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ABSTRACT 

Protecting healthcare workers (HCWs) during a pandemic is critical to provide timely medical care for 
patients. Although prior studies have investigated HCW unavailability during the COVID-19 pandemic, 
the studies have not investigated the impact of parameters such as patient census, vaccination rates, 
transmission rates, and multiple hospital locations on HCW availability. This research considers a high-risk 
HCW group of perioperative staff to investigate the impact of segregating and rotating staffing policies on 
HCW unavailability during a pandemic in a health system with multiple locations. An agent-based model 
with a SEIR compartmental model was developed to simulate various scenarios. Simulated findings 
indicate that segregating and rotating policies significantly (p-value <0.01) reduced the peak weekly 
unavailability of HCWs and the total percentage of HCWs getting infected by as much as 25% and 60% 
when vaccination rates were lower (<75%). However, these benefits diminished when the vaccination rates 
increased to 75%. 

1 INTRODUCTION 

The impact of COVID-19 on global populations has been profound and far-reaching. The pandemic has 
left an indelible mark on societies worldwide, from the loss of lives to widespread economic disruption (Ali 
& Alharbi, 2020). The economic fallout has resulted in job losses, business closures, and financial insecurity 
for countless individuals and families (Ali & Alharbi, 2020). Additionally, lockdowns, travel restrictions, 
and social distancing measures have altered daily routines and social interactions, contributing to 
widespread mental health challenges. According to the World Health Organization (WHO), approximately 
775 million COVID-19 cases were recorded, and 7 million deaths were associated with the COVID-19 
pandemic as of 2024, reinforcing the magnitude of the crisis (World Health Organization, 2024). 

While the impact of COVID-19 was profound across various industries, healthcare systems 
have been strained to their limits (Haldane et al., 2021). Health systems face several challenges, 
including shortages of beds and medical supplies and the unavailability of healthcare workers 
(HCWs), with immense burdens on their capacity to provide care (Haldane et al., 2021). The 
prioritization of resources (personal protective equipment, masks, etc.) allocated to patients and 
the lack of PPEs due to supply chain challenges inflated the shortage of PPEs for frontline HCWs. 
To worsen the scenario, the lack of vaccines during the initial outbreak and the high infectivity of 
the virus significantly impacted the HCW's availability to provide care. 

Contact with infected surfaces and droplets/aerosol are the two main ways that COVID-19 is 
spread from person to person. Studies investigating the transmission of SARS-CoV-2 from patients to 
HCWs have reported that specific procedures such as suctioning, bronchoscopy, intubation, or 
cardiopulmonary resuscitation pose a higher risk of infection spread from patients to HCWs. The 
perioperative team is considered a high-risk group for COVID-19 exposure as they come in close contact 
with a patient's airway and aerosols generated during certain medical procedures where the SARS-CoV-2 
virus remains infectious for hours (Kharasch & Jiang, 2020; Mazzola & Grous, 2020; van Doremalen et al., 
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2020; Zhang et al., 2020). Staffing shortages and unavailability among perioperative teams lead to delayed 
patient care and poorer healthcare outcomes, including reduced quality-adjusted life years, disease-free 
survival, and, in the worst-case scenario, surgery cancellations, which also negatively affect the hospital 
finances (Fu et al., 2020; Karimuddin et al., 2021; Whittaker et al., 2021). 

Given the critical nature of protecting the HCW during a pandemic such as the one brought on 
by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), researchers have 
investigated various staffing policies over the last two years. Among these, we identified three 
simulation-based studies among the perioperative population, where the first study reported that 
longer shifts and avoiding staggering rotations of HCW shifts could reduce infection among HCWs 
(Kluger et al., 2020). The second study observed that the longer shifts with continuous breaks 
significantly reduced HCW shortage, and the effect progressively increased as the probability of 
infection increased (Mascha et al., 2020). Finally, another study that implemented a staffing policy 
where neurosurgery residents were divided into two teams and alternated weekly with minimal 
contact observed that the teaming approach minimized the risk of exposure and provided the 
needed rest for residents (Habib & Zinn, 2020). 

