defined to minimize an overall risk function - a
linear combination of the risk due to subjects exposed to an “inferior” drug and the risk due to an incorrectly
concluded trial, both weighted over multiple values of the treatment effect - subject to a constraint on the
false positive error rate.

The second contribution of this paper is proposing an optimization algorithm to minimize a complicated
overall risk function subject to a constraint on the false positive error rate. Using numerical integration
to minimize an overall risk function involves the computation of high-dimensional integrals. This is
cumbersome, and may require significant computing overhead. The proposed algorithm utilizes a feasible
directions approach to generate a subsequence of improving group-sequential boundaries whilst maintaining
the desired error rate up to a given “tolerance” limit. Additionally, we derive sample path-based estimators
of the gradients of the objective and constraint functions with respect to the boundary points for use in
the optimization algorithm, referring to the technique of Perturbation Analysis (PA) (Ho and Cao 1991;
Glasserman 1991; Fu and Hu 1997), and in particular, Smoothed Perturbation Analysis (Gong and Ho
1987).

The remainder of this paper is organized as follows. In Section 2 we model the loss functions for an
incorrectly concluded trial as a function of the difference of treatment effects, and introduce the overall
risk function to be minimized subject to a false positive error rate constraint. In Section 3 we set up the
SPA estimators of the gradients of the objective and constraint functions with respect to the boundary
points. In Section 4 an adaptation of the feasible directions approach is used to develop an optimization
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algorithm. Simulation results from implementing the optimization algorithm across different configurations
are presented in Section 5 followed by concluding statements in Section 6.

2 PROBLEM DEFINITION

We consider a Phase III parallel two-arm trial to investigate the efficacy of an investigational drug (I)
against the available standard of care (C) using two interim analyses and one final analysis at the conclusion
of the trial. The basic sequence of events is as follows: assuming fully sequential entry of subjects into the
trial without overlapping periods of followup, on entry each subject is randomly allocated to one of the
two treatment arms, an immediate quantitative response is recorded for each subject upon administration
of the drug, and the accumulating data is tested after each group of patients has been evaluated.

We define the following:
XI j : response of the jth subject allocated to treatment I; XI j

IID∼ N (θI,σ
2), independently of

XC j : response of the jth subject allocated to treatment C; XC j
IID∼ N (θC,σ

2),

D j = XI j −XC j : difference in responses for the jth pair of subjects; D j
IID∼ N (θ ,2σ2).

The normal mean θ = θI − θC is so parameterized that a positive value indicates superior efficacy of
treatment I, and σ2 is assumed to be known. At the kth analysis (k = 1,2,3) data on nk pairs of subjects,
one from each treatment arm, denoted by D1,D2, . . . ,Dnk , is available; under the assumption of equally
sized groups: nk = nk.

We wish to test,
H0 : θ ≤ 0 vs. H1 : θ > 0

Even though clinical trials are almost always done two-sided to enable early stopping for both superior and
inferior efficacy of the investigational treatment, we consider a simplification where the trial stops early

only for superiority. At the kth analysis, the test statistic Zk =
∑

j=nk
j=1 D j√
2σ2nk

is compared to a stopping boundary,
say bk, and if Zk > bk, H0 is rejected and the trial is terminated. Given the nature of the test statistic, we
have the relation

Zk =

√
k−1

k
Zk−1 +

∑
j=nk
j=n(k−1)+1 D j
√

2σ2nk
; k = 1,2,3

Z0 = 0, and consequently, Z = (Z1,Z2,Z3) ∼ N3(µ,Σ), where µ = (µ1,µ2,µ3), with µk =
√

nk
2σ2 θ and

Σ = ((Σk1k2)) with Σk1k2 =
√

min{k1,k2}
max{k1,k2} ;1 ≤ k1,k2 ≤ 3.

