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ABSTRACT

Smoothing-enabled zeroth-order (ZO) methods for nonsmooth convex stochastic optimization have assumed
increasing relevance. A shortcoming of such schemes is the dimension dependence in the complexity
guarantees, a concern that impedes truly large-scale implementations. We develop a novel exponentially-
shifted Gaussian smoothing (esGS) gradient estimator by leveraging a simple change-of-variable argument.
The moment bounds of the (esGS) estimator are characterized by a muted dependence on dimension. When
the (esGS) estimator is incorporated within a ZO framework, the resulting iteration complexity bounds are
reduced to O(nε−2) from O(n2ε−2), the latter being the best available for the existing two-point estimator
with Gaussian smoothing. More specifically, we provide asymptotic and rate statements for nonsmooth
convex and strongly convex regimes. Preliminary comparisons with existing schemes appear promising.

1 INTRODUCTION

Zeroth-order (ZO) methods have gained traction over the last two decades in the context of deterministic
(cf. (Larson et al. 2019; Conn et al. 2009)) and stochastic optimization problems (Spall 2005). An obvious
advantage of such an approach lies in its reliance on function oracles, rather than gradient information,
thereby allowing for accommodating nonsmooth functions, where either the availability of the gradient or
a subgradient (or a generalized subgradient in nonconvex settings) is unnecessary. Our framework is reliant
on a smoothing framework originating from (Steklov 1907). Consider the following optimization problem.

min
x∈X

f(x) ≜ Eξ [F (x, ξ) ] , (1.1)

where X ⊆ Rn is a bounded convex set, ξ : Ω → Rd is a random variable taking realizations denoted by
ξ, Ξ ≜ {ξ(ω) | ω ∈ Ω }, F : Rn×Rd → R is a real-valued function, F (•, ξ) is convex and L0-Lipschitz
continuous for almost every ξ ∈ Ξ. Consider fη for η > 0, the smoothed counterpart of f , where

fη(x) ≜ EZ [ f(x+ ηZ) ] , (1.2)

where Z is a mean-zero unit-variance random variable taking realizations z ∈ Rn. Under suitable
assumptions, fη is O(1/η)-smooth; i.e. gη is O(1/η)-Lipschitz, where gη(x) = ∇fη(x) and is expectation-
valued. When Z is normally distributed with correlation matrix B−1, g̃η denotes a gradient estimator of
fη, defined as

g̃η(x, z) ≜
(
f(x+ηz)−f(x)

η

)
Bz. (1.3)

1.1 Prior research.

Convolution-based smoothing appears to have originated from (Steklov 1907) and has found utility in
developing schemes for nonsmooth convex (Lakshmanan and Farias 2008; Yousefian, Nedić, and Shanbhag
2012; Nemirovski and Yudin 1983) and nonconvex (Ghadimi and Lan 2013; Nesterov and Spokoiny 2017)
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regimes. A commonly employed distribution is the Gaussian distribution and the second moment of the
associated gradient estimator may be bounded by O(L2

0n
2) (Nesterov and Spokoiny 2017); specifically,

the authors employ such estimators within a zeroth-order framework, obtaining worst-case iteration and
sample-complexity bounds for nonsmooth convex problems, both of which are given by O(n2ε−2). An
alternate zeroth-order avenue referred to as simultaneous perturbation stochastic approximation (SPSA)
obviated smoothing, relying instead on finite difference approaches and was suggested by Spall (Spall 1992).
More recently, such techniques have examined nonsmooth and nonconvex (Shanbhag and Yousefian 2021)
and possibly hierarchical regimes (Cui et al. 2023; Qiu et al. 2023) by leveraging spherical smoothing.
A comprehensive theoretical comparison, supported by empirical studies, of gradient approximations is
provided in (Berahas et al. 2022).

1.2 Gap, contributions, and organization

Key concern. The dimension dependence in iteration complexity, i.e. O(n2), significantly impacts
practical implementations, when n is large and the projection onto X is computationally challenging.

