
Proceedings of the 2024 Winter Simulation Conference
H. Lam, E. Azar, D. Batur, S. Gao, W. Xie, S. R. Hunter, and M. D. Rossetti, eds.

A STANDARD FRAMEWORK FOR AI-DRIVEN OPTIMIZATIONS IN VARIOUS COMPLEX
DOMAINS

Tobias Bosse1,2, Evangelos Angelidis1, Fei Fei Zhang3, Chew Wye Chan3, Boon Ping Gan3, Matthias
Werner1, and Andrej Gisbrecht1

1Dept. of Manufacturing Digitalization - AI-Solutions, Simulation and WIP-Flow Optimization, Robert
Bosch GmbH, Reutlingen, BW, GERMANY

2Karlsruhe Institute of Technology (KIT), BW, GERMANY
3D-SIMLAB Technologies Pte Ltd, SINGAPORE

ABSTRACT

Deploying AI in production is a challenging task that necessitates the integration of various standalone soft-
ware solutions, including Manufacturing Execution System, Simulation, and AI. The process of discussing,
defining, and implementing interfaces requires both time and financial resources. In this paper, we propose
a standardized interface framework that not only facilitates the training of Deep reinforcement learning
agents in the semiconductor industry but also offers flexibility, extensibility, and configurability for other
use cases and domains. To achieve this, we present OpenAPI interface definitions that enable automatic
code generation, along with a set of data schemas that adequately describe the semiconductor domain for
most use cases. By adopting this framework, the coupling between software modules is reduced, enabling
researchers to work independently on their solutions. Moreover, it ensures compatibility among modules,
allowing for plug and play functionality, and simplifies the deployment process in production.

1 INTRODUCTION

Smart factories are environments where machines, sensors, and systems collaborate to improve production
processes and increase efficiency. Their increasing complexity presents difficulties for conventional opti-
mization methods. One of the most challenging domains for optimization in Industry 4.0 is semiconductor
manufacturing. The industry is characterized by high-volume production, long cycle times, high uncertainty
and a high degree of automation, making it an ideal candidate for AI-driven optimization.

Developing simulators is a research field in itself, while emerging machine learning based solution
methods, such as Deep reinforcement learning (DRL), have their own intrinsic complexity that requires
specialized experts. The same applies for systems that handle large amounts of data and Manufacturing
Execution Systems (MES). This makes the deployment of AI solutions in production environments so
challenging: It requires the integration of these diverse software systems. Defining and implementing the
necessary interfaces between these systems is time-consuming, resource-intensive and a source for technical
debts (Sculley et al. 2015). Ehm, Fowler, Mönch, and Schorn (2024) state that a digital testbed would be
beneficial to foster collaboration between AI and domain experts.

We believe that in order to manage the increasing complexity of each system, a looser coupling
between them is necessary. This in turn necessitates defined communication to support cross-disciplinary
collaboration. Moreover, it is advantageous to be able to quickly adapt to new solutions, especially in
rapidly evolving fields where disruptive solutions can emerge any time. The presented framework can not
only accelerate research on large scaled optimization tasks but also provides a bridge to the deployment
in industrial IT environments.

Encapsulated modules are easier to scale, more reliable and provide better reusability and comparability,
not only within but also across domains. The proposed framework helps avoid vendor lock-in and allows each

1966979-8-3315-3420-2/24/$31.00 ©2024

Bosse, Angelidis, Zhang, Chan, Gan, Werner, and Gisbrecht

discipline to work in their preferred programming language to focus on their core expertise. In particular,
it allows to connect different modules and to fit model parameters, for example for Deep reinforcement
learning agents.

Existing approaches in the industry do not distinguish between software from different disciplines.
While this approach is effective for demonstrators it leads to massive challenges when it comes to scaling
due to the coordination demands of the different disciplines.

We present a standard framework that maintains the exchange of information via customizable interfaces.
The source code is published at AISSI-Dissemination (2024). In Section 2 we give an overview of the current
state of the art. The standard framework is introduced in Section 3 and its application to semiconductor
scheduling is presented in Section 4. Section 5 provides a discussion and an outlook. Section 6 summarizes
the paper.

2 BACKGROUND

This section summarizes recent developments in the fields of optimization, simulation and similar frame-
works.

2.1 Optimization

Heuristics like rule based dispatching are the established solution in the industry for many cases. They
are responsive, scalable, and interpretable, but the quality of the solutions is limited. The inability of
fixed rules to adapt to the intricate problem structure prevent them from reliably finding near optimal
solutions to NP-hard problems. Metaheuristics also struggle to guarantee optimality for these challenging
combinatorial optimization problems, although they typically generate better solutions than simple heuristics
by intelligently exploring the search space (Dauzère-Pérès et al. 2024).

Numerical Optimization techniques utilize solvers on a system of equations and constraints to find a
near optimal solution. The approach is limited by time and available computing power, making it difficult
to apply to large-scale problems. In addition, the formulation of the optimization goal can be expensive.

