
Proceedings of the 2024 Winter Simulation Conference

H. Lam, E. Azar, D. Batur, S. Gao, W. Xie, S. R. Hunter, and M. D. Rossetti, eds.

MODELING OPERATIONAL CONTROL IN DISCRETE-EVENT LOGISTICS SYSTEMS

AND THEIR DIGITAL TWINS

Lorenzo Ragazzini1, Leon F McGinnis2, Elisa Negri1, and Marco Macchi1

1Department of Management, Economics and Industrial Engineering, Politecnico di Milano, Milano, MI,
ITALY

2Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA,
USA

ABSTRACT

In manufacturing systems, operational control plays a crucial role in ensuring proper functioning and
efficiency. Traditional approaches to modeling operational controllers in simulation often suffer both from
inability to properly represent decisions as they are made in real systems and from rigidity and lack of
adaptability to changing system requirements and configuration during their design. This paper explores a
novel approach to designing and implementing operational controllers in discrete-event simulation based

on the introduction of control policies as standardized structures that explicitly integrate operational control
decision-making into DES models. Standard structures allow for easy integration with optimization tools,
facilitating the exploration of different control policies during the design of a new system. The use of control
policies also has important implications for the development of digital twins of manufacturing systems, as
it helps align the way systems control is designed with the control of real systems.

1 Introduction

Advances in data analytics and machine learning have driven the scale and scope of Cyber-Physical
Systems (CPS). In particular, for the Discrete Event Logistics Systems or DELS (e.g., factories,
warehouses, supply chains and similar) the opportunities for developing CPS applications to improve
efficiency, reduce costs and mitigate risks are especially appealing. One illustration of this appeal is the
rapidly growing interest in “digital twins”, or computational models of DELS whose computed results
mimic the operational results of their “real twins” throughout their lifecycles.

In the DELS domain, a popular approach to developing a Digital Twin (DT) is discrete event simulation
as other time-oriented modeling methods generally can’t cope with the scale, number of entities and
intricate entity interactions of specific DELS. In developing the simulation elements of a DELS DT, it is
relatively straightforward to accurately model the item flows of materials, people, vehicles, etc, in part
because those flows are easily observable.

To be truly effective, a DELS DT also must accurately reflect the operational decision-making of its

corresponding Real Twin (RT). The traditional queue-server paradigm of early simulation tools is simply
not adequate for this purpose. Contemporary simulation tools may provide the capability for creating
accurate operational control models, but a generic modeling approach that can guide the representation of
such decisions throughout system design and operation is still missing. The stronger the mapping between
operational controls implemented in the DT and RT, the more effective the DT will be as a platform for
designing DELS while studying their control strategies.

This paper explores an implementation strategy for operational control in a DELS DT, anticipating two
use cases. The first is system design, where the DT is an essential tool for evaluating system design
alternatives in terms of both base system resources and operational controls. This use case is best supported
by an object-oriented approach in which changes to either the base system or the operational controller can
be easily implemented in the simulation DT. The second use case is system operation, where the DT is

2927979-8-3315-3420-2/24/$31.00 ©2024

Ragazzini, McGinnis, Negri, and Macchi

used to explore the RT future trajectory experimentally under alternative operational control decisions in
order to provide the RT with changes to operational control decision processes. In both use cases, the
capability for experimentation with different control policies is essential. The proposed approach yields

operational controllers that conform to the ISA-95 standard (InTech 2021) and thus arguably are
implementable in the corresponding RT.

Section 2 summarizes the operational controller research on which this paper is based. Section 3
describes the use case, the design of a highly automated logistics hub, and section 4 presents the design of
the hub’s operational controllers in more detail. Section 5 describes the operational controller
implementations in AnyLogic™, and how the implementation supports experimentation with alternative

operational control policies and parameters. Section 6 is a brief discussion of future research opportunities.