Contribution. We develop an exponentially-shifted Gaussian smoothing (esGS) gradient estimator for fη,
given by gη(x, v, z) ≜ (g1η,g

2
η, · · · ,gnη )⊤,

giη(x, v, z) ≜ 1
η
√
2π

[
f
(
xi + η

√
2v, x−i − z−i

)
− f

(
xi − η

√
2v, x−i − z−i

)]
, (esGS)

where u−i ≜ (uj)j ̸=i, V and Z are random variables following Exp(1) and N (0, η2I) taking realizations v
and z, respectively. In fact, we show that E

[
∥gη(x, V, Z)∥2

]
≤ O(L2

0n), reducing the dimension depen-
dence to n from n2; recall that the corresponding second moment of the two-point gradient estimator (1.3)
is O(L2

0n
2). This improvement in dimension dependence is further manifested in the iteration complexity

O(nε−2) for a ZO framework for resolving nonsmooth convex stochastic optimization problems, which is
superior in terms of dimension dependence to O(n2ϵ−2) for ZO schemes leveraging the two-point gradient
estimator. Our scheme can accommodate diminishing smoothing parameter sequences, implying that the
sequences tend to asymptotically exact solutions. In particular, we derive almost-sure and mean-square
convergence claims for the iterate sequences and provide iteration and oracle (sample) complexity guarantees
in both convex and strongly convex settings. Table 1 compares the iterate and oracle complexity guarantees
of related ZO methods on a convex stochastic optimization problem; notably, esGS leads to the best known
iteration complexity for ZO methods in this setting. Outline. The remainder of the paper is organized into
four sections. In Section 2, we provide an overview on convolution-based smoothing and introduce our
new gradient estimator. Convergence and complexity guarantees for an associated smoothed ZO framework
reliant on precisely such an estimator are derived in Section 3, while some empirical validation is provided
in Section 4. The paper concludes with some remarks.

Table 1: Comparison of complexity of zeroth-order methods
Iterate Oracle

Literature complexity complexity nonsmooth
Nesterov and Spokoiny (2017) n2ε−2 n2ε−2 ✓

Ghadimi and Lan (2013) max{nε−1, nσ2ε−2}max{nε−1, nσ2ε−2} ✗

Cui et al. (2023) n2ε−2 n2ε−2 ✓

This work nε−2 n2ε−2 ✓

2 GRADIENT ESTIMATION

In this section, we introduce the framework for convolution, derive our proposed exponentially-shifted
Gaussian smoothing (esGS) estimator, and provide some properties for the estimator.
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2.1 Convolution and mollification

The convolution of f and g, real-valued measurable functions on Rn, denoted by f ∗ g, is defined as

f ∗ g(x) ≜
∫
Rn

f(x− y)g(y)dy,

for all x such that the integral exists. The following is a special case of a classical result on convolution
that relates the partial derivative of the convolution to the convolution of one of the functions and the
partial of the second. Note that g ∈ C1 on a set U implies that ∇g(x) exists for any x ∈ U , where

∇g(x) =
(
∂g(x)
∂xi

)n

i=1
. If f : Rn → R, we generally use ∇f for its gradient map.

Proposition 2.1. (Folland 1999, Prop 8.10) Let f ∈ L1, g ∈ C1 and ∇g be bounded. Then f ∗ g ∈ C1

and ∇(f ∗ g) = f ∗ (∇g).

Now consider a nonnegative function ϕ on Rn. This function ϕ forms the basis for our mollification
and we provide its explicit form in Section 2.2. Let η > 0 and let ϕη be defined as

ϕη(z) ≜ η−nϕ
(
η−1z

)
. (2.1)

If ϕ ∈ L1 then
∫
Rn ϕη(z)dz is independent of η, which immediately follows by change of variables, i.e.∫

Rn

ϕη(z)dz =

∫
Rn

ϕ
(
η−1z

)
η−ndz =

∫
Rn

ϕ(v)dv. (2.2)

We now introduce the smoothing or mollification of f via ϕ, as referred to as the ϕη-mollified f ,

fη(x) := f ∗ ϕη(x). (2.3)

In fact, mollification preserves strong convexity. Recall that a function is called µ-strongly convex if for
u1, u2 ∈ Rn, f(λu1 + (1− λ)u2) ≤ λf(u1) + (1− λ)f(u2)− λ(1−λ)µ

2 ∥u1 − u2∥2 for any λ ∈ [0, 1].

Lemma 2.1. Assume f ∈ L1 is µ-strongly convex with µ ≥ 0, and ϕ is smooth satisfying
∫
Rn ϕ(u)du = 1.

Then fη = f ∗ ϕη is µ-strongly convex for all η > 0.