Although prior studies have investigated and reported the effectiveness of various strategies in reducing 
HCWs' infection and unavailability, these have been restricted to a single or small facility and do not 
account for how individual system factors interact with each other and impact the infection spread. 
Moreover, from a modeling standpoint, none of these studies have integrated advanced computational 
models, such as Agent-Based Models (ABMs), with compartmental models, including Susceptible (S), 
Exposed (E), Infectious (I), and Recovered (R) (SEIR), for addressing HCW unavailability. The use of 
agent-based modeling (ABM) has gained popularity in healthcare operations management literature and, 
particularly, in the infectious disease prevention and control domain (Barnes et al., 2013). Capable of 
modeling and simulating the actions of various autonomous individuals including physicians, nurses, and 
patients, jointly with the interactions among them, ABM-based approaches have provided additional 
insights with more realistic models for disease spread and assessment of various health service operations 
(Tracy et al., 2018); (Chumachenko et al., 2018; Crooks & Hailegiorgis, 2014; Khalil et al., 2012; Perez & 
Dragicevic, 2009). 

Researchers have used ABM-based simulations in the infectious disease literature over the last several 
years. Utilizing an ABM approach (Barnes et al., 2010) investigated the performance of various infection 
control measures, such as hand hygiene, patient screening, and patient isolation, to control the transmission 
of Methicillin-resistant Staphylococcus aureus (MRSA) spread within a hospital. They showed that 
increasing hand hygiene compliance is more effective than hiring additional healthcare workers to minimize 
MRSA transmission, and hand-hygiene compliance must still be supplemented with other measures to 
effectively prevent transmission. In another study, researchers used ABM simulation to model an outbreak 
scenario to capture the nonhomogeneous transmission and infection rates where the model serves as a 
decision support tool, predicting disease spread during a pandemic, generating a map of the estimated 
disease spread area within the geography of interests, and assessing the relative effectiveness of various 
mitigation strategies to control the disease (Aleman et al., 2011). Studies have also used ABM to evaluate 
the effectiveness of medication administration, hand hygiene, isolation, and disinfection with bleach to 
identify their impact on the natural progression of Clostridium Difficile in patients and its transmission in 
a midsized hospital among patients, HCWs, and visitors (Codella et al., 2015). Several studies have also 
used the SEIR compartmental model to understand the dynamics of disease transmission, allowing 
researchers to simulate and predict the spread of infectious diseases (He et al., 2020; Stehlé et al., 2011).  

While researchers have used ABM and SEIR models to capture infection spread, they have not 
integrated ABM with the SEIR compartmental model to investigate the infection spread among HCWs in 
a multi-hospital health system. By including factors such as vaccination rate among HCWs, infection 
transmission rates, the number of patient-HCW and HCW-HCW interactions by different HCW types, and 
patient census in the hospital, we developed an ABM simulation that uses an SEIR compartmental model. 
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This approach allowed us to gather in-depth insights into disease spread and identify the best staffing policy 
that minimizes infection spread and unavailability among the perioperative team at Prisma Health. 

2 METHODS 

2.1 Input Data 

Data used in this study regarding bed capacity, locations, and perioperative HCWs required were derived 
from Prisma Health Upstate, which did not include any identifiers. The study was provided an Institutional 
Review Board (IRB) exemption by the Prisma Health IRB. The rest of the data used in the study were 
collected from publicly available epidemiologic data about COVID-19. We consider six different locations 
of Prisma Health Upstate and three different types of HCWs (anesthesiologists, anesthetists, and nurses) 
who are a part of the perioperative team. Among these, locations 1 - 4 are regular facilities receiving patients 
of all types, whereas two smaller locations were transitioned to treat only COVID-19 patients because of 
the surge experienced. There are 1167 beds available for patient care in total (facility 1: 700, facility 2,3,4: 
108, and facility 5,6: 45), including inpatient beds and operating rooms. In our model, we did not 
specifically focus on the OR workflow. Instead, we focused on the inpatient beds and interactions out-of-
the-OR activity (recovery room, workstation, etc.). The primary reason for this was that we assume that 
clinicians are masked and protected in the OR, whereas they might not be in the recovery room and 
workstation. We consider the number of interactions between each patient and each HCW type as a key 
factor in our ABM, which allows us to capture the impact of HCW availability on their workload in terms 
of patient interactions and the likelihood of getting infected. In our model, although we use a fixed 
transmission probability per interaction, the probability of an HCW getting infected is not static. We 
consider it as a function of total HCWs available to work, patient volume, and the average number of 
interactions with patients according to the following formula: Patient-HCW contact rate = ((COVID-19 
patient census * the average number of interactions required per patient)/number of available HCWs). Here 
it should be noted that the Patient-HCW contact rate is impacted by the HCW type as the number of 
interactions are different based on HCW type.  