The rise of Reinforcement Learning (RL) is pulled by the demand for more adaptive strategies. They
are trained to take near optimal decisions by interacting with the environment. The training requires even
more computing power than numerical optimization but the inference of the trained model is computationally
cheaper.

RL is an established research field with many different algorithms that have become increasingly
complex but also more powerful. Recently, DRL has become powerful enough to tackle even the hardest
problems, such as semiconductor fabrication (Tassel et al. 2023; Park et al. 2020).

With more and more development in this field, there is an increasing need to compare existing solutions
and foster research of new techniques. For this reason, a framework was developed in RL research to
standardize the API between RL agents and the environments in which the agents act. OpenAI has introduced
the Gym library, which is now widely adapted in the community. Many algorithms and environments
compatible with this API have been released. The Gym library has since migrated to Gymnasium, maintained
by the Farama Foundation (Farama Foundation 2024).

Even though hard tasks, such as chess and go, are computationally challenging, the corresponding
environments are extremely simple to describe, and the transition function is usually straightforward to
compute. In such cases, the environments are often implemented as a relatively simple utility function of
the much more complex RL algorithm. Training a DRL agent with Monte Carlo Tree Search (MCTS)
requires not only an environment but also the ability to manage the states of the environment in the tree.
Although the Gym API does not provide a standard interface for this task, this was not an issue since for
simple environments, this can be achieved by simply copying the environment object.

For research in the Semiconductor (SC) manufacturing area, there also exist standard models. One
such model is the MiniFab model (El-Khouly et al. 2009), which describes a simple theoretical factory

1967

Bosse, Angelidis, Zhang, Chan, Gan, Werner, and Gisbrecht

designed for operations research. Another model is the SMT2020 model (Kopp et al. 2020), which exhibits
a complexity comparable to a real-world factory.

This model is already so complex that developing a closed-form solution for the factory dynamics is
not feasible, and discrete event simulation is used instead. There are publicly available simulators that
are also compatible with the Gym API, such as Kovacs et al. (2022), and could be used for research and
training of DRL agents. For the simulation to be useful in production, the simulation results should be as
close as possible to reality. Such simulators are available as commercial products and standalone software
modules.

When using such tools for training DRL agents, it is thus not obvious how to integrate them with AI,
and in particular, how to manage multiple states in the search tree. Unfortunately, the Gym library does
not provide an API for state management. To alleviate this limitation, we propose a framework and API
definition to allow a much richer interaction between AI and simulation and enable training of DRL agents
in complex environments such as the SC domain.

2.2 Simulation

Discrete event simulation (DES) is widely adopted in the semiconductor industry to support decision-making
in enhancing operational efficiency (Mönch et al. 2012; Kovacs et al. 2022). Typical modelling elements
required are: (i) process flow that defines the steps and associated recipe to build a wafer, (ii) equipment
dedication that defines the equipment that is capable of processing which recipe, (iii) process time that
defines the time required to process a production lot or batch of a certain recipe at an equipment, (iv)
random events such as equipment availability, step sampling, and rework/scrap processes, (v) dispatch rules
that mimic the lot selection process implemented in the production., and (vi) equipment behaviour such as
wafer, lot, or batch processing. It is also crucial that the model is initialized with the current state of the
production and fed with the associated wafer start plan for realistic modelling of the production (Seidel
et al. 2020). In this project, we adopt the D-SIMCON Simulator (D-SIMLAB 2024b) to create a high
fidelity model of the production line.

Besides having the ability to model wafer fabrication processes in high fidelity, it is crucial that the
simulation package is able to interact with the RL agent for training purposes. Key requirements are the
ability to start, pause, resume, branch, and rollback of simulation state. The branching feature is especially
crucial because RL training requires the simulation package to instantiate a new simulation from a specific
time point to enable independent and parallel scenario explorations. Rollback is required to ensure that
the RL agent is able to unwind a not favourable exploration path and explore new paths from an earlier
simulation state. In the context of the paper, the decision parameter is lot dispatching. This means that the
simulation package needs to accept lots’ dispatching orders from the RL agent and execute in accordance
with the decision made. The RL agent also requires feedback from the simulation package to measure
the rewards of the decision made. The rewards can be measured at different time periods for different
durations. The D-SIMCON Simulator was extended to support this requirement. More details can be found
in Section 3.8.

2.3 Existing Frameworks

AI-driven optimization techniques have been applied to tackle complex problems in various domains,
enabling organizations to make data-driven decisions and streamline processes. However, the lack of
standardized frameworks and interfaces for integrating these optimization methods poses a significant
challenge to their widespread adoption. This section reviews some of the notable existing frameworks and
highlights their limitations.