Proof. Notice that by definition,

fη (λu1 + (1− λ)u2)

=

∫
Rn

f(λu1 + (1− λ)u2 − z)ϕη(z)dz =

∫
Rn

f(λ(u1 − z) + (1− λ)(u2 − z))ϕη(z)dz

≤
∫
Rn

[λf(u1 − z) + (1− λ)f(u2 − z)]ϕη(z)dz −
λ(1− λ)µ

2
∥u1 − u2∥2

∫
Rn

ϕη(z)dz

= λfη(u1) + (1− λ)fη(u2)−
λ(1− λ)µ

2
∥u1 − u2∥2,

where the inequality follows by invoking strong convexity and the last inequality leverages the definition
of fη, (2.2), and

∫
Rn ϕη(z)dz = 1 by assumption. We have thus shown that fη is µ-strongly convex.

2.2 An exponentially-shifted Gaussian smoothing (esGS) gradient estimator

Suppose ϕ, introduced in Section 2.1, is chosen to be the standard Gaussian density on Rn, i.e.

ϕ(z) ≜ 1√
(2π)n

e−
∑n

i=1 z2i
2 , (2.4)
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From (2.1), (2.4), and coordinate-wise decomposability of the standard Gaussian, ϕη may be defined as

ϕη(z) =

n∏
i=1

ρη(zi), where ρη(zi) ≜ 1

η
√

(2π)
e

−z2i
2η2 for i = 1, · · · , n. (2.5)

In addition, we define ϕ
(−i)
η (z−i) ≜

∏
j ̸=i

ρη(zj).

Remark 2.1. Note that ϕη is infinitely smooth and ∇ϕη is uniformly bounded.
Let f : Rn → R be as in (1.1) and let fη denote the mollified function introduced in (2.3). We will

need the following assumption on F and X for our future discourse.
Assumption 2.1.

1. F (·, ξ) is a Lipschitz continuous function with Lipschitz constant L0 for every ξ ∈ Ξ.
2. F (·, ξ) is a convex function for every ξ ∈ Ξ.
3. X ⊆ Rn is a bounded and convex set.

By invoking Jensen’s inequality and Assumption 2.1.1, we may claim that f is L0-Lipschitz on X .
This ensures f is L1(Rn;R) since f has bounded support. The following proposition derives the gradient
of fη via convolution and this representation is crucial for our gradient estimates.
Proposition 2.2. Let ϕ and ϕη be as in (2.4) and (2.5). Then for 1 ≤ i ≤ n, the i-th partial derivative of
fη is given by the following, where V ∼ Exp(1) and Z ∼ Nn(0, η

2I).

∂ifη(x)
∂xi

= 1
η
√
2π
EV,Z−i

[
f
(
xi + η

√
2V , x−i − Z−i

)
− f

(
xi − η

√
2V , x−i − Z−i

)]
(2.6)

= 1
η
√
2π
EV,Z−i,ξ

[
F
(
xi + η

√
2V , x−i − Z−i, ξ

)
− F

(
xi − η

√
2V , x−i − Z−i, ξ

)]
. (2.7)

Proof. Using Remark 2.1 to check the hypothesis of Proposition 2.1, we have that fη ≜ f ∗ ϕη.
Consequently, if ∂h(x)

∂xi
is denoted by h′i, then by Proposition 2.1, for i = 1, · · · , n, we have

f ′
η,i = (f ∗ ϕη)

′
i = f ∗ ϕ′

η,i =⇒ ∂fη(x)
∂xi

=

∫
Rn

f(x− z)
∂ϕη(z)
∂zi

dz. (2.8)

It is readily checked that

∂ϕη(z)
∂zi

=
(
ϕ(−i)
η

(
z−i

)) ∂ρη(zi)
∂zi

where ∂ρη(zi)
∂zi

= −zi
η3

√
2π
e
− z2i

2η2 . (2.9)

From (2.8) we thus have

∂fη(x)
∂xi

=

∫
Rn−1

(∫
R
f(x− z)

∂ρη(zi)
∂zi

dzi

)
ϕ(−i)
η

(
z−i

)
dz−i. (2.10)

The inner integral in (2.10) can be split as follows:∫
R
f(x− z)

∂ρη(zi)
∂zi

dzi =

∫ +∞

0
f(x− z)

∂ρη(zi)
∂zi

dzi +

∫ +∞

0
f(x+ z)