Here, the COVID-19 patient census would vary based on the scenario under consideration (discussed 
in the next paragraph). The average number of interactions required per patient is based on the HCW type, 
where we assume nurses have more contact with patients than anesthetists. The number of HCWs represents 
the healthy workforce of each HCW available in the hospital. The motivation to use this equation here is to 
account for the varying HCW workload during a workforce shortage or surge in COVID-19 patients without 
detailed modeling of the complex workflow, which is significantly different for an operating room vs. an 
inpatient bed. Due to the lack of detailed data on the number of interactions required per patient with HCWs 
and the characterization of interactions among HCWs themselves in their workspace, we set these numbers 
in our experiments based on expert opinions from HCWs in the Prisma Health Department of 
Anesthesiology (see Table 1). Here, the number of interactions follows the CDC's guidelines for close 
contact, which is less than 6 feet away from a person for 15 minutes or more. The interactions between 
anesthesiologists represent their interactions in the recovery room, workstation, etc., and not while caring 
for patients. For nurses, their interactions represent their interactions in workstations and while passing by 
between inpatient beds. The number of interactions between anesthetists represents those outside the 
operating room. While it is possible that there might be no interaction between each HCW, we assume they 
could interact while passing by inpatient beds, workstations, lockers, or operating rooms. Additionally, it 
should be noted that we consider a higher provider transmission rate because in non-care providing places 
such as recovery room, workstations, etc., the HCWs tend to be less cautions and don't mask themselves or 
wear gloves. 

For the data on the testing frequency and quarantine period, we followed the policies and practices at 
Prisma Health during January 2022. The data pertinent to the COVID-19 transmission probabilities, 
incubation time, presymptomatic time, asymptomatic and symptomatic probability, recovery period, and 
mortality rate were obtained from publicly available Centers for Disease Control and Prevention (CDC) 
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guidelines and literature (Centers for Disease Control and Prevention, 2021). The possibility of reinfection 
was considered for HCWs returning to work after the mandatory quarantine since multiple studies reported 
such cases (Bergwerk et al., 2021; Centers for Disease Control and Prevention, 2022). Finally, as 
represented in Table 1, the possibility of infection after vaccination was also considered, as prior studies 
observed that no vaccination provided 100% protection against COVID-19. 

Although our model does not explicitly consider factors outside the hospital, to replicate the population 
dynamics, we consider three different scenarios for patient census represented by the percentage of hospital 
bed occupancy by COVID-19 patients at each facility: (i) low patient census (20-25%), (ii) medium patient 
census (45-50%), and (iii) high patient census (more than 80%). Additionally, we also consider two 
infection transmission rates: low and high transmission scenarios (0.004% and 0.04%). Finally, we consider 
four scenarios where 0%, 50%, 75%, and 90% of HCWs' are vaccinated to evaluate the impact of 
vaccination rates. Although these combinations of factors (patient census, transmission rates, vaccination 
rates) do not come from actual scenarios at the partner hospital, the research team aimed to model and 
investigate these different scenarios to capture different population dynamics stages (early stage, peak 
infection, and recovery) for COVID-19 or similar pandemic. Table 1 below summarizes the key input 
parameters used for our model. 

Table 1: Model parameters and values. 

Parameters Values 
Provider transmission rate2 4.0% 
Patient transmission rate1  0.04% or 0.004% 
Incubation period1 Triangular (2,4,12) days 
Asymptomatic probability1 40% 
Quarantine period2 5/10/14 based on vaccination 
Mortality rate1 1.8% 
Reinfection Rate1 0.0004% 
Immunity period1 60 days 
Transmission rate after vaccination1 12.5% of transmission rate 
Providers and Patients vaccinated2 0% or 50% OR 75% or 90% 
Workforce testing frequency3 1 per week 
Patient Census3 700-108-34 based on location 
Number of interactions between providers per hour2 

• Anesthesiologists and Anesthesiologists 
• Anesthesiologists and Nurse Anesthetists/Nurses 
• Nurse Anesthetists and Nurses 

 
3 per hour 
1 per hour 
3 per hour 

Number of interactions between providers and patient2 
• Anesthesiologists and patients 
• Nurse Anesthetists/Nurses and patients 

 
2 per patient 
3 per patient 

1=Literature, 2=Assumption based on expert opinion, 3=Operational data from hospital 