The maximum number of observations required, and consequently the total number of subjects to
be admitted to the trial, is decided according to power requirements or the availability of resources.
Additionally, we desire our group-sequential stopping boundary b = (b1,b2,b3) to have a pre-specified size
(false positive error rate) at θ = 0,

Pθ=0(Z1 > b1 or Z2 > b2 or Z3 > b3) = α

Defining τ to be the random variable indicating the analysis at which a stopping rule is triggered, we
have

τ = 1{Z1 > b1}+21{Z1 ≤ b1,Z2 > b2}+31{Z1 ≤ b1,Z2 ≤ b2}
= 1{Z1 > b1}+21{Z1 ≤ b1,Z2 > b2}+31{Z1 ≤ b1,Z2 ≤ b2,Z3 > b3}

+31{Z1 ≤ b1,Z2 ≤ b2,Z3 ≤ b3}
= γR1 +2γR2 +3γR3 +3γNR

= 3−2γR1 − γR2 , (1)
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since γR1 + γR2 + γR3 + γNR = 1, where 1{·} denotes the indicator function, γRk indicates termination of the
trial with rejection of H0 at the kth analysis, and γNR indicates termination of the trial with non-rejection of
H0 at the 3rd analysis. The Expected Sample Size ESSθ =Eθ (nτ) represents the number of observations
required on average for a stopping rule to be triggered.

Optimal group-sequential boundaries were traditionally defined to minimize the ESS at specific θ , or
weighted over multiple θ , subject to statistical size and power constraints. However, an incorrect decision,
whether it is incorrectly rejecting or not rejecting H0, has far-reaching consequences on the prospective
recipients of the drug, as well as financial repercussions for the trial sponsor. Denoting the rejection and
non-rejection of H0, respectively, by R and NR, the loss functions associated with making an incorrect
decision at the conclusion of the trial can be modeled as

L(θ ,R) = 1{θ ≤ 0} ·g(θ) ·η · (N −nτ) ·1{Zτ > bτ}
= 1{θ ≤ 0} ·g(θ) ·η ·

(
(N −n)γR1 +(N −2n)γR2 +(N −3n)γR3

)
(2)

L(θ ,NR) = 1(θ > 0) ·g(θ) ·η · (N −3n) · I(Z1 ≤ b1,Z2 ≤ b2,Z3 ≤ b3)

= 1(θ > 0) ·g(θ) ·η · (N −3n) · γNR (3)

where, g(θ) = 1{θ ≤ 0}+1{θ > 0}(1+ aθ)b, a,b > 0, is the penalty for terminating the trial with an
incorrect decision. Failure to detect a “superior” drug has a greater adverse effect on its probable recipients
as well as the trial sponsor. This is reflected in the penalty function. N refers to the number of prospective
consumers of the investigational drug, and η ∈ (0,1) a deflating factor to account for incomplete [future]
uptake [of the new drug]. We note that the loss functions reflecting the economic impact associated with
incorrectly concluded trials may be formulated differently depending on the therapeutic area, available
drugs, and prevailing market conditions. Denoting π(·) to be a discrete prior measure on the continuous
parameter space Θ, the overall risk associated with the group-sequential boundary b is defined as a linear
combination of the risks due to sampling duration and due to an incorrectly concluded trial:

R(b) = λ ∑
θ∈Θ

π(θ)Eθ (nτ)+(1−λ ) ∑
θ∈Θ

π(θ)Eθ

(
L(θ ,R)+L(θ ,NR)

)
; λ ∈ [0,1]

= λ ∑
θ∈Θ

π(θ)n
(

3−2Eθ (γR1)−Eθ (γR2)
)

+(1−λ ) ∑
θ∈Θ:θ≤0

π(θ)η
(
(N −n)Eθ (γR1)+(N −2n)Eθ (γR2)+(N −3n)Eθ (γR3)

)
+(1−λ ) ∑

θ∈Θ:θ>0
π(θ)(1+aθ)b

η(N −3n)
(

1−Eθ (γR1)−Eθ (γR2)−Eθ (γR3)
)

(4)

where Eθ (·) indicates expectation at a specific θ . Reformulating the size of the group-sequential boundary
b as S(b) =Eθ=0(γR1 + γR2 + γR3), the optimization problem is given by:

min
b˜ R(b)

subject to S(b)≤ α

In this particular setup, both R(·) and S(·) are continuous functions of the boundary b owing to the
continuous nature of the responses collected from the subjects, in addition to the opposite monotone
dependence of the risk and the size as functions of the individual boundary points. Consequently, the
optimal boundary is obtained at size exactly α , thereby reducing the constraint on the size to an equality.

min
b˜ R(b)

subject to S(b) = α
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Further, the analytical gradients of both the overall risk function and the size constraint are readily available
due to the same reasons responsible for their continuity. As is evident from the expressions of R(·) and
S(·), their gradients require computation of the derivatives

∂Eθ (γRk )

∂bi
;1 ≤ i ≤ k ≤ 3, which in turn involve

computing multivariate normal orthant probabilities. Sample path estimators of the derivatives obtained
using perturbation analyses provide a work-around to such calculations which are particularly cumbersome
in trials with a higher number of interim analyses. In the next section we derive the estimators of these
derivatives using the technique of Smoothed Perturbation Analysis (SPA).