∂ρη(−zi)
∂zi

dzi. (2.11)

By change of variables, where zi → v =
z2i
2η2

, from (2.9) and by defining h as h(v) ≜ e−v, we obtain∫
R
f(x− z)

∂ρη(zi)
∂zi

dzi =
1

η
√
2π

[∫ +∞

0
f
(
xi + η

√
2v, x−i − z−i

)
h(v)dv

−
∫ +∞

0
f
(
xi − η

√
2v, x−i − z−i

)
h(v)dv

]
, (2.12)
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where h can be observed as the density function of the Exp(1) distribution. Plugging (2.12) into (2.10),
we obtain our desired result (2.6). Since f(xi, x−i) = Eξ [F (xi, x−i, ξ)], by Fubini’s theorem and by
leveraging (Folland 1999, Thm 2.27), we observe that (2.7) holds.

Remark 2.2. The (esGS) gradient estimator is obtained as a coordinate-wise difference of function values
evaluated at points shifted by an η-scaling of the square-root of an exponential random variable with
parameter unity, while maintaining Gaussian smoothing at all other coordinates. Though our result is
obtained by a direct analysis, we realized that this framework is reminiscent of weak derivatives and their
estimators as in (Fu 2006; Jie and Fu 2022), where derivatives are considered with respect to some parameter
of choice. However, we consider derivatives with respect to zi on the support of ρη. In addition, in (2.8),
the differentiability requirement is transferred from f to ϕη, weakening smoothness requirements on f .
This is crucial in obtaining (2.6). We now show that second moment bounds of (esGS) have distinctly
better dimensional dependence. 2

We use g̃η(x, v, z, ξ) to denote a gradient estimate of fη(x), where the ith component is defined as

g̃iη(x, v, z, ξ) = 1
η
√
2π

[
F
(
xi + η

√
2v, x−i − z−i, ξ

)
− F

(
xi − η

√
2v, x−i − z−i, ξ

)]
, (2.13)

and g̃η(x, v, z, ξ) = (g̃1η, g̃
2
η, · · · , g̃nη )T . From (2.6), g̃η is an unbiased estimator for ∇fη:

EV,Z,ξ [g̃η(x, V, Z, ξ)] = ∇fη(x). (2.14)

We now prove that the second moment of g̃η is bounded and scales with n, rather than n2.
Proposition 2.3. Suppose Assumption 2.1 holds. Then for any x,

EV,Z,ξ[∥g̃η(x, V, Z, ξ)∥2] ≤ 4
πL

2
0n. (2.15)

Proof. Since F (•, ξ) is L0-Lipschitz continuous,

E
[∣∣ g̃iη (x, V, Z, ξ)∣∣2] = 1

η22π
E
[∣∣∣F (

xi + η
√
2V , x−i − Z−i, ξ

)
− F

(
xi − η

√
2V , x−i − Z−i, ξ

)∣∣∣2]
≤ 1

η22π
E
[∣∣∣L0

∥∥∥(2η√2V , 0, · · · , 0)
∥∥∥∣∣∣2] ≤ 4L2

0
π E[V ] =

4L2
0

π .

Then the result follows by noting that E
[
∥g̃η(x, V, Z, ξ)∥2

]
=

∑n
i=1 E

[∣∣g̃iη(x, V, Z, ξ)∣∣2] ≤ 4nL2
0

π .

2.3 Properties of the smoothed function

Lemma 2.2. Suppose Ass. 2.1 holds and f, ϕη, and fη are defined as in (1.1), (2.1), and (2.3), respectively.
Then the following hold.

a. The components of ∇fη are given by (2.6).
b. |fη(x)− fη(y)| ≤ L0∥x− y∥ for any x, y ∈ X .
c. |fη(x)− f(x)| ≤ L0

√
n+ 1η for any x ∈ X .

d. If in addition f is convex, then fη is convex and for any x ∈ X ,

f(x) ≤ fη(x) ≤ f(x) + L0

√
n+ 1η. (2.16)

e. ∥∇fη(x)−∇fη(y)∥ ≤ 2L0
√
n

η
√
2π

∥x− y∥ for any x, y ∈ X .

f. If f is differentiable and L1-smooth, then ∥∇fη(x)−∇f(x)∥ ≤ L1η
√
n for any x ∈ X .
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Table 2: Comparison of different gradient estimators