2.2 Simulation Model 

In this paper, we created a simulation model in AnyLogic using agent-based modeling (ABM). This 
provided the flexibility to consider each anesthesiologist, nurse, and nurse anesthetist as a unique agent 
with specific parameters and attributes, interacting with other HCWs working in the same hospital. 
Additionally, this allowed the flexibility to model each hospital as an agent with further segregation into 
groups within each hospital. Moreover, the capability to track the current state (in terms of Susceptible-
Exposed-Infected-Recovered, or SEIR) of each HCW made this the best option to model the rapidly 
spreading COVID-19.  
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Figure 1 depicts the state chart for each HCW, which illustrates the different states where an HCW can 
be at any given time. Before initiating the simulation, each agent is first scheduled to work at a specific 
hospital location for a week. Based on the policy under consideration, each HCW is assigned a list of HCWs 
with whom they can potentially interact within the hospital. By default, all HCWs start in the susceptible 
pool (assuming they are not infected). We employ two options to initiate infection among HCWs: a) through 
patient interactions or b) through interactions with other HCWs. If infected, instead of going directly into 
the state of being infectious, the HCW moves on first to the exposed state, where they stay for a certain 
period (referred to as the incubation period). In this exposed state, a provider is infected but not infectious, 
meaning they cannot spread the disease. Following the exposed state, they move on to the so-called 
presymptomatic phase, where they do not present any symptoms but are infectious, meaning they can 
potentially infect other HCWs. The symptomatic HCWs are tested immediately and follow appropriate 
quarantine protocols. The asymptomatic HCWs continue spreading the infection to other HCWs unless they 
test positive during the routine weekly testing, after which they follow the quarantine protocols. Following 
the quarantine procedures, there is a small probability that the HCW can expire as a result of the infection 
(see Table 1), but most of them recover and enter the work system, where they can be reinfected based on 
the reinfection probability. A detailed process flow of different stages an HCW may progress through 
during the simulation can be seen below. 

 
Figure 1: HCW state chart. 
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From a modeling standpoint, on simulation initialization, each HCW is connected to a specific hospital, 
forming a bidirectional connection where each HCW is linked to a hospital, and each hospital is connected 
to a certain number of HCWs based on the hospital requirement. Further, within each hospital, we have 
groups that represent the various shifts available, as the HCWs will only interact with colleagues present 
during the same group. The HCW-to-HCW interaction is initiated by a separate hospital state chart message. 
Upon receiving the message from the HCW, the linked hospital will iterate and find other HCWs working 
on the same shift in the same hospital and forward the message to one of them based on the contact rate. 
Forwarding the message triggers the HCW state chart, and the HCW either transits to the exposed state or 
stays in the susceptible state based on the probability of transmission. 

2.3 Simulated Policies 

To identify the best staffing strategy that minimizes the number of infections and unavailability among 
HCWs, we compared six staffing policies under different scenarios of patient volume, vaccination status, 
and infection transmission rates. Based on expert opinions from the Department of Anesthesiology faculty 
at Prisma Health Upstate, we used the percentage of weekly availability of the HCWs and the total HCWs 
infected as the two primary performance metrics to compare various staffing policies. Specifically, we 
investigated six staffing policies with 3 primary policies and a fourth rotating policy integrated with the 
first three policies. Below, we provide the details regarding the six policies. 

Policy 1 - Inter-Hospital Mixing (Baseline policy/Current Practice): This policy corresponds to the 
current practice in the partner health system, where an HCW is allowed to work in any facility. Specifically, 
an HCW is assumed to have the option to switch facilities and/or groups every week but will work at the 
same facility each week. This policy allows the highest flexibility in staffing. In our simulation, the 
assignments of HCWs to facilities and groups are generated randomly.  

Policy 2 - Inter-Group Mixing: In this policy, we first divide HCWs into groups and restrict the HCWs' 
interactions by restricting their shift options only to those available within a facility. Here, an HCW can 
switch groups within the same facility but cannot sign up for a shift in a different facility.  

Policy 3 - No Mixing: In this policy, we further restrict the interactions among HCWs by segregating 
them into predefined groups within a single facility. They can only bid for a particular shift and stay with 
the same team throughout the simulation study horizon.  

Policy 4,5,6 – Rotating Schedule: With these policies, we reduce the number of HCWs present in the 
hospital by implementing a rotation schedule. Specifically, at any given time, we assign 67% of the HCWs 
to work and the other 33% to stay at home, and these groups are rotated every two weeks. We combine this 
rotating policy with the aforementioned three policies, inter-hospital mixing, inter-group mixing, and no 
mixing, to obtain Policy 4, 5, and 6, respectively. 