Khalloof et al. (2020) introduced a framework for parallelizing population-based metaheuristics by
leveraging microservices, container virtualization, and a publish/subscribe messaging paradigm. Their
framework facilitates the hybridization of different parallelization models and has been successfully applied

1968

Bosse, Angelidis, Zhang, Chan, Gan, Werner, and Gisbrecht

to solve optimization problems in distributed energy resources and renewable energy generation. Although
the framework uses REST for data exchange, the interfaces are not standardized, limiting wider adoption.

Cao et al. (2021) developed an Ontology-Based Holonic Event Driven Architecture for Autonomous
Networked Manufacturing Systems based on Java. However, their work does not standardize the message
exchange protocols, which hinders interoperability with other systems.

Kovacs et al. (2022) presented a customizable simulator for evaluating RL algorithms on flexible job
shop scheduling problems, including a Gym environment interface. However, it is solely compatible with
Python, which limits its usability in other programming languages.

The Ray framework (Ray 2024) , introduced by Moritz et al. (2018), supports parallelized training
of reinforcement learning algorithms by facilitating the asynchronous execution of distributed Python
functions. While Ray has been used to implement scalable parallel optimization algorithms, it is limited
to the interface of the gym environment, which offers only basic functionality.

Established solutions in industry are developed in various languages. The restriction to certain pro-
gramming languages limits their applicability and adoption. Moreover it remains a lack of standardized
interfaces that define what information needs to be exchanged between different disciplines and how to model
complex environments at the core. Without such standards it is difficult for researchers and practitioners
to collaborate, compare, and build upon existing optimization techniques.

3 STANDARD FRAMEWORK PROPOSAL

In the following, the architecture of the framework is introduced and proposals for standard interfaces are
presented. The OpenAPI specifications of the modules serve as the complete definition of each module’s
interfaces. All other aspects of the framework, such as documentation and code, are derived from these
OpenAPI specifications. Relying on the code generator maintains a high code quality and consistency.
Domain independence is achieved by defining modules and their communication messages agnostic to
specific domain entities. These entities are encapsulated in an interchangeable data schema, ensuring that
the flow of actions and reactions between modules remains invariant, even if the data model is replaced.
Although the application of the framework is illustrated using the semiconductor domain, it is possible to
replace the data model with that of another domain without changing the remaining framework.

The proposed standards are the result of research collaborations between various companies. Simulation
as well as AI and domain experts that are experienced in operating real fabs were involved in their development.
In the project AISSI (2024), several companies with decades of experience combined their know-how. In
addition, the results of the SC3-Project (2023) were incorporated with even more companies.

3.1 Main Modules

Figure 1 illustrates the high level architecture of our framework: The main modules are Simulation, AI,
Strategy, and Persistence. These modules are designed to be modular, allowing for easy replacement or
omission depending on the specific requirements of the system. In addition, the architecture supports the
inclusion of multiple instances within a single module. For example, the AI module can accommodate
multiple agents, each using different optimisation techniques.

• The Simulation is the digital twin of the real environment. It contains all the features relevant to
the use case and can be treated as a copy of it, allowing experimentation, testing, and optimization
without impacting the real environment.

• The AI module contains everything related to decision making logic. The term Artificial Intelligence
is used here broadly for any algorithm that can calculate decisions. Various optimization techniques
can be implemented here, such as DRL, genetic algorithms, numerical solvers or heuristics. As
long as they follow the same scope, for example getting a current state and return scores for every
lot in WIP, they can easily be exchanged for comparison or combination.

1969

Bosse, Angelidis, Zhang, Chan, Gan, Werner, and Gisbrecht

AI

Strategy

Persist

Real
Env

Standard
Interfaces

VisualizeSim

Figure 1: The high level architecture of the framework follows the principle of “divide and conquer”.

• The Strategy module’s task is to orchestrate higher level tasks, such as replaying a specific scenario
or applying MCTS. The implementation of a new use case usually starts here.

• The Persistence module contains the data handling tasks. Solutions for extracting, transforming
and loading historical data are based here. It stores relevant data and makes it available through
the standard interface. It can be fed from different data sources such as MES or machine logs. It
ensures that the data is efficiently managed and available for optimization tasks.

The proposed framework facilitates the integration of additional modules to extend functionality, as illustrated
by the empty connectors in Figure 1. Examples of additional new modules include visualization and a real
world connector. The visualization module could contain algorithms to visualize the current state of the
real environment, the simulation, or the training progress of a reinforcement learning agent. The connector
to the real environment could be used to deploy trained solutions in production. The interface is the same
as for simulation.

3.2 Communication Adapters

For each module in the system, there are two automatically generated adapters based on the module’s
specification: A receiving adapter, which is a server that provides specific services via incoming messages
defined in the specification, and a sending adapter, which is a client that sends messages to the module
in the format specified by the specification. Since both the server and client code are generated from the
same specification, any potential mismatches or incompatibilities between them are eliminated. To message
the module, any participant can integrate the generated corresponding client to send properly formatted
messages. The adapter code is automatically generated in the desired target programming language using
an OpenAPI generator (OpenAPI-Generator Contributors 2024). Many general purpose languages are
supported. Developers can then reference the generated adapter code in their application.