Smoothing
Estimator |fη(x)− f(x)| ∥∇fη(x)−∇fη(y)∥ ∥∇fη(x)−∇f(x)∥ E[∥gη∥2] Method

Nesterov and
Spokoiny (2017) L0

√
nη L0

√
n

η
∥x− y∥ L1η

2
(n+ 3)3/2 L2

0(n+ 4)2 Gaussian

Cui et al. (2023) L0η
L0n
η

∥x− y∥ L1ηn L2
0n

2 Spherical

This work L0
√
n+ 1η 2L0

√
n

η
√
2π

∥x− y∥ L1η
√
n 4

π
L2
0n Gaussian

Proof. a. By Proposition 2.1, this property follows.
b. By definition of fη in (2.3), triangle inequality for integrals, and Lipschitz continuity of f , respectively

|fη(x)− fη(y)| =
∣∣∣∣∫

Rn

(f(x− z)− f(y − z))ϕη(z)dz

∣∣∣∣ ≤ ∫
Rn

|f(x− z)− f(y − z)|ϕη(z)dz

≤ L0∥x− y∥
∫
Rn

ϕη(z)dz = L0∥x− y∥.

c. By definition of fη in (2.3), triangle inequality for integrals and Lipschitz continuity of f , respectively

|fη(x)−f(x)| =
∣∣∣∣∫

Rn

f(x− z)ϕη(z)dz − f(x)

∣∣∣∣ = ∣∣∣∣∫
Rn

(f(x− z)− f(x))ϕη(z)dz

∣∣∣∣
≤

∫
Rn

|f(x− z)− f(x)|ϕη(z)dz ≤ L0

∫
Rn

∥z∥ϕη(z)dz, (2.17)

By setting r = ∥z∥ =
√∑n

i=1 z
2
i , and denoting Sn−1 = 2π

n
2

Γ(n
2
) as the surface area of the

n−dimensional unit sphere, by standard spherical coordinate transformation we obtain,∫
Rn

∥z∥ϕη(z)dz =

∫ +∞

0
r 1
ηn(2π)n/2 e

− r2

2η2 Sn−1r
n−1dr

u=
r
η

= η
√
2π

2
n
2 −1Γ(

n
2 )

∫ +∞

0
un 1√

2π
e−

u2

2 du

= η
√
2π

2
n
2 −1Γ(n

2
)

1
2EU∼N (0,1) [|U |n] =

√
2ηΓ(

n+1
2 )

Γ(
n
2 )

, (2.18)

where we utilize the fact that EU∼N (0,1)[|U |n] = 2n/2Γ(n+1
2

)√
π

and U ∼ N (0, 1). Plugging (2.18) in

(2.17) and using Gautschi’s inequality x1−s < Γ(x+1)
Γ(x+s) < (x+ 1)1−s, for x = n−1

2 and s = 1
2 , it is

readily checked that |fη(x)− f(x)| ≤ L0η
√
n+ 1.

d. Convexity of fη follows by setting µ = 0 in Proposition 2.1. By Jensen’s inequality and Z ∼
Nn(0, η

2I),

fη(x) = E[f (x− Z)] = E[f(x+ Z)] ≥ f(x+ E[Z]) = f(x). (2.19)

Now our desired inequality (2.16) is obtained by combining (2.19) and Lemma 2.2 (c.) .
e. From Proposition 2.1 and by Lipschitz continuity of f ,∣∣∣∂fη(x)∂xi

− ∂fη(y)
∂xi

∣∣∣ = ∣∣∣∣∫ n

R
(f(x− z)− f(y − z))

∂ϕη(z)
∂zi

dz

∣∣∣∣ ≤ L0∥x− y∥
∫
Rn

∣∣∣∂ϕη(z)
∂zi

∣∣∣ dz (2.20)

From (2.9),∫
Rn

∣∣∣∂ϕη(z)
∂zi

∣∣∣ dz =

∫
Rn

ϕ(−i)
η (z−i)

∣∣∣∂ρη(z)∂zi

∣∣∣ dz =

∫
R

∣∣∣∂ρη(z)∂zi

∣∣∣ dzi (2.21)

= 1
η2
E [|Z|] = 1

η

√
2
π =⇒

∣∣∣∂fη(x)∂xi
− ∂fη(y)