2 Prior research

As described in McGinnis (2019), Ehmke et al. (2011), McGinnis, Huang, and Wu (2006), and Thiers and
McGinnis (2011), any system in which discrete units of flow move between resources and are transformed
by processes executed by those resources is in the DELS domain. Other works also deal with the intersection
of DELS and reliability engineering Cui, Shi, and Wang (2015). An initial effort to develop a Domain-

Specific Language (DSL) for describing instances of DELS is described in Sprock et al. (2019). The
conceptual and functional design of an operational controller for DELS is explored in Sprock (2016) and
Sprock and McGinnis (2015), and in McGinnis, Buckley, and Ali (2021) an implementation is described in
the context of a hypothetical parcel logistics hub.
 A cornerstone for the work described here is the functional architecture of an operational controller as
shown in Figure 1 below. As the operational controller receives state change information from its base

system, the EventDirector determines what kind(s) of decisions are appropriate. The processes of
formulating an analysis, solving, and recommending a task may lead to activating a capability of a base
system resource. The work described below pursues the idea that it is equally possible that a parallel
decision-making process may be launched that would modify the controller’s operational logic.

Figure 1. Controller Functional Architecture, from McGinnis (2019).

 Note that Figure 1 is a functional architecture and not a process model. The kinds of analyses
implemented could include assessments of operational effectiveness and the kinds of tasks defined could
include changes to the operational controller itself, such as changing policies or parameters within policies.
 The functional architecture of Figure 1 can be implemented in many different ways. Essential to any
implementation are: the controlled system model (either implicit or explicit); maintaining the state of the

system model relative to the base system; event-driven changes to the controlled system model and event-

2928

Ragazzini, McGinnis, Negri, and Macchi

driven decision-making; making operational control decisions based on current system state; and translating
those decisions into commands executable by the base system resources.

3 DEMONSTRATION USE CASE

This case was developed from a related research project in Georgia Tech’s Physical Internet Center and
described in greater detail in Babalou et al. (2021) and Montreuil et al. (2021). This project studied the
potential for a completely automated parcel logistics hub utilizing totes to aggregate parcels with the same
(perhaps next) destination (hub). In McGinnis, Buckley, and Barenji (2021), a full-scale (over 70,000
totes/day throughput) AnyLogic™ simulation is described which provides both real-time and summary
operational performance statistics in an easy-to-consume dashboard.

At an originating hub, parcels are sorted and consolidated into totes by destination hub. Totes are placed
into racks which may contain totes for multiple destination hubs. Racks are loaded onto trucks and
transported between hubs. Each hub that receives racks will then either cross-dock the rack, if the rack is
full and all its totes have the same destination, or will swap totes with other racks to improve the rack’s
“destination consolidation”, i.e., more totes in the rack going to the same destination. When a rack arrives
at its destination hub, totes are opened and parcels delivered to their recipients.

The technology for accomplishing destination consolidation employs several kinds of robots. Racks are
loaded to and unloaded from trucks by loadbots that travel between the trucks and dock-associated staging
cells. Consolidation takes place in shuffle cells which have capacity for eight racks and move totes between
racks using a shufflebot. There are buffer cells for temporarily storing racks that have to be moved out of
staging cells but have not yet been assigned to a shuffle cell, or for racks that have been moved out of one
shuffle cell but not yet assigned to another shuffle cell or to an outbound staging cell. Racks are moved in

and out of the buffer and shuffle cells by movebots. In addition, individual totes may be routed between
shuffle cells using smaller totebots.

Over the course of a day, throughput in the hub will vary as there are periods when few if any trucks
will be arriving or departing, and periods when many trucks will be arriving and after some processing time
lag, many trucks will be departing. Operationally, this presents significant challenges for managing
resources to maintain adequate levels of service, i.e., timely transfer from input dock to output dock.

Operational control in this parcel logistics hub simulation is designed based on the principles outlined
in McGinnis (2019), Sprock (2016), and Sprock and McGinnis (2015). Relevant for the present discussion
are the operational control decisions associated with opening and closing shuffle cells, and with the
planning and execution of shuffle moves within a given shuffle cell. An operational controller for a shuffle
center (containing many shuffle cells) determines when additional shuffle cells should be put in operation,
or when some shuffle cell can be taken off-line, based on current hub throughput requirements. Each shuffle

cell has its own operational controller to manage the movement of totes by the shufflebot, and it attempts
make the movement of the shufflebot efficient, according to some appropriate metric. The functional
architecture of individual controllers follows the suggestion in McGinnis (2019), where there is a function
that evaluates state changes in its base system (for the shuffle center the base system is the set of operating
shuffle cells; for a shuffle cell the base system is the set of racks, their tote content, the shuffle bot and the
state of the interface for totebots) and determines what kind of control decision is appropriate.