3 GRADIENT ESTIMATION

Considering our problem setting with normally distributed responses to the drugs with three group-sequential
analyses, the true gradients of both R(·) and S(·) can be expressed in terms of the normal p.d.f φ(·) and
c.d.f Φ(·), and hence readily computed. In this section we focus on using perturbation analysis to set up
the estimators of the required derivatives, relegating the true gradients to Section 5 when we discuss the
simulation results.

We illustrate deriving the estimator of
∂Eθ (γR3 )

∂b1
, including a brief explanation for exchanging differen-

tiation and expectation; the estimators of the other derivatives follow accordingly. Considering the right
hand limit only, by definition

∂Eθ (γR3)

∂b1
= lim

∆b1→0+

Eθ (γR3(b1 +∆b1)− γR3(b1))

∆b1

Deriving a sample path estimator of the above derivative using Infinitesimal Perturbation Analysis (IPA)
is not feasible given the discrete nature of the indicator function.
Consequently, we refer to Smoothed Perturbation Analysis (SPA), an extension of IPA introduced by (Gong
and Ho 1987; Fu and Hu 1997). Considering γR3 , the trial terminates with rejection of H0 at the final
analysis; if the test statistic Z1 at the first analysis is at or below the nominal boundary point b1, there
is no difference in the sequence of events between the nominal and the perturbed path. On the opposite
end, if Z1 is above the positively perturbed boundary point b1 +∆b1, the trial on both the nominal and the
perturbed path is terminated at the first analysis with rejection of H0, again resulting in the same sequence
of events. If, however, b1 < Z1 ≤ b1 +∆b1, the trial on the nominal path deviates from the one on the
perturbed path in that it rejects H0 at the first analysis, resulting in:

Eθ (γR3(b1 +∆b1)− γR3(b1)) =Eθ (1{b1 < Z1 ≤ b1 +∆b1}1{Z2 ≤ b2,Z3 > b3})
=Eθ [1{Z2 ≤ b2,Z3 > b3}P{b1 < Z1 ≤ b1 +∆b1|Z2,Z3}].

Assuming the interchange of integration and differentiation to be justified:

∂Eθ (γR3)

∂b1
= lim

∆b1→0+

Eθ (γR3(b1 +∆b1)− γR3(b1))

∆b1

= lim
∆b1→0+

Eθ [1{Z2 ≤ b2,Z3 > b3}P{b1 < Z1 ≤ b1 +∆b1|Z2,Z3}]
∆b1

= Eθ

[
1{Z2 ≤ b2,Z3 > b3} lim

∆b1→0+

P{b1 < Z1 ≤ b1 +∆b1|Z2,Z3}
∆b1

]
= Eθ

[
1{Z2 ≤ b2,Z3 > b3}φZ1|Z2,Z3(b1|z2,z3)

]
leading to an unbiased estimator of the derivative:

∂Eθ (γR3)

∂b1
=̂ 1{Z2 ≤ b2,Z3 > b3}φZ1|Z2,Z3(b1|z2,z3) (5)

3257



Chanda, Fu, and Slud

where, φZ1|Z2,Z3(·|z2,z3) is the conditional normal p.d.f of Z1 given Z2 and Z3. Considering the left hand
limit, instead, will proceed in a similar manner resulting in the same estimator.

To justify the interchange of differentiation and expectation, it is sufficient for the conditional density
φZ1|Z2,Z3(·|z2,z3) to be bounded above for all z2 and z3. Noting that Var(Z1|Z2,Z3) = σ2

1|2,3 =
1
2 we have

for all x ∈R.
φZ1|Z2,Z3(x|z2,z3)< (2πσ

2
1|2,3)

− 1
2

The sample path estimators for the remaining derivatives are obtained in a similar fashion.