These policies were developed based on discussions with the providers at Prisma Health Upstate to 
ensure their realism and generality so that they can be adopted into any health system with multiple 
facilities. Specifically, based on discussions with expert clinicians working in perioperative settings, we 
used 22.5% of bed capacity as the low capacity, 47.5% as medium capacity, and 85% as a high capacity 
when COVID-19 patients occupied these beds. We evaluate the performance of different policies under 
multiple scenarios where we vary the patient census, vaccination status, and infection transmission 
probabilities. As mentioned earlier, these scenarios are not actual scenarios observed in the partner hospital. 
Instead, we consider various combinations of these factors as they allow us to differentiate between 
different types and sizes of healthcare facilities, reflect the impact of state/local policies, and model both 
high and low-risk geographical locations. Specifically, we tested the six staffing policies as detailed: 

 
• Case 1: Low patient census & high patient transmission rate. 
• Case 2: Med patient census & high patient transmission rate. 
• Case 3: High patient census & high patient transmission rate. 
• Case 4: Low patient census & low patient transmission rate. 
• Case 5: Med patient census & low patient transmission rate. 
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• Case 6: High patient census & low patient transmission rate. 
 

Two hundred replications were run for a simulation horizon of 90 days for each combination of the 
parameters such that the reported metrics for the total number of infected HCWs was with a 99% confidence 
interval of +/- 0.1. A one-way ANOVA was utilized to compare if the total percentage of HCWs infected 
under each policy was statistically significantly different. In case of significant differences for the ANOVA, 
it was followed with a Tukey posthoc to identify the groups that varied. For both statistical tests, an α = 
0.05 was used. 

3 RESULTS 

This section summarizes the performances of the above six staffing policies across four vaccination levels, 
totaling 24 scenarios. Across each, the relative ratio of HCWs was 64.3% nurses, 27.5% nurse anesthetists, 
and 8.2% anesthesiologists. 

3.1 Zero Percent (0%) and 50% Vaccination    

These two policies correspond to the early phase of the pandemic when no vaccines are available and an 
early adoption where vaccine availability is limited. First, we investigate the percentage of HCWs infected 
over 90 days across various policies under each case, as seen in Table 2. 

Table 2: Percentage of healthcare workers (HCWs) infected over 90 days at 0% and 50% vaccination. 

Vaccination 
Rate 

Cases Policy 1 Policy 2 Policy 3 Policy 4 Policy 5 Policy 6 

0% 

1 98.7±0.10 97.2±0.90 91.8±0.91*† 98.0±0.22 97.1±0.80 91.6±0.71*† 
2 98.6±0.11 98.7±0.32 98.4±0.62 98.2±0.70 98.7±0.39 98.1±0.56 
3 98.9±0.09 99.0±0.11 98.7±0.41 98.9±0.01 99.0±0.00 99.0±0.00 
4 83.2±1.05 50.1±0.91* 26.1±1.10*† 83.0±1.10 50.1±0.87* 26.4±0.44*† 
5 98.0±0.12 82.7±0.42* 59.4±0.01*† 98.3±0.62 81.7±0.66* 59.0±0.14*† 
6 98.8±0.90 96.5±0.19 83.3±0.45*† 98.9±0.87 96.7±0.70 80.9±1.01*† 

50% 

1 47.9±1.22 46.0±0.98 40.6±0.90*† 48.2±1.01 45.8±0.71 41.0±0.88*† 
2 48.0±0.34 48.1±0.55 47.9±0.81 48.5±0.15 48.3±0.11 48.0±0.56 
3 49.1±0.75 49.0±0.43 48.7±0.33 49.4±0.12 48.6±0.10 48.9±0.31 
4 29.0±0.33 13.3±0.45* 7.9±0.24*† 28.7±0.80 13.0±1.01* 8.1±0.94*† 
5 45.9±0.54 28.5±0.62* 20.1±0.12*† 45.8±0.79 28.4±0.90* 20.2±0.56*† 
6 48.7±0.32 46.8±0.74 36.7±0.85*† 48.9±0.62 47.1±0.55 36.6±0.41*† 

* = significantly different from policy 1,4, † = significantly different from policy 2,5 
 

On performing an ANOVA, we observed that during high patient transmission cases (1-3), there were 
no statistically significant differences between the six policies (p-value > 0.05) except for one case (Case 
1) across two vaccination rates. For case 1, which is a low patient census scenario, we observed that policies 
3 and 6, where HCWs are most restricted (no mixing), reported a significant reduction in the percentage of 
HCWs infected over 90 days compared to policy 1 (p-value < 0.05).  