In the interest of brevity, this discussion will not address the issue of managing the flow of racks through
the hub. For example, when a shuffle cell has capacity to add a rack, it requests a rack to be delivered and
a flow control decision is required to determine the origin of said rack. Similarly, when a rack cannot be
further consolidated in the shuffle cell as currently configured, it requests the rack be removed, and again,
a decision is required as to the destination of said rack. The controller of rack flow follows the same
principles as the controllers for shuffle cell opening/closing and shuffle cell operations. Similarly, there is

a controller for assigning each rack and tote move to specific movebots and totebots which also follows
those same principles but is not discussed in detail here.

2929

Ragazzini, McGinnis, Negri, and Macchi

4 MODELING SMART CONTROL IN THE LOGISTICS HUB

The goal is to develop a DT as a simulation model capable of supporting decision-making across different
system lifecycle phases, particularly design and operation. For this purpose, the DT must be easily adaptable

to different design decisions, e.g., different resource decisions or different operational control policies.
Because the DELS DSL is object oriented, using it to structure the simulation model behind a DT facilitates
the adaptability required for concurrent design of the system in terms of resources and of its control
strategies.
 In the different lifecycle phases, different reasons for designing an operational controller within a DT
emerge, which include:

1. In the design phase, the controller should support accurate modeling of the system behavior. By
exploiting the concurrent design of the system and of its controllers, it is possible to ensure that the
complexities in the management of the system operation are evident since the early design stages.

2. In the operation phase, the adoption of an operational controller within the DT allows to study the
adaptation of the existing control strategies to maintain high system performances under changing
conditions, in order to respond to particular controllers that can “self-optimize on the fly” by tuning

operational control parameters or by changing operational control policy.

 Elaborating on previous literature on operational control, the structure of an operational controller is
revised by introducing the elements that allow to build and operate its functional blocks, as depicted in
Figure 2.

Figure 2: Control policy and control map for operational control.

The three blocks in Figure 2 enable an implementation of EventDirector, AnalysisFormer, and Solver in

Figure 1. The Controller in Figure 2 includes a ControlMap which maps the events to the appropriate
ControlPolicy. According to the kind of event occurring, and to the relevant data available (based on state
data from the PlantTaskModel), to the controller, the ControlMap selects the ControlPolicy to respond to
the event. There may be several control policies to select from, and each one may require different input
parameters whose values may be determined considering base system state and state trajectory.
The controller executes the selected ControlPolicy, also populating the input parameters as required. As a

simple example, consider managing a queue between two resources in series. Alternate policies for
sequencing work at the second resource might be first-come-first-served, shortest processing time, least
remaining slack, highest-value-first, or some weighted combination of criteria. The ControlMap function
might consider the state of the queue or the utilization of the resource to recommend a policy. The
ControlPolicy function for some policies may have no tunable parameters, but for the weighted combination
of criteria, the value of the weights may be computed based on data collected by the PlantTaskModel.

2930

Ragazzini, McGinnis, Negri, and Macchi

The implementation structure from Figure 2 is the basis for important standardization, specifically of the
interfaces to the control map and control policy functions. In the system design scenario, when new control
policies are proposed, they can be added to the simulation easily by adding a new control policy function

conforming to the interface standard. The control map function will have a new policy as a policy option
and the controller will have a new call to the new control policy function.
This approach to implementation also allows structuring the set of control policies as illustrated in Figure
2, where the class of dispatching rule control policies can be elaborated in multiple ways. The
DispatchingRule object extends the ControlPolicy by introducing the sorting method, which is used to order
tasks according to some priority value. The specific dispatching rule defines how the priority of each task

is computed by specifying the criteria utilized for calculating such priority. For the purpose of this work,
FIFO and LIFO dispatching rules are shown as implementations of DispatchingRule block. Other more
sophisticated dispatching rules could be implemented in a similar way.

Figure 3: Dispatching rule control policies.