∂Eθ (γR1)

∂b1
=̂ −φZ1(b1),

∂Eθ (γR2)

∂b1
=̂ 1{Z2 > b2}φZ1|Z2(b1|z2);

∂Eθ (γR2)

∂b2
=̂ −1{Z1 ≤ b1}φZ2|Z1(b2|z1),

∂Eθ (γR3)

∂b2
=̂ 1{Z1 ≤ b1,Z3 > b3}φZ2|Z1,Z3(b2|z1,z3);

∂Eθ (γR3)

∂b3
=̂ −1{Z1 ≤ b1,Z2 ≤ b2}φZ3|Z1,Z2(b3|z1,z2)

The estimators of ∂Eθ (γNR)
∂bi

; i = 1,2,3; can be obtained using the relation γR1 + γR2 + γR3 + γNR = 1 and the
above estimators. Finally, plugging in the appropriate estimators into the overall risk function and the size
constraint provide the desired gradients.

4 OPTIMIZATION ALGORITHM

The proposed optimization algorithm is based on a tailored version of the classical feasible directions
method (Zoutendijk 1960; Bashyam and Fu 1998) to solve a nonlinear program with an equality constraint.
Given our problem setting, we require simulations to estimate only the desired gradients, whereas the
objective function and the constraint can be computed directly if σ2, the prior p.m.f π(·) on the parameter
space Θ, and the other constants are specified. In lieu of establishing its convergence properties, we
exhaustively scrutinize the performance of the proposed optimization algorithm across different parameter
configurations, including the number of Monte Carlo replications used to estimate the derivatives.

We first set up the required notation, along with a basic outline of the algorithm, leaving the specific
details about its implementation for later in the section. All vectors, indicated by boldface lowercase letters,
are column vectors with ⟨x⟩ denoting a vector x that has been normalized to have unit length. ĝik(θ ,b)
denotes the SPA estimator of

∂Eθ (γRk )

∂bi
;1 ≤ i ≤ k ≤ 3 computed using B Monte Carlo simulations. ∇̂R(b) and

∇̂S(b) respectively denote the estimators of the gradients of the overall risk function and the size constraint,
computed at the group-sequential boundary b, incorporating the derivative estimators. Let D(b) refer to the
normalized direction vector, and {an} the sequence of step-sizes for the iterative updates common across
all boundary points.

Each iteration of the algorithm follows

b(n+1) = b(n)+anD(b(n)) (6)

where,

D(b) =

{
−⟨∇̂R(b)⟩ ; if S(b)≤ α

⟨D f (b)⟩ ; if α < S(b)< αu

where αu > α , and D f (b) denotes the vector of feasible directions computed at the group-sequential
boundary b. The optimization algorithm aims to generate a subsequence of group-sequential boundaries
with decreasing overall risk and size in the interval [α,αu). The normalized directions vector and the
common step-size are both central to achieving this. When S(b) < α , D(b) = −⟨∇̂R(b)⟩ represents a
direction producing a concurrent reduction of R(·) and increase of S(·), the extent of the trade-off controlled
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by the common step-size. The contrasting behavior of R(·) and S(·) is explained by their opposite direction
of monotone dependence as functions of each individual boundary point. Within the interval I = (α,αu) a
move along −⟨∇̂R(b)⟩ is not “feasible” for the same reason. Consequently, the vector of feasible directions
D(b) = ⟨∇D f (b)⟩ induces a shrinkage in the size, as well as a reduction in the overall risk for appropriate
choice of constants in the linear program to determine it.

A classical approach (e.g., Luenberger 1973) to determine the vector D f = (d1,d2,d3) of feasible
directions is to solve the following linear program (LP):

max
υ0,d1,d2,d3

υ0 (7)

subject to ⟨∇̂R(b)⟩T D f ≤−kRυ0

⟨∇̂S(b)⟩T D f ≤−kSυ0

−1 ≤ d1,d2,d3 ≤ 1

where the constants kR and kS are positive. A feasible solution to the above LP is d1 = d2 = d3 = 0 with
υ0 = 0. Therefore, if it exists, optimization will provide a solution for which υ0 > 0. The constraints on
the gradient vectors are so formulated that the solution represents a direction of concurrent decrease in the
overall risk and the size. In addition to this, the constraints also induce a trade-off between the magnitudes
of decrease in the two functions, controlled by the constants kR and kS - a smaller kR to kS ratio leads to a
larger reduction in the size at the expense of a possibly smaller reduction in the overall risk. This can be
used advantageously with larger reductions in the overall risk favored initially.