∂xi

∣∣∣ ≤ 1
η

√
2
πL0∥x− y∥. (2.22)
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From (2.21),

∥∇fη(x)−∇fη(y)∥ =

√√√√ n∑
i=1

∣∣∣∂fη(x)∂xi
− ∂fη(y)

∂xi

∣∣∣2 ≤
√√√√ n∑

i=1

(
2L0

η
√
2π
∥x− y∥

)2
= 2L0

√
n

η
√
2π

∥x− y∥.

f. Since f ∈ C1, ϕη ∈ L1, by Prop. 2.1,
∫
Rn ϕη(z)dz = 1, and Jensen’s inequality,

∣∣∣∂fη(x)∂xi
− ∂fη(y)

∂xi

∣∣∣ = ∣∣∣∣∫
Rn

(
∂f(x−z)

∂xi
− ∂f(x)

∂xi

)
ϕη(z)dz

∣∣∣∣ ≤ (∫
Rn

∣∣∣∂f(x−z)
∂xi

− ∂f(x)
∂xi

∣∣∣2 ϕη(z)dz

)1/2

By the above inequality and by using ∥∇f(x− z)−∇f(x)∥2 ≤ L2
1∥z∥2

∥∇fη(x)−∇f(x)∥2 =
n∑

i=1

(
∂fη(x)
∂xi

− ∂f(x)
∂xi

)2
≤

∫
Rn

n∑
i=1

(
∂f(x−z)

∂xi
− ∂f(x)

∂xi

)2
ϕη(z)dz

≤ L2
1

∫
Rn

∥z∥2ϕη(z)dz. (2.23)

Now by a spherical transformation,∫
Rn

∥z∥2ϕη(z)dz =

∫ +∞

0
r2 1

ηn(2π)n/2 e
− r2

2η2 Sn−1r
n−1dr

u= r
η

= η2
√
2π

2
n
2 −1Γ(

n
2 )

∫ +∞

0
un+1 1√

2π
e−

u2

2 du

= η
√
2π

2
n
2 −1Γ(

n
2 )

· 1
2
EU∼N (0,1)[|U |n+1] =

2η2Γ(
n
2 +1)

Γ(
n
2 )

=
2η2

n
2 Γ(

n
2 )

Γ(
n
2 )

= η2n, (2.24)

where we recall that Γ(a+ 1) = aΓ(a). Substituting (2.24) in (2.23), we obtain our result.

3 RATE, CONVERGENCE, AND COMPLEXITY GUARANTEES

We now consider (1.1), where we remind the reader that Assumption 2.1 is assumed to hold. For any given
scalar η > 0, we consider the smoothing of the integrand F (•, ξ), given by Fη(•, ξ) and defined as

Fη(x, ξ) =

∫
Rn

F (x− z, ξ)ϕη(z)dz, (3.1)

where ϕη is defined in (2.5). Consider the following update rule for generating {xk}, given x0 ∈ X ,

xk+1 = ΠX [xk − γk (∇fηk (xk) + wk)] , for all k ≥ 0 (3.2)

where ηk > 0, wk = g̃ηk(xk, vk, zk, ξk) − ∇fηk(xk). Here {Vk}Nk=1 are i.i.d Exp(1) and {Zk}Nk=1 are
i.i.d. Nn(0, η

2I) with realizations {vk} and {zk}, respectively. From Prop. 2.2, note that g̃η is an unbiased
estimator for ∇Fη. Denote by Fk, the natural filtration generated by the first k iterates {x0, . . . , xk−1}.
Since f(x) = Eξ[F (x, ξ)] and gη(x, V, Z, ξ) is an unbiased estimator of ∇Fη(x, ξ), by the independence
of V,Z and ξ

E[wk | Fk] = E[g̃ηk (xk, Vk, Zk, ξk)−∇Fηk (xk, ξk) +∇Fηk (xk, ξk)−∇fηk(xk) | Fk]

= EVk,Zk
[g̃ηk (xk, Vk, Zk, ξk)−∇Fηk (xk, ξk)] + Eξk [∇Fηk (xk, ξk)−∇fηk(xk) | Fk] = 0.

Let us now introduce a few assumptions on the terms of our stochastic approximation algorithm (3.2)
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Assumption 3.1. The sequences {γk, ηk} are positive, satisfying
∑∞

k=0 γk = ∞,
∑∞

k=0 γ
2
k < ∞ and∑∞

k=0 γkηk < ∞.
Akin to (Yousefian, Nedić, and Shanbhag 2012), we derive consistency claims for Algo. (3.2) on (1.1).