For low patient transmission cases (4-6) across two vaccination rates, we observed statistically 
significant differences (p-value < 0.05) in the total percentage of HCWs infected over 90 days. On 
performing a posthoc test, we observed that policies 3 and 6, where HCWs are most restricted (no mixing), 
reported a significant reduction in the percentage of HCWs infected over the 90 days compared to policy 1 
(p-value < 0.01), policy 2 (p-value < 0.01), policy 4 (p-value < 0.01), and policy 5 (p-value < 0.01) across 
all low patient transmission cases (4-6). Additionally, we observed that the semi-restricted policy (inter-
group mixing) and its rotation counterpart, i.e., policies 2 and 5, reported a significant (p-value < 0.05) 
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reduction in the percentage of HCWs infected over 90 days compared to policy 1 and policy 4 (inter-hospital 
mixing) for cases 4 and 5. Finally, we observed that on comparing respective policies to their rotational 
counterparts, i.e., policy 1 vs. policy 4, policy 2 vs. policy 5, and policy 3 vs policy 6, we did not observe 
any statistically (p-value > 0.05) significant differences. 

Next, we investigated the weekly unavailability of HCWs for each policy for different cases at two 
vaccination rates and two patient transmission rates. At 0% vaccination, across low and high patient 
transmission rates, we observed that the no mixing policies (Policy 3 and 6) outperformed other policies 
(Policy 1,2,4,5) by improving the weekly HCW availability by as much as 22% and 11%. Furthermore, 
inter-group mixing policies (Policies 2 and 5) outperformed inter-hospital mixing and its rotation version 
(Policies 1,4) by improving the weekly HCW availability by 13% and 4%. At 50% vaccination across low 
and high patient transmission rates, we observed that the no mixing policies (Policy 3 and 6) outperformed 
other policies by improving the weekly HCW availability by as much as 8% and 7%. Furthermore, inter-
group mixing policies (Policy 2 and 5) outperformed inter-hospital mixing and its rotation version (Policy 
1,4) by improving the weekly HCW availability by 7% and 4%. Finally, we observed no significant 
difference between the rotation policies (Policy 4,5,6) and the respective policies (Policy 1,2,3). Figure 2 
below represents the weekly availability of HCWs at a low patient transmission rate at 0% percent 
vaccination rate. 

Figure 2: Average weekly healthcare worker (HCW) availability for low transmission rates 0% 
vaccination rate.  

3.2 Seventy Five Percent (75%) Vaccination and 90% vaccination 

Next, we present results from 75% and 90% vaccination rates, representing the latter stages of the pandemic, 
where most of the population is vaccinated to protect against the pandemic. Table 3 below represents the 
percentage of HCWs infected over 90 days across various policies under each case. 
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Table 3: Percentage of healthcare workers (HCWs) infected over 90 days at 75% and 90% vaccination. 

Vaccination 
Rate 

Cases Policy 1 Policy 2 Policy 3 Policy 4 Policy 5 Policy 6 

75% 

1 23.0±0.65 21.1±0.40 19.5±0.70* 22.8±0.58 21.0±0.90 19.5±0.11* 
2 24.2±0.45 23.8±0.87 24.0±0.09 24.0±0.80 23.8±0.94 23.7±0.16 
3 25.5±0.33 25.0±0.61 25.1±0.33 25.0±0.23 25.1±0.77 24.4±0.29 
4 8.0±0.85 6.7±0.89 4.0±0.80* 8.0±0.67 6.5±0.22 3.9±0.75* 
5 19.2±1.13 13.3±0.81* 9.3±0.47*† 19.3±0.90 13.2±0.34* 9.2±0.40*† 
6 24.3±0.72 22.5±1.22 16.3±0.29*† 24.3±0.73 22.8±0.32 16.3±0.87*† 