4.1 Control Policies

This section is devoted to specifying how control policies fit into the operational controller functional
architecture, allowing it to work.
The control policy is designed to accommodate the key elements required by the controller for its decision-
making activity and it is constituted of three main elements:

1. Control function. It is the main element of the control policy and it includes a set of instructions,
routines, or procedures that can be executed by the controller. This function is the core of the control

policy itself as it allows mapping the input parameters to a set of decision variables. The control
function can be customized to change the behavior of the control policy and thus the behavior of
the whole system, without requiring redesign of the controller itself.

2. Input parameters. Input parameters provide information on the tasks and the state of the resource
required to make control decisions.

3. Control parameters. Control parameters include all the data which can be customized and used

by the controller to modify the control function. Examples of this include the number of kanbans
for card-based production control or the objective value of an optimization function. These
parameters can be used to ease the customization of control policies providing a simple way to
change the policy overall behavior.

2931

Ragazzini, McGinnis, Negri, and Macchi

The control policy is a key element for designing smarter operational controllers. It provides the necessary
instructions and parameters to allow the controller to make decisions using different operational control
logic in different situations. The control policy is presented as a standard object enabling flexible decision-

making in operational control, which is necessary to realize a specific behavior of the base system.

4.2 Controller Behavior

A sequence diagram is shown in Figure 4 to depict the dynamic behavior of the operational controller,
which shows how the proposed ControlMap and ControlPolicy objects integrate within the existing
controller architecture. As soon as an event triggers the EventDirector, the ControlMap searches for the
proper control policy, and this information is passed to the AnalysisFormer. The AnalysisFormer checks

the control policy to detect which input parameters are required, and then connects to the ModelQuerier to
retrieve such parameters from system model. Finally, the solver receives both the control policy and its
input parameters and can execute the control policy solve method to obtain the decision variables.

Figure 4: Controller behavior.

5 IMPLEMENTING SMART CONTROL IN AN ANYLOGIC™ SIMULATOR

The proposed framework for implementing operational controllers in DES was applied to the logistics hub
presented in section 3 as demonstration platform. As stated, controllers at cell and at hub levels are

responsible for sequencing robot tasks and for changing cell states, respectively.

5.1 Technical Aspects of Implementation

The operational controllers are implemented as agents and located where their control decisions are required
(i.e., within either the logistics hub or the shuffle cell). The controller agents’ behavior is designed using
AnyLogic™ finite state machines. In this way, the controller stays in “idle” state until it is triggered by
some event to switch to a “working” state, where control functions are executed to set decision variables

and authorize tasks to be executed. The generic controller implementation is illustrated in Figure 5.

2932

Ragazzini, McGinnis, Negri, and Macchi

Figure 5: Cell controller state machine in AnyLogic™.

Communication is realized using messages, in such a way that specific control actions can be triggered,
and allowing for the same controller to handle multiple control decisions. Conversely, both Control Map

and Control Policy are implemented in AnyLogic™ using Action charts, which visually represent portions
of code and can be called as functions.

On the reception of a message (i.e., when an event occurs), the Control Map is queried to determine
which Control Policy should be triggered, if any. The typical structure of the Control Map consists of
multiple if-else blocks which allow the implementation of its Boolean logic. While designing a system, the
complexity of the control map increases progressively to reflect the different aspects being modeled.

Likewise, control policies can be designed to execute operational control decision-making processes.
As system complexity increases during the design process, model execution requires handling a

growing number of events. For this reason, the ControlMap is iteratively refined to respond according to
designer expectations. The ControlMap implemented within the cell controller is illustrated in Figure 6.
Throughout the system design process, the ControlMap is stepwise defined allowing to refine the behavior
of the controlled element.

Different colors correspond to successive steps in the design. First, the cell is only triggered to start
shuffling as a rack arrives (a). Then, the controller switches between the “idle” and “working” states of the
controller according to the cell content (b). With a successive iteration, the controller triggers the
sequencing of the cell tasks as soon as a new totebot enters (c) or leaves (d) the cell.

Figure 6: Control map.