Proposition 3.1 (a.s. convergence). If Assumption 2.1 holds and the optimal set X∗ of problem (1.1) is
nonempty, the sequence {xk} generated by (3.2) converge almost surely to some point x∗ ∈ X∗.

Proof. By non-expansive property of projection, for any x∗ ∈ X∗ and k ≥ 0,

∥xk+1 − x∗∥2 ≤ ∥xk − x∗ − γk (∇fηk(xk) + wk) ∥2

= ∥xk − x∗∥2 − 2γk(∇fηk(xk) + wk)
⊤(xk − x∗) + γ2k∥∇fηk(xk) + wk∥2.

By Proposition 2.1, fηk is convex for any ηk > 0. Consequently, for any k ≥ 0,

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2γk (fηk(xk)− fηk(x
∗))− 2γkw

⊤
k (xk − x∗)

+ γ2k ∥g̃ηk(xk, vk, zk, ξk)∥
2 .

Moreover, by Lemma 2.2 (d.), f(xk) ≤ fηk(xk) and fηk(x
∗) ≤ f(x∗) + L0

√
n+ 1ηk, implying

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2γk (f(xk)− f(x∗)) + 2L0

√
n+ 1γkηk − 2γkw

⊤
k (xk − x∗)

+ γ2k ∥g̃ηk(xk, vi, zi, ξk)∥
2 .

Taking conditional expectations of both sides with respect to Vk, Zk, and ξk, given Fk, we get

E[∥xk+1 − x∗∥2 | Fk] ≤ ∥xk − x∗∥2 − 2γk (f(xk)− f(x∗)) + 2L0

√
n+ 1γkηk

+ γ2kE[∥g̃ηk(xk, Vk, Zk, ξk)∥2 | Fk]

≤ ∥xk − x∗∥2 − 2γk (f(xk)− f(x∗)) + 2L0

√
n+ 1γkηk +

4L2
0n
π γ2k , (3.3)

where (3.3) follows from Prop. 2.3. Applying the Robbins-Siegmund Lemma (Robbins and Siegmund
1971), for any x∗ ∈ X∗, the sequence {∥xk − x∗∥} converges and

∑∞
k=0 γk (f(xk)− f(x∗)) < ∞ a.s..

The latter implies that lim infk→∞ f (xk) = f∗ a.s. in view of the condition
∑∞

k=0 γk = ∞. Therefore,
there exists a subsequence {xkj} of {xk} such that f(xkj ) → f∗ a.s. By the continuity of f , the sublevel
sets {x ∈ Rn : f(x) ≤ c} are closed, implying that all limit points of {xkj} belong to the optimal set X∗.
Therefore there exists a subsubsequence of {xk} that converges to some point in X∗ a.s. Combining with
the a.s. convergence of {∥xk − x∗∥}, the entire sequence {xk} converges to a point in X∗ a.s. .

Proposition 3.2 (Rate of convergence). Let Assumptions 2.1(1),(2) hold and the optimal set X∗ of (1.1)

is nonempty. Suppose γk = ηk = 1√
n(k+1)

, x̄K ≜
∑K−1

k=0 γkxk∑K−1
k=0 γk

and a0 = ∥x0 − x∗∥. Then, for all K,

E [f (x̄K)− f∗] ≤
a20

√
n+

(
2L0

√
n+1√
n

+
4L2

0
√
n

π

)
(1+ln(K))

4
√
K+1

≲ O
(√

n ln(K)√
K

)
.

Proof. Let us rewrite equation (3.3) from the previous proof.

E[∥xk+1 − x∗∥2 | Fk] ≤ ∥xk − x∗∥2 − 2γk (f(xk)− f(x∗)) + 2L0

√
n+ 1γkηk +

4L2
0n
π γ2k .