The OpenAPI generator also enables the automatic generation of a human-readable website from the
specification. This gives developers an overview of the API structure without having to read the specification
file directly.

1970

Bosse, Angelidis, Zhang, Chan, Gan, Werner, and Gisbrecht

3.3 Event Driven Architecture

The event driven architecture enables asynchronous traffic, which facilitates scalability. The sender of a
message does not wait for an immediate reply and thus prevents an idling waiting process. Instead, the
sender receives an instant confirmation of message receipt, allowing it to continue processing without
blocking. When a message is received, the associated function is triggered and executed in a separate
thread. This enables parallel processing and ensures that the receiving component can handle incoming
messages independently, without affecting the performance of other parts of the system. The receiving
component can process the message and, if necessary, send messages to other participants as part of its
own processing logic.

3.4 Standard Messages

The proposed standard defines several message types, some of which follow the same pattern. One message
type for example contains the request for creating an instance of a module. The module constructs the
instance, saves it locally, and an ID is returned to the requester. The body of the message is a serialized
JSON string, consistent with the respective schema, which is constructed by the client. The format is
defined in OpenAPI 3.0 and JSON Schema 2020-12. The receiving server parses the JSON string into the
corresponding object and validates it against the defined schema. The possible responses defined in the
specification follow the HTTP response status codes, e.g. “500” returns internal server errors according
to the defined schema, which includes an error code and a descriptive message. Every message contains
metadata defined in the “MessageMetaData” schema. It contains a universal unique identifier (UUID) of the
sender, the message itself and the interaction. Also, the interaction type (request or response) is specified.
This metadata helps track and manage the communication between modules, ensuring proper identification
and context for each message exchanged. The persistence module provides four messages for every entity
it manages: GET, POST, PUT and DELETE. GET is used to retrieve an entity or a collection of entities.
POST is used to create new entities, while PUT is used to modify an existing entity, and DELETE is used
to delete an entity or a collection of entities.

3.5 Semiconductor Domain Entities

The proposed semiconductor domain entities are intended to provide a comprehensive and standardized set
of schemas for representing various aspects of the semiconductor manufacturing environment. The most
common entities and their relationships are defined, covering most real-world use cases.

It can be viewed as a solid base configuration for representing an environment and is designed to be
extended for individual environments while maintaining a consistent foundation.

Each organization has its own solutions for managing specific details, such as setup rules. The proposed
approach allows everyone to extend the base configuration to meet their specific needs and existing solutions.

The schemas are uniquely named to avoid ambiguity and are intended to contain the relevant information
needed for optimization tasks. In addition, information has been added that may be relevant to the optimization
process or further calculations. These entity schemas cover various aspects of semiconductor manufacturing,
such as products, routes, equipments, dedications, process parameters, chamber mappings, reticles, KPI-
definitions and more. Laipple et al. (2018) provide a foundation which served as inspiration for defining
the key entities and their relationships.

The entity schemas follow a hierarchical structure, with all objects inheriting from a base DataObject
schema. This abstract base includes essential metadata such as a UUID, an internal ID, and the associated
dataset ID.

Exemplary, the content of a state entity is displayed in Table 1. This schema represents the state of a
real environment or a simulation, with a consistent format across both contexts.

“ > {. . . }” indicates that further components belong to this schema. “[]” marks a list of elements. Most
of the entities within the state schema are themselves defined by additional schemas, such as the list of

1971

Bosse, Angelidis, Zhang, Chan, Gan, Werner, and Gisbrecht

Table 1: State description.

State
entity name entity type entity name entity type
id string($uuid) equipments [Equipment > {. . . }]
environmentId string($uuid) dedications [Dedication > {. . . }]
stateId string($uuid) processParameters [ProcessParameters > {. . . }]
currentDateTime string($date-time) chamberMappings [ChamberMapping > {. . . }]
products [Product > {. . . }] chamberDedications [ChamberDedication > {. . . }]
routes [Route > {. . . }] routeStagePreLeadTimes [RouteStagePreLeadTime > {. . . }]
wip [Wip > {. . . }] equipmentState [EquipmentE10State > {. . . }]

equipment states that represent the state of every equipment according to the SEMI E10 specification. The
full collection of entities can be explored in the full specification available at AISSI-Dissemination (2024).

3.6 Extendability

A major strength of the OpenAPI specification is its extension support, which allows developers to add
attributes or metadata to core elements. This modular and adaptable architecture allows use cases with
different requirements to be addressed by selectively using core models and extending them as needed. For
example, a use case may use only a subset of entities from the semiconductor domain, while incorporating
additional entities or messages as needed. It is typical for companies to not reveal the specifics of
their dispatching and scheduling strategies. However, by utilizing the semiconductor model described
in subsection 3.5, it is possible for any individual to adapt it to their own specific requirements. The
code generator streamlines extension integration. Developers can update the OpenAPI definition with
necessary extensions and regenerate code in their chosen language. The updated generated code can then
be referenced in the application code. New modules can also be added by defining new endpoints in the
OpenAPI specification, guided by existing specifications.