The common step-size an is determined at each iteration to produce the largest reduction in the overall
risk without grossly violating the size constraint. When S(b(n−1))< α , the algorithm moves to decrease the
overall risk and increase the size to the interior of I . The step-size an is then chosen such that S(b(n))⪅ αu.
This produces the largest possible decrease in the overall risk and ensures S(b(n)) ∈I . On the other hand,
when S(b(n−1)) ∈ I moving along the feasible directions vector causes S(b(n)) to shrink towards α . The
common step-size is then chosen to produce the largest possible reduction in the overall risk.

5 SIMULATION RESULTS

We consider the case of a clinical trial with two interim analyses and one final analysis. The response
recorded for each subject is assumed to be normally distributed with known variance σ2 = 1. The total
number of observations 3n is determined from the number of observations required by a one-sided, single
analysis, size (false positive error rate) α = 0.05 Z-test to detect a minimal clinically relevant normal mean
θ ∗ = 0.3 with statistical power (1− false negative error rate) 1−β = 0.9.

3n = κ

(
Φ−1(1−α)+Φ−1(1−β )

θ ∗√
2σ

)2

where Φ−1(·) is the inverse of standard normal c.d.f, κ = 1.3 is an inflating factor to account for the
additional observations required by a group-sequential test to detect θ ∗ with the same power as a test with
no interim analyses. For the loss functions (2) and (3) we set the parameters in the penalty function g(·)
at a = 5 and b = 5. We have found these values to appropriately penalize trials which fail to reject the
null hypothesis even when the investigational drug is sufficiently “superior”. We choose the number of
prospective recipients of the investigational drug N = 1000, and consider the deflating factor η = 0.1 to
account for probable over-estimation of the market share of the drug. We consider two discrete uniform
prior measures: π1(·) - a non-informative uniform prior, and π2(·) - a subjective prior.
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π1(θ) =

{
1/12 ; if θ =−0.05,−0.001,0,0.001,0.05,0.1,0.2,0.25,0.275,0.3,0.325,0.35
0 ; otherwise

π2(θ) =



0.4 ; if θ = 0
0.2 ; if θ =−0.001,0.001
0.03 ; if θ = 0.275,0.300,0.325
0.02 ; if θ =−0.050,0.050,0.100,0.200,0.250
0.01 ; if θ = 0.350

Both prior measures place positive probability on multiple θ in the vicinity of 0. This is motivated by
the fact that nine investigational drugs out of ten fail to see the light of day due to lack of sufficient
evidence supporting their efficacy (Sun et al. 2022). We use two different linear combinations in (4) with
λ = 0.2, and 0.7.

The estimates ĝik(θ ,b) of the derivatives
∂Eθ (γRk )

∂bi
;1 ≤ i ≤ k ≤ 3 are computed using B = 10000

simulations for each iteration of the optimization algorithm. We set I = (α,αu) = (0.05,0.0501) as a
reasonable interval for the size of the optimal boundaries. Additionally, an iteration of the algorithm may
require computation of the feasible directions vectors, and the common step-size. Solving the LP (7) for the
feasible directions vector involves choosing the positive constants kR and kS. We set kR = 1, and consider
the three choices of kS determined by kR

kS
= 0.5,1, and 2. Each choice of (kR,kS) leads to a decrease in S(·),

and an appropriately chosen common step-size leads to a concurrent decrease in R(·). If such a common
step-size exists, the pair which produces the largest reduction in R(·) is used in the LP. Essentially, at each
iteration of the algorithm requiring computation of the vector of feasible directions, we choose the best
out of three probable moves. If there does not exist a common step-size which results in a decrease in
both the overall risk and the size, the common step-size is set to 0, and the SPA estimates are recomputed
using B new Monte Carlo simulations. When the algorithm produces m = 5 such iterations consecutively,
it is terminated, and the results are reported.

As stated previously in Section 3, given our simple problem setting the true derivatives
∂Eθ (γRk )

∂bi
for

1 ≤ i ≤ k ≤ 3 can be computed explicitly, for example.