90% 

1 7.2±0.17 7.2±0.87 5.9±0.67 7.2±0.30 7.1±0.91 6.0±0.62 
2 9.4±0.30 9.4±0.04 8.6±0.20 9.1±0.69 9.1±0.80 8.0±0.99 
3 10.1±0.39 10.1±0.65 10.0±0.89 10.3±0.20 10.0±0.92 9.9±0.41 
4 1.9±0.66 1.6±0.57 1.4±0.42 2.1±0.46 1.6±0.85 1.5±0.98 
5 4.3±0.75 3.5±0.31 3.1±0.51 4.0±0.90 3.2±0.72 3.0±0.57 
6 8.1±0.83 7.7±0.49 7.0±1.10 8.1±1.10 7.5±0.56 6.9±0.75 

* = significantly different from policy 1,4, † = significantly different from policy 2,5 
 
For the 75% vaccination rate, ANOVA tests showed some results similar to 0 and 50% vaccination 

rates, where restriction policies still outperform the flexible/inter-hospital mixing policies (policies 1 and 
4) for some cases. Specifically, we observed that during high-patient transmission rates, for case 1, policies 
3 and 6, where HCWs are most restricted (no mixing), reported a significant reduction in the percentage of 
HCWs infected over the 90 days compared to policy 1 (p-value = 0.02), and policy 4 (p-value = 0.02). 
However, unlike what we observed during 0 and 50% vaccination rates, there were no significant 
differences between the inter-group and no mixing policies, again highlighting the diminished returns of 
restrictions as vaccination rates increase.  

For low patient transmission cases (4-6), we observed statistically significant differences (p-value < 
0.05) in the total percentage of HCWs infected over 90 days. On performing a posthoc test, we observed 
that policies 3 and 6, where HCWs are most restricted (no mixing), reported a significant reduction in the 
percentage of HCWs infected over the 90 days compared to policy 1 (p-value < 0.01), policy 2 (p-value < 
0.01), policy 4 (p-value < 0.01), and policy 5 (p-value < 0.01) when the patient census was medium or high. 
However, when the patient census was low (case 4), the no mixing policies (policies 3 and 6) were only 
significantly better than inter-hospital mixing policies (policies 1 and 4). The no-mixing policies (policies 
3 and 6) and inter-group mixing policies (policies 2 and 5) did not vary significantly. Further, we observed 
that the semi-restricted policy (inter-group mixing) and its rotation counterpart, i.e., policies 2 and 5, 
reported a significant (p-value = 0.02) reduction in the percentage of HCWs infected over 90 days compared 
to policy 1 and policy 4 (inter-hospital mixing) for case 5. On comparing respective policies to their 
rotational counterparts, i.e., policy 1 vs. policy 4, policy 2 vs. policy 5, and policy 3 vs policy 6, we did not 
observe any statistically (p-value > 0.05) significant differences. 

For 90% vaccination rate, ANOVA tests showed that irrespective of the patient transmission rates and 
patient census, the restrictive policies, i.e., no mixing policies and inter-group mixing policies, did not 
significantly (p-value > 0.05) reduce the percentage of HCWs getting infected over 90 days compared to 
the current practices (inter-hospital mixing). 

Next, we investigated the weekly unavailability of HCWs for each policy for different cases at two 
vaccination rates and two patient transmission rates. For both vaccination rates under both patient 
transmission rates, we observed that the no mixing policies (Policy 3 and 6) performed slightly better than 
the inter-hospital mixing policies (Policy 1 and 4) and inter-group mixing policies (Policy 2 and 5) in 
improving the weekly availability of HCWs but they were not statistically significant. However, it was 
interesting to notice that the peak HCW unavailability was higher during the high transmission scenarios 
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than the low transmission scenarios. Furthermore, we observed that the peak HCW unavailability was 
higher when only 75% of HCWs were vaccinated compared to 90% vaccination.  

4 CONCLUSIONS AND FUTURE WORK 

Protecting HCWs during a pandemic is critical for delivering timely and quality care to increased patient 
demands often reported during public health crises. Additionally, HCWs are on the front lines of combating 
the outbreak, risking their lives daily to provide care; hence, their safety not only preserves their well-being 
but also maintains the integrity of the healthcare system, as their expertise is indispensable in managing the 
crisis. Furthermore, if healthcare professionals are not adequately protected, it can lead to increased 
transmission of the virus within healthcare settings, exacerbating the strain on resources and potentially 
leading to higher mortality rates. 