2933

Ragazzini, McGinnis, Negri, and Macchi

In order to move towards the use of operational controllers during system operation, the control policies
shall be further structured by collecting and exposing some control parameters. As explained in section 4.1,
such parameters permit adapting the behavior of the controller in a flexible way, allowing to:

• Update the DT as changes are made in the operational control of the system;
• Conduct what-if analyses to evaluate changes in the way the system is controlled, allowing to react

promptly to disruption or external disturbances.
Action charts can be customized to fully encapsulate information and behavior required for operational

control decision-making, and to visually represent the control logic.
Coherently with the structure shown in Figure 2, the controller includes several Control Policy objects,

which are stored in the controller agent. When the controller is triggered by a message received, it will run
the control strategies gathering the required input parameters from the system prior to execute the control
function. Figure 7 shows how control policies were implemented in AnyLogic™.

(a) (b)

Figure 7: Control policy implementations in AnyLogic™.

5.2 Computational Results

The approach to modeling operational control described in section 4 has been applied to the use case
outlined in section 3 by implementing it in the logistics hub simulator from Montreuil et al. (2021). The

experiments described here illustrate the capability to rapidly change control policies and evaluate their
impact on the productivity and the service rate of the hub.

The number of totes departed from the hub is used to evaluate system throughput (TH). The average
lead time is also reported. The service rate accounts for the percentage of totes delivered on time each hour.
For these metrics, the standard deviation (STD) is also provided.

The first set of experiments aims to graphically present the effect of adding control triggers to the

shuffle cell controller. As explained in section 5.1, the ControlMap is refined during the design phase.
Simulation results shown in Figure 8 allow a graphical comparison to verify how this is impacting the
behavior of the controlled system. In the first step of the controller design, the cell is not controlled correctly
as its state is not switched to “Idle” after task completion (a), which is overcome in the second design
iteration (b), which allows reacting to the “Done Shuffling” event. From the third iteration on, the controller
correctly sequences the shuffling tasks again each time a totebot enters the cell. Finally, last iteration allows

to perform this operation also when a totebot leaves the cell.

2934

Ragazzini, McGinnis, Negri, and Macchi

(a) (b)

(c) (d)

Figure 8: Results of experiment 1.

The second set of experiments aims at showing how the proposed implementation of operational
controllers allows what-if analysis during system operation. In fact, three different dispatching rules are
tested within the shuffle cells, which show the changes in the system behavior:

• Earliest Due Date (EDD). The due date considered is the departure time of the truck to which each

tote is assigned. The shuffle cell robot always executes the move task related to the tote whose
truck has the earliest departure time.

• Adjusted Earliest Due Date (A-EDD). Computed as the difference between the due date and the
release time, which is the time the tote arrived at the hub. This dispatching rule is supposed to favor
the consolidation of racks, increasing the effort put on those racks whose consolidation process has
been started earlier, and thus the probability of completion could be higher.

• First-In-First-Out (FIFO). The tasks are executed in the same order as they are totes received in the
shuffle cell.

The control policy only computes the scores for each of the shuffle robot’s possible moves using the
priority described by the dispatching rule, and sort those moves accordingly.

Table 1: Results from second experiment.

Exp. Parameter Service rate Lead time TH
[totes/min] Dispatching rule Mean [%] StdDev

[%]
Mean
[minutes]

StdDev
[minutes]

2a EDD 72.55 21.74 45.34 32.76 420.24

2b A-EDD 73.61 20.8 46.20 32.01 414.93

2c FIFO 71.53 22.45 57.02 59.12 398.95

Note that each of the three policies is best on one of the three criteria, which supports the notion that in

operation, the controller should be “smart enough” to be able switch among policies based on current
conditions. Figure 9 reports the results of each experiment. The top charts show the number of totes shipped
over time, while the bottom charts show the number of open cells and the number of racks in the cells.

2935

Ragazzini, McGinnis, Negri, and Macchi

The second set of experiments shows how the model supports decision-making during system
operations. In fact, it allows to:

• Evaluate system performance varying the number of open cells, i.e., the cell currently active;

• Define and tune specific rules to open and close cells based on the current workload on the system.
In this case, the control policy computes the load on shuffle cells based on the average number of
racks per cell, according to equation (1).

 𝑙𝑜𝑎𝑑𝑃𝑒𝑟𝐶𝑒𝑙𝑙 =
1

𝑁−1
∑ 𝑅𝑎𝑐𝑘𝑠𝐼𝑛𝐶𝑒𝑙𝑙𝑠𝑖
𝑁−1
0 (1)

(a) (b) (c)

Figure 9: Results of experiment 2.