∂Eθ (γR3)

∂b1
= φZ1(b1)Pθ (Z2 ≤ b2,Z3 > b3|Z1 = b1)

The results from operating the proposed optimization algorithm using the SPA estimators of the gradients
are compared to those from using the true gradients. The optimization is initiated with the group-sequential
boundary due to O’Brien and Fleming (1979), abbreviated OBF, henceforth. The results for the different
configurations are reported in Table 1 and Figures 1 and 2: ‘SPA’ indicates the optimal boundary obtained
by using the SPA estimators of the gradients in the optimization algorithm, while ‘True’ indicates the
optimal boundary obtained by using the true gradients.

The results indicate the following:

• The optimal boundaries obtained by using the estimates of the gradients are very similar to those
obtained by using the true gradients. The overall risk for these optimal boundaries are nearly
identical.

• The OBF boundary has exactly the required size, whereas each of the optimal boundaries has size
within the desired interval I . In fact, each of the optimal boundaries can be further adjusted to
have exact size α = 0.05 at the expense of a minor increase in their overall risk.

• For each of the four configurations considered, the algorithm converges at nearly the same rate for
either of the two gradients, although it does so more gradually when using the true gradient.

3260



Chanda, Fu, and Slud

Table 1: Optimal group-sequential boundaries and corresponding overall risk R(·) and size S(·) under
different linear combination of the risks and choices of the prior π(·). The boundary points and the risks
have been rounded to the second decimal place, while the size has been rounded to the sixth decimal place.

b1 b2 b3 R(b) S(b)
π = π1 OBF 2.961 2.094 1.710 254.70 0.050000
λ = 0.2 SPA 3.206 2.621 1.651 247.07 0.050096

True 3.252 2.644 1.645 247.07 0.050092
π = π1 OBF 2.961 2.094 1.710 228.93 0.050000
λ = 0.7 SPA 2.436 2.217 1.719 226.59 0.050091

True 2.443 2.213 1.718 226.59 0.050091
π = π2 OBF 2.961 2.094 1.710 118.01 0.050000
λ = 0.2 SPA 3.127 2.605 1.652 115.93 0.050092

True 3.244 2.624 1.650 115.92 0.050094
π = π2 OBF 2.961 2.094 1.710 192.96 0.050000
λ = 0.7 SPA 2.316 2.155 1.753 191.99 0.050087

True 2.317 2.159 1.752 191.99 0.050086

• For the two configurations with λ = 0.7, the OBF and optimal boundaries have similar values of
the risk function. This is not unexpected because the OBF boundary implicitly minimizes the ESS.
A relatively larger difference in the risk function is observed in the remaining two configurations
with λ = 0.2, indicating that the OBF boundary is likely sub-optimal.

6 CONCLUSION

In this paper we have considered the problem of deriving group-sequential boundaries which are optimal
in the sense of minimizing an overall risk function, the components of which depend explicitly on the
magnitude of treatment effect differences. We have restricted ourselves to the setting of a clinical trial to
determine the efficacy of an investigational treatment in comparison with the available standard of care,
having three planned analyses of which two are interim. Further, the response of each patient to the
treatment they receive is instantaneously available and assumed to be normally distributed with a known
variance, and the unknown mean represents the treatment effect.

We have proposed an algorithm to solve the constrained optimization problem – minimizing an overall
risk function subject to an equality constraint on the false positive error rate. In this simplified setting,
the true gradients of the objective and constraint functions can be computed, and serve as the benchmark.
Additionally, we have derived sample path-based estimators of the gradients using the technique of Smoothed
Perturbation Analysis. In the case of trials with a higher number of analyses than we have considered here,
these estimators provide an alternative to the high-dimensional integration required to directly compute the
true gradients. The results of the algorithm employing the simulation-based estimated gradients compare
favorably to those employing the true gradient.

The setting of this paper serves as a basis for considering more realistic clinical trials. This includes trials
with more than one treatment regimen under consideration, a higher number of planned analyses, and/or
time-to-event responses – the response for each patient is the time of the first observed occurrence of the
event of interest measured from randomization. In these situations, the true gradients of the corresponding
risks, and the risks themselves, do not have an analytical form that can be computed easily even in the low-
dimensional setting. Consequently, a simulation-based approach for deriving the optimal group sequential
boundary should be a promising avenue to pursue.
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Figure 1: Convergence of the overall risk and the size when using the SPA gradients versus the true gradients
for π = π1 and the two choices of λ .
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Figure 2: Convergence of the overall risk and the size when using the SPA gradients versus the true gradients
for π = π2 and the two choices of λ .
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