This research investigated the impact of different restriction policies, such as segregating and rotating 
HCWs, on reducing their peak weekly unavailability of HCWs and unavailability over three months during 
various stages of the COVID-19 pandemic at a large health system with multiple locations. Specifically, 
this study furthers the research by incorporating various pandemic parameters such as patient census, HCW 
types, transmission rates, vaccination rates, interactions, reinfection, and other COVID-19 data along with 
multiple hospital locations which no prior studies have considered while investigating staffing policies 
among perioperative HCWs(Habib & Zinn, 2020; Kluger et al., 2020; Mascha et al., 2020). By simulating 
24 scenarios for 90 days by changing the patient census, transmission rates, and vaccination rates at multiple 
hospital locations, our findings indicate that segregating and rotating the HCWs could significantly reduce 
the peak weekly HCW unavailability and percentage of HCWs getting infected over the simulation period. 

Specifically, when vaccination rates were 50% or less, we observed that segregation policies (no mixing 
and inter-group mixing) and their rotation versions reduced the weekly unavailability of HCWs by as much 
as 40% compared to the current practices at the partner health system. Moreover, the total number of HCWs 
getting infected over the 90 days was reduced by as much as 60%, thereby significantly improving HCWs' 
availability to provide care. However, when the vaccination level increases to 75%, the segregation policies 
(no mixing and inter-group mixing) and their rotation versions are not significantly better in reducing the 
peak weekly unavailability of the HCW. Still, these policies were beneficial in reducing the total number 
of HCWs infected over the three months. Finally, when the vaccination levels increased to 90%, segregation 
policies and rotation versions did not significantly reduce the peak HCW unavailability or the percentage 
of HCWs getting infected over 90 days. These observations further highlight the importance of 
incorporating factors such as vaccination rates, patient transmission rates, and patient census while 
modeling similar infectious diseases to understand their impact on HCW availability. 

While our research focused on modeling the perioperative staff (anesthesiologists, nurse anesthetists, 
and nurses), the observations from this study can be considered while developing staffing schedules for 
other high-risk HCW populations such as emergency medicine, hospitalists, etc., to reduce the HCW 
unavailability. Additionally, while the current observations are based on the data from the COVID-19 
pandemic, the model can be used to simulate other pandemic or infectious diseases where the SEIR 
compartmental model is still relevant. Moreover, the model is coded and developed in a format that allows 
for generalization where health systems with multiple locations can change the model parameters (beds, 
HCWs types, etc.) and thereby help better prepare and assign their HCWs during future pandemics. 

Although this research study aimed to comprehensively model an SEIR compartmental model with an 
ABM-based computational model to simulate a pandemic scenario for HCW staff scheduling, which can 
be generalizable to multi-location health systems, this study has a few limitations. First, the analysis and 
results are based on simulated findings as opposed to applied results. However, our simulated results are 
reported with a 99% confidence interval. Another limitation is that we assume that each patient, on average, 
comes in contact with a provider a certain number of times, and providers interact with each other at a 
particular rate. Although these assumptions are based on expert opinions from anesthesiologists working in 
the partner hospital, we recognize the fact that the number of actual interactions could be higher in the OR 
when the HCWs could be in close contact most of the time and lower while providing care on inpatient 
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beds, depending on the scenario. However, to reduce the complexity of modeling these different workflows, 
we decided to use the average, as we aimed to compare various staffing policies (flexible vs. restricted) 
during various stages of a pandemic (early, medium, and late) without changing any workflow/processes. 
In the future, the model could be updated to incorporate a detailed workflow.  

Further, from an operational and implementation standpoint, there are two primary limitations. First, 
we only consider infection-related unavailability. However, there are additional factors, such as higher 
levels of burnout and attrition during a pandemic such as COVID-19, which could worsen the unavailability 
of HCWs. Second, we do not consider the preference of HCWs in this study. For example, most providers 
might prefer Policy 1, which allows for the most flexibility. Hence, implementing no-mixing policies or 
restrictive policies could lead to additional unavailability through HCW attrition. 

Another limitation is associated with modeling and replicating the partner hospital's activities. While 
physicians were involved throughout the model development process to replicate the actions, we 
acknowledge that certain assumptions (interactions) and simplifications of complex workflow in the model 
could limit the ability to replicate the activities at the partner hospital completely. Finally, from a modeling 
standpoint, future research should consider dynamic policies that switch between different policies 
discussed in the research during the 90-day period rather than keeping the model static over the simulation 
duration. Doing this would allow hospitals to dynamically adapt their policies to protect HCWs during a 
surge in a pandemic or to account for quick changes observed during a pandemic.  
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