The control policy for opening or closing shuffle cells has two parameters, namely maxLoad and
minLoad. When the loadPerCell falls below minload a cell is closed and when it rises above maxLoad a

new cell is opened. The policy works like a control chart, opening and closing shuffle cells to force the
loadPerCell value in the interval [minLoad; maxLoad]. During system operation, these parameters can be
set to effectively manage the system workload. Results are summarized in Table 2. Note that increasing the
maxLoad trigger results in a lower throughput, which is intuitively correct, because it would delay the
opening of new shuffle cells.

Table 2: Results from third experiment.

Exp. Parameters Service rate Lead time TH
[totes/min] minLoad maxLoad Mean [%] StdDev

[%]
Mean
[minutes]

StdDev
[minutes]

3a 3.5 4.5 74.81 20.07 36.73 26.30 454.73

3b 4 5 60.67 37.71 40.96 28.94 401.76

3c 4 5.5 60.10 37.66 65.99 41.04 369.60

Figure 10 reports the results of each experiment. The top charts show the number of totes shipped over

time, while the bottom charts show the number of open cells, the number of racks in the cells, and the load
per cell computed according to equation (1). In a system design scenario, many more experiments would
be run to refine the setting of key parameters and to evaluate alternative control policies. What these two

sets of experiments indicate is that the proposed functional architecture and controller implementations
support the development and use of a high-fidelity simulation, or digital twin, in the design process.

2936

Ragazzini, McGinnis, Negri, and Macchi

(a) (b) (c)

Figure 10: Results of experiment 3.

6 CONCLUSIONS AND FUTURE RESEARCH

This paper has presented a novel approach to designing and implementing operational controllers in DELS.
This is based on a generic approach to control DELS systems by specifying how the system reacts to a
range of different events with a variety of control strategies. The approach offers the possibility to
concurrently design the DELS and its control system, allowing increased flexibility in the use of the DT.

This paper has presented a novel approach to designing and implementing operational controllers in
DELS. This is based on a generic approach to control DELS systems by specifying how the system reacts
to a range of different events with a variety of control strategies. The approach offers the possibility to
concurrently design the DELS and its control system, allowing increased flexibility in the use of the DT,
while significantly decoupling the implementation of the control model from the implementation of the
base system model.

This work has therefore important implications for the development of DES models to support DELS
design and operation. By providing a standardized structure for control policies, this study provides a new
way to explicitly integrate operational control decision-making into DES models. This enables controllers
to be used in a more flexible way, without requiring the redesign of controllers as the system evolves and
changes within both its design and operation phases. This could facilitate the exploration of different control
policies during the design of a new system, and the change of existing ones while the system is in operation.

Importantly, the use of control policies in DES models may help to better align model control with the
control of real systems they represent, with the possibility to increase model fidelity.

Looking to the future, it will be important to investigate the potential impact of this modeling technique
on the application of DTs in system operation. The fact that experimentation with control policies is easily
supported in the design scenario implies that such experimentation might also be employed as an off-line
adjunct to real-time operational controllers. The off-line experimentation could explore the impacts of

current decisions about control policies and parameters on the future performance of the controlled system.
The definition of a standard way to model operational control policies will encourage the use of DT for

addressing operational control problems, thanks to the modularity of the control policies, which may
eventually allow the online self-optimization of controllers.

In summary, the approach presented in this paper offers a promising new avenue for the development
of more flexible and efficient controllers in DES models of DELS, since this work can help to streamline

2937

Ragazzini, McGinnis, Negri, and Macchi

the design process and improve the accuracy of modeling and simulation efforts. A final note: because the
operational controller approach presented here is event-driven, there is a clear migration path to industrial
implementation. This would be a major step forward in bringing the control of the “real twin” and the

control of the “digital twin” closer together in the DELS domain.

REFERENCES

Babalou S., W. Bao, A. Barenji, B. Montreuil, L. McGinnis, S. Buckley (2021). “Modular and Mobile Design of Hyperconnected

Parcel Logistics Hub”. In Proceeding of IPIC 2021 International Physical Internet Conference, 10 pp.

Cui, Yiqian, Junyou Shi, and Zili Wang. 2015. “Discrete Event Logistics Systems (DELS) Simulation Modeling Incorporating

Two-Step Remaining Useful Life (RUL) Estimation”. Computers in Industry 72: 68–81.