Taking unconditional expectations, we have

2E[γk (f(xk)− f(x∗))] ≤ E[∥xk − x∗∥2]− E[∥xk+1 − x∗∥2] + 2L0

√
n+ 1γkηk +

4L2
0n
π γ2k .
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Summing over k = 0, · · · ,K − 1,

K−1∑
k=0

2E[γk (f(xk)− f(x∗))] ≤ ∥x0 − x∗∥2 +
K−1∑
k=0

(
2L0

√
n+ 1γkηk +

4L2
0n
π γ2k

)
. (3.4)

Since x̄K ≜
∑K−1

k=0 γkxk∑K−1
k=0 γk

and f is convex, we can apply Jensen’s inequality to (3.4) to obtain

2E[(f(x̄K)− f(x∗))] ≤ 2
∑K−1

k=0 E[γk(f(xk)−f∗)]∑K−1
k=0 γk

≤
a20+

∑K−1
k=0

(
2L0

√
n+1γkηk+

4L2
0n

π
γ2
k

)
∑K−1

k=0 γk
. (3.5)

Recall thatγk = ηk = 1√
n(k+1)

for anyk, implying that
∑K−1

k=0 γk ≥ 1√
n
(
∫K+1
1

1√
x
dx), while

∑K−1
k=0 γkηk =∑K−1

k=0 γ2k ≤ 1
n(1 +

∫K
1

1
xdx). Using these inequalities in (3.5), our desired result follows as shown next.

2E[(f(x̄K)− f(x∗))] ≤
a20+

1
n

(
2L0

√
n+1+

4L2
0n

π

)
(1+

∫K
1

1
x
dx)

1√
n

(∫K+1
1

1√
x
dx

) ≤
a20

√
n+

(
2L0

√
n+1√
n

+
4L2

0
√
n

π

)
(1+ln(K))

2
√
K+1

.

From the above analysis, one can easily derive the following when ηk = η for all k.
Corollary 3.1. Let ηk = η for any k. For any K > 0, denote SK =

∑K−1
k=0 γk.Then the following holds.

E[f(x̄K)]− f(x∗) ≤ 1
SK

K−1∑
k=0

E[γk (f(xk)− f(x∗))] ≤ L0

√
n+ 1η + 1

SK

[
a20
2 +

2L2
0n
π

K−1∑
k=0

γ2k

]
.

Remark 3.1. Compare Cor. 3.1 to (Nesterov and Spokoiny 2017, Thm 6). In fact, we may also choose
γk = R

L0

√
nK

as in (Nesterov and Spokoiny 2017) where R is a constant. Similar arguments show that our

scheme yields ε-error in O(nε−2) iterations, as opposed to O(n2ε−2) in (Nesterov and Spokoiny 2017).
2

We provide an intermediate lemma for claiming convergence of a suitable recursion (Polyak 1987).
Lemma 3.1. Let {vk} be a sequence of nonnegative random variables, where E [v0] < ∞, and let {uk} and
{µk}be deterministic scalar sequences such that the following hold. (i)E [vk+1 | v0, . . . , vk] ≤ (1− uk) vk+µk

a.s. for allk ≥ 0; (ii)0 ≤ uk ≤ 1, µk ≥ 0, for allk ≥ 0; (iii)
∑∞

k=0 uk = ∞,
∑∞

k=0 µk < ∞, limk→∞
µk
uk

= 0.
Then, vk → 0 almost surely as k → ∞.
Proposition 3.3 (a.s. convergence for strongly convex f ). Suppose Assumption 2.1 holds and the optimal
set X∗ of problem (1.1) is nonempty. If in addition, F (•, ξ) is µ-strongly convex on X almost surely, the
sequence {xk} generated by (3.2) converges almost surely to a unique optimal solution x∗.

Proof. By the non-expansive property of the Euclidean projection, for any x∗ ∈ X∗ and k > 0,

∥xk+1 − x∗∥2 ≤ ∥xk − x∗ − γk (∇fηk(xk) + wk) ∥2

= ∥xk − x∗∥2 − 2γk(∇fηk(xk) + wk)
⊤(xk − x∗) + γ2k∥∇fηk(xk) + wk∥2.

If F (•, ξ) is µ-strongly convex ξ-a.s., then f , defined as f(x) = Eξ[F (x, ξ)], is µ-strongly convex, implying

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2γk (fηk(xk)− fηk(x
∗))− µγk∥xk − x∗∥2

− 2γkw
⊤
k (xk − x∗) + γ2k∥g̃ηk(xk, vk, zk, ξk)∥

2.
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Moreover, by Lemma 2.2 (d.) we have f(xk) ≤ fηk(xk) and fηk(x
∗) ≤ f(x∗) + L0

√
n+ 1ηk