3.7 Simulation-based Optimization

One use case which is addressed by this framework is simulation-based optimization. This approach
examines performance under different parameters and scenarios. A typical workflow is outlined in the
following pseudocode:
Procedure SimulationBasedOptimization

Define potential sets of model parameters. // in strategy module
For each set of parameters

Create AI Model with these parameters // send request to AI module , receive ID
Evaluate scenario performance with this model through simulation.

// send request to simulation module, receive Key Performance Indicators
End For
Visualize the results // send request to visualization module

End Procedure
During the evaluation process, the simulation module contacts the AI module several times to make

sequential decisions. The objective is often non-trivial. It may be a multi-objective optimization where trade-
offs between competing objectives must be carefully balanced. Hereby the relationship between competing
KPI’s can be highly nonlinear. Figure 2 shows an exemplary visualization of results of different scheduling
algorithms. Cycle time and throughput are typically important in production, yet they are conflicting KPI’s.
Each point represents a simulated scenario with different parameters. For the non-optimal solutions (gray),
there is another solution with a better value in one of the KPI’s without sacrificing the value in the other.

1972

Bosse, Angelidis, Zhang, Chan, Gan, Werner, and Gisbrecht

T
h
ro

u
g
h
p
u
t

(Cycle Time)-1

Figure 2: Pareto front.

The red points on the Pareto frontier represent Pareto-optimal solutions. Results above the Pareto frontier
are infeasible.

A MCTS algorithm leverages this concept by applying it iteratively: A leaf of the search tree is linked
to one state of the simulation. It is extended by different states which result from a number of different
actions at the next time step. Then a selection method screens the whole search tree for the next leaf on
which to deepen the search. The pseudocode for a MCTS in the framework is visualized in Figure 3 using
a sequence diagram: Ten different decision algorithms are queried for each decision.

Strategy

Start

Sim AI

Create Agent (10x)

Agent ID (10x)

Perform Action (10x)

Compute Promising Action (10x)

State (10x)

Environment ID

Create Environment

Promising Action (10x)

Environment ID (9x)

Clone Environment (9x)

Leaf Selection

Perform Action (10x)

Compute Promising Action (10x)

State (10x)

Promising Action (10x)

Environment ID (9x)

Clone Environment (9x)

Leaf Selection

Figure 3: Sequence diagram of messages in a MCTS scenario.

1973

Bosse, Angelidis, Zhang, Chan, Gan, Werner, and Gisbrecht

3.8 Snapshot and Branching Mechanism in the Framework

MCTS is a powerful method for handling complex decision-making processes, especially in environments
like semiconductor manufacturing, where numerous decisions interact in complicated ways. To enable
MCTS to effectively manage complexities in our lot scheduling context, integrating a simulation platform
with advanced execution control is crucial. The simulator used in this framework provides essential
functionalities for managing simulation states and decision branches, which are pivotal for efficiently
training MCTS.

Figure 4: Snapshot and branching mechanism of D-SIMCON Simulator.

Figure 4 shows the snapshot and branching functionality of the D-SIMCON Simulator. It allows
for initiating multiple simulation instances from a single state at a specific time, enabling the parallel
exploration of different actions. This capability is crucial for the MCTS method, where it is necessary
to explore various search paths concurrently, focus on promising paths, and abandon less rewarding ones
without redoing the entire simulation. For instance, the simulator can branch out Child_1 and Child_2
from the parent simulation instance at t1 to test different scheduling decisions, allowing these instances
to run independently. This feature not only facilitates a broad exploration of potential strategies but also
helps maintain an optimal number of active simulations, enhancing the overall efficiency of the simulation
environment.

Furthermore, the simulator supports rollback functionalities that allow returning to any previously saved
state. This is achieved by taking only snapshots of the simulation state, which are stored with unique
labels, for example, Child_2_at_t2 from Figure 4, which could then be used to correspond to respective
MCTS tree nodes. Such snapshots can be rolled back as required, thus eliminating the need to restart the
Parent simulation from the beginning and significantly reducing the data transfer and storage overhead.
Additionally, the framework’s ability to manage and terminate simulation branches efficiently—either
individually or collectively based on the tree structure—simplifies the overall management of simulation
instances. These capabilities are integral to reducing computational resource consumption.

4 APPLICATION TO FRONTEND SCHEDULING

This section demonstrates the application of the framework to scheduling in the semiconductor domain.
The proof of concepts code and setup are publicly available at the AISSI Homepage (AISSI 2024) for
repeatability and further exploration. For the sake of simplicity and to maintain focus on the use of the
framework’s interfaces, we consider a MiniFab environment (El-Khouly et al. 2009) where the scheduling
is performed using the First-In-First-Out (FIFO) principle.

1974

https://aissi-project.com/

Bosse, Angelidis, Zhang, Chan, Gan, Werner, and Gisbrecht

The proof of concept consists of three modules: Simulation, AI and Strategy. In addition, it contains a
template that serves as a reference for additional modules. In this case the generated clients and servers are
integrated via an installation as a local pip package. The modules are independent of each other and could
run on different machines. Unlike the other modules, which only start their respective servers, the strategy
module starts the server in a parallel thread and triggers the start of the scenario in its main function.

The process begins with the strategy module triggering the creation of an optimization instance (agent)
within the AI module and a virtual environment within the simulation module by means of a message
constructed and sent using the client adapter of the corresponding module.

Upon receiving a message, the module sends an acknowledgement to confirm receipt. In parallel, a
thread is started for the creation process. Once completed, this thread sends another message containing
the new instance ID back to the strategy module.

The strategy’s main function waits for the response of simulation and AI while the server process
keeps running in the background, ready to handle incoming requests at any time. Once it has processed
the receipt, the request to start the simulation is sent to the simulation module. The message contains
the environment ID of the instance to be simulated and the agent ID of the AI instance to be queried for
decisions.

This initiates the simulation for a duration of 48 simulated hours. Then main() program of the strategy
module ends here. The remaining procedure is then executed based on the responses from different
modules to the messages they receive. At simulated hourly intervals, the current state is transmitted to
the optimization agent, which in turn generates a new dispatching list valid for the subsequent hour of
simulation. Each lot is assigned a score. Waiting lots are then sorted according to their score in descending
order. At the end of the simulation period, KPI’s from the run are sent back to the strategy module for
analysis and evaluation. The framework is sufficiently robust to facilitate an exchange between factories
in the semiconductor environment, e.g. from MiniFab to SMT2020, without the necessity of modifying
the remaining code.

5 DISCUSSION

The proposed standards reflect a wide collection of know-how and experience. The data schemas are
designed to cover the most standard concepts from SC fabrication and the communication events allow
training and deployments of diverse algorithms from simple heuristics to complex DRL agents. The
objective of this paper is not to develop a new AI model but to propose a standard communication to train,
evaluate, and deploy arbitrary AI models. The framework was developed and validated on a first productive
scheduling use case. In the near future, we plan to further use this framework to train a reinforcement
learning agent and deploy it in a productive environment.

We believe that discussions between interdisciplinary experts on common interfaces can be very effective,
with the proposed standards serving as a robust foundation. They provide a comprehensive set of commonly
used attributes, and if something is missing from the collection, the schemas can be flexibly extended on
a case-by-case basis.

By implementing the communication adapter, encapsulated solutions, such as commercial simulators,
can preserve their intellectual property while seamlessly integrating their solutions into the customers’
framework. This facilitates the adoption of AI-driven optimization techniques in real-world applications
and helps to bridge the gap between academic research and industrial practice. First industrial grade simulator
already supports the standard framework interfaces to provide specific functionality for AI training (D-
SIMLAB 2024a). Furthermore, the adoption of the standard framework could lead to the creation of a
standard benchmark for simulation and AI applications. This would provide a consistent and reliable way
to evaluate and compare different optimization techniques. This, in turn, would foster innovation and
accelerate progress in the field. We look forward to further discussion and refinement of these standards
as they are adapted and applied.

1975

Bosse, Angelidis, Zhang, Chan, Gan, Werner, and Gisbrecht

6 CONCLUSION

As the complexity of Industry 4.0 environments increases, the high level division of disciplines becomes
increasingly important. This work proposes a novel framework architecture to facilitate the development
of data-driven optimization techniques in complex domains. The standardized OpenAPI interfaces enable
automatic code generation and provide data schemas that adequately describe the semiconductor domain
for most use cases. It is designed to allow greater design freedom within individual modules, accelerate
the adaptation to new modules and facilitate reinforcement learning in large-scale cyber-physical systems.
By adopting this framework, researchers and experts from different disciplines can collaborate effectively.
This is a first contribution to possible future industry standards.

ACKNOWLEDGEMENTS

This work has received funding from the Eureka ITEA-4 Cluster AI Call 2020 under grant agreement
no. 20212 (project AISSI – Autonomous Integrated Scheduling for Semiconductor Industry), which is
financially supported by the Federal Ministry for Economic Affairs and Climate Action in Germany and
Enterprise Singapore. This support is gratefully acknowledged.

REFERENCES
AISSI 2024. “Autonomous Integrated Scheduling for Semiconductor Industry”. https://aissi-project.com/, accessed 1st May

2024.
AISSI-Dissemination 2024. “Exploitable results of AISSI project”. https://aissi-project.com/en/publications_and_links, accessed

28th June 2024.
Cao, H., X. Yang, and R. Deng. 2021, January. “Ontology-Based Holonic Event-Driven Architecture for Autonomous Networked

Manufacturing Systems”. IEEE Transactions on Automation Science and Engineering 18(1):205–215.
OpenAPI-Generator Contributors 2024. “OpenAPI Generator”. https://openapi-generator.tech/, accessed 1st May 2024.
D-SIMLAB 2024a. “D-SIMCON AI Training and Evaluation Platform”. https://d-simlab.com/event/d-simlab-launches-a-high-

fidelity-simulation-platform-for-training-of-artificial-intelligent-enabled-agents-and-evaluation-of-scheduling-policies, ac-
cessed 15th April 2024.

D-SIMLAB 2024b. “Forecaster and Scenario Manager”. http://d-simlab.com/category/d-simcon/products-d-simcon/
forecaster-and-scenario-manager, accessed 15th April 2024.

Dauzère-Pérès, S., J. Ding, L. Shen, and K. Tamssaouet. 2024, April. “The flexible job shop scheduling problem: A review”.
European Journal of Operational Research 314(2):409–432.

Ehm, H., J. Fowler, L. Mönch, and D. Schorn. 2024. “Decision-Making Techniques for Smart Semiconductor Manufacturing
(Dagstuhl Seminar 23362)”. Dagstuhl Reports 13(9).

El-Khouly, I. A., K. S. El-Kilany, and A. E. El-Sayed. 2009. “Modelling and Simulation of Re-entrant Flow Shop Scheduling: An
Application in Semiconductor Manufacturing”. In 2009 International Conference on Computers & Industrial Engineering.
July 6th-9th, Troyes, France, 211-216.

Farama Foundation 2024. “Gymnasium Documentation”. https://gymnasium.farama.org/, accessed 1st May 2024.
Khalloof, H., P. Ostheimer, W. Jakob, S. Shahoud, C. Duepmeier and V. Hagenmeyer. 2020. “A Distributed Modular Scalable and

Generic Framework for Parallelizing Population-Based Metaheuristics”. In Parallel Processing and Applied Mathematics,
432–444. Cham: Springer International Publishing.

Kopp, D., M. Hassoun, A. Kalir, and L. Monch. 2020, November. “SMT2020—A Semiconductor Manufacturing Testbed”.
IEEE Transactions on Semiconductor Manufacturing 33(4):522–531.

Kovacs, B., P. Tassel, R. Ali, M. El-Kholany, M. Gebser and G. Seidel. 2022, May. “A Customizable Simulator for Artificial
Intelligence Research to Schedule Semiconductor Fabs”. In 2022 33rd Annual SEMI Advanced Semiconductor Manufacturing
Conference (ASMC), 1–6. Saratoga Springs, NY, USA: IEEE.

Laipple, G., S. Dauzere-Peres, T. Ponsignon, and P. Vialletelle. 2018, December. “GENERIC DATA MODEL FOR SEMI-
CONDUCTOR MANUFACTURING SUPPLY CHAINS”. In 2018 Winter Simulation Conference (WSC), 3615–3626.
Gothenburg, Sweden: IEEE https://doi.org/10.1109/WSC.2018.8632349.

Mönch, L., J. W. Fowler, and S. J. Mason. 2012. Production Planning and Control for Semiconductor Wafer Fabrication
Facilities: Modeling, Analysis, and Systems, Volume 52. Springer Science & Business Media.

Moritz, P., R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang et al. 2018, October. “Ray: A Distributed Framework for
Emerging AI Applications”. In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18),
561–577. Carlsbad, CA: USENIX Association.

1976

https://aissi-project.com/
https://aissi-project.com/en/publications_and_links
https://openapi-generator.tech/
http://d-simlab.com/event/d-simlab-launches-a-high-fidelity-simulation-platform-for-training-of-artificial-intelligent-enabled-agents-and-evaluation-of-scheduling-policies
http://d-simlab.com/event/d-simlab-launches-a-high-fidelity-simulation-platform-for-training-of-artificial-intelligent-enabled-agents-and-evaluation-of-scheduling-policies
http://d-simlab.com/category/d-simcon/products-d-simcon/forecaster-and-scenario-manager
http://d-simlab.com/category/d-simcon/products-d-simcon/forecaster-and-scenario-manager
https://gymnasium.farama.org/
https://doi.org/10.1109/WSC.2018.8632349

Bosse, Angelidis, Zhang, Chan, Gan, Werner, and Gisbrecht

Park, I.-B., J. Huh, J. Kim, and J. Park. 2020. “A Reinforcement Learning Approach to Robust Scheduling of Semiconductor
Manufacturing Facilities”. IEEE Transactions on Automation Science and Engineering 17(3):1420–1431.

Ray 2024. “Ray documentation”. https://docs.ray.io/en/latest/index.html, accessed 1st May 2024.
SC3-Project 2023. “C3 Semantically Connected Semiconductor Supply Chains”. https://sc3-project.automotive.oth-aw.de/,

accessed 1st May 2024.
Sculley, D., G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner et al. 2015. “Hidden Technical Debt in Machine Learning

Systems”. In Advances in Neural Information Processing Systems, edited by C. Cortes, N. Lawrence, D. Lee, M. Sugiyama,
and R. Garnett, Volume 28: Curran Associates, Inc.

Seidel, G., C. F. Lee, A. Y. Tang, S. L. Low, B. P. Gan and W. Scholl. 2020. “Challenges Associated with Realization of Lot
Level Fab Out Forecast in a Giga Wafer Fabrication Plant”. In Proceedings of the 2020 Winter Simulation Conference,
1777–1788. IEEE https://doi.org/10.1109/WSC48552.2020.9384046.

Tassel, P., B. Kovács, M. Gebser, K. Schekotihin, P. Stöckermann and G. Seidel. 2023. “Semiconductor Fab Scheduling
With Self-Supervised And Reinforcement Learning”. In 2023 Winter Simulation Conference (WSC), 1924–1935 https:
//doi.org/10.1109/WSC60868.2023.10407747.

AUTHOR BIOGRAPHIES
TOBIAS BOSSE is a research engineer in the semiconductor operations team by Robert Bosch GmbH. His research interests
include the complex job shop scheduling problem, its influencing factors and machine learning applications. His email address
is tobias.bosse@de.bosch.com.

EVANGELOS ANGELIDIS is a simulation engineer and IT-architect of the semiconductor operations team by Robert Bosch
GmbH. He received his M.S. degree in computer science from Dresden University of Technology. He has years of experience
in developing simulation and optimization software in the domain of production and logistics. His research focuses on the
simulation and optimization of complex assembly lines such as semiconductor and aerospace manufacturing. His email address
is evangelos.angelidis@de.bosch.com.

FEIFEI ZHANG is a Product Manager at D-SIMLAB Technologies (Singapore). He is responsible for lot scheduling and
dispatching products for customers in the semiconductor industry. He earned a Bachelor of Computer Science from the National
University of Singapore. His email address is zhang.feifei@d-simlab.com.

CHEW WYE CHAN is a Software Engineer of D-SIMLAB Technologies (Singapore). He holds a Master of Computing
degree from the National University of Singapore. He is currently working as a doctoral student at the School of Computer
Engineering at Nanyang Technological University, Singapore. His research interests include machine learning, data science,
and simulation-based optimization. His email address is chew.wye@d-simlab.com.

BOON PING GAN is the CEO of D-SIMLAB Technologies (Singapore). He has been involved in simulation technology
application and development since 1995, with primary focus on developing parallel and distributed simulation technology for
complex systems such as semiconductor manufacturing and aviation spare inventory management. He led a team of researchers
and developers in building a suite of products in solving wafer fabrication operational problems. He was also responsible
for several operations improvement projects with wafer fabrication clients which concluded with multi-million dollar savings.
He holds a Master of Applied Science degree, specializing in Computer Engineering. His email address is boonping@d-simlab.com.

MATTHIAS WERNER is a senior manager in the Semiconductor Operations Organization by Robert Bosch GmbH. He
received his Diploma from the Karlsruhe Institute of Technology and his PhD in particle physics from the University of Freiburg.
He is responsible for the material flow optimization and application of AI in the semiconductor manufacturing network of
Robert Bosch GmbH. His email address is matthias.werner@de.bosch.com.

ANDREJ GISBRECHT is a simulation engineer at the Robert Bosch GmbH. He received his Diploma from the Clausthal Univer-
sity of Technology and his PhD in computer science from the Bielefeld University. He currently works on artificial intelligence and
numerical optimization techniques in the area of semiconductor fabrication. His email address is andrej.gisbrecht@de.bosch.com.

1977

https://docs.ray.io/en/latest/index.html
https://sc3-project.automotive.oth-aw.de/
https://doi.org/10.1109/WSC48552.2020.9384046
https://doi.org/10.1109/WSC60868.2023.10407747
https://doi.org/10.1109/WSC60868.2023.10407747
mailto://tobias.bosse@de.bosch.com
mailto://evangelos.angelidis@de.bosch.com
mailto://zhang.feifei@d-simlab.com
mailto://chew.wye@d-simlab.com
mailto://boonping@d-simlab.com
mailto://matthias.werner@de.bosch.com
mailto://andrej.gisbrecht@de.bosch.com

	INTRODUCTION
	Background
	Optimization
	Simulation
	Existing Frameworks

	STANDARD FRAMEWORK PROPOSAL
	Main Modules
	Communication Adapters
	Event Driven Architecture
	Standard Messages
	Semiconductor Domain Entities
	Extendability
	Simulation-based Optimization
	Snapshot and Branching Mechanism in the Framework

	APPLICATION TO FRONTEND SCHEDULING
	Discussion
	Conclusion