Ehmke, Jan Fabian, Daniel Großhans, Dirk Christian Mattfeld, and L. Douglas Smith. 2011. “Interactive Analysis of Discrete-

Event Logistics Systems with Support of a Data Warehouse”. Computers in Industry 62 (6): 578–86.

McGinnis, L. F. (2010). “The Future of Modeling in Material Handling Systems”. In 11th International Material Handling

Research Colloquium (pp. 261-274). Charlotte, NC: MHI.

McGinnis, L. F. (2019). Formalizing ISA-95 Level 3 Control with Smart Manufacturing System Models. NIST Interagency/Internal

Report.

McGinnis, Leon, Buckley, S., and Barenji, A. V. (2021). “Designing and Implementing Operational Controllers for a Robotic Tote

Consolidation Cell Simulation”. In Proceedings - Winter Simulation Conference. Vol. 2021-December.

Montreuil, B., McGinnis, L., Buckley, S., Babalou, S., Bao, W., and Beranji, A. (2021). “Physical Internet Induced Parcel Logistics

Hub Innovation”. International Physical Internet Conference.

McGinnis, L. F., Huang, E. and Wu, K. (2006). “Systems Engineering and Design of High-Tech Factories”. In Proceedings -

Winter Simulation Conference, 1880–86.

Sprock, T. A. (2016). A Metamodel of Operational Control for Discrete Event Logistics Systems. Retrieved from

https://smartech.gatech.edu/handle/1853/54946, accessed 10th March.

Sprock, T., Bock, C., and McGinnis, L. F. (2019). “Survey and classification of operational control problems in discrete event

logistics systems (DELS)”. International Journal of Production Research, 5215-5238.

Sprock, T., and McGinnis, L. F. (2015). “A Conceptual Model for Operational Control in Smart Manufacturing Systems”. 15th

IFAC Symposium on Information Control Problems in Manufacturing. 48, pp. 1865-1869. IFAC-PapersOnline.

Sprock, T., Thiers, G., McGinnis, L., and Bock, C. (2019). Theory of Discrete Event Logistics Systems (DELS) Specification.

NIST Interagency/Internal Report. Retrieved from https://doi.org/10.6028/NIST.IR.8262 , accessed 18th February.

Thiers, George, and Leon McGinnis. (2011). “Logistics Systems Modeling and Simulation”. In Proceedings - Winter Simulation

Conference, 1531–41.

AUTHOR BIOGRAPHIES

LORENZO RAGAZZINI is a postdoctoral researcher at the Department of Management, Economics and Industrial Engineering.

He works as a researcher in the Manufacturing Group of the School of Management at Politecnico di Milano. His main research

interests include decision-making frameworks supported by Digital Twin simulation and data-driven intelligence. His email address

is lorenzo.ragazzini@polimi.it.

LEON MCGINNIS is Professor Emeritus at Georgia Tech, where he continues to teach and do research related to DELS

operational control and design. His email address is leon.mcginnis@isye.gatech.edu.

ELISA NEGRI is Senior Assistant Professor in the Manufacturing Group of the Politecnico di Milano at the Department of

Management, Economics and Industrial Engineering. Her research focuses on the impact on production planning and control of

smart manufacturing and the digital technologies of the Industry 4.0. Her email address is elisa.negri@polimi.it.

MARCO MACCHI is Full Professor, currently teaching Industrial Technologies, Asset Lifecycle Management and Smart

Manufacturing Lab at Politecnico di Milano, also acting as Director of the Master programme meGMI by Polimi Graduate School

of Management and the School of Management of Università degli Studi di Bergamo. He is chair of the IFAC Technical Committee

TC5.1 Manufacturing Plant Control, Associate Editor of Journal of Intelligent Manufacturing, Editorial board member of the

International Journal of Production Planning & Control: The Management of Operations. His email address is

marco.macchi@polimi.it.

2938

https://smartech.gatech.edu/handle/1853/54946
https://doi.org/10.6028/NIST.IR.8262
mailto:lorenzo.ragazzini@polimi.it
mailto:leon.mcginnis@isye.gatech.edu
mailto:elisa.negri@polimi.it
mailto:marco.macchi@polimi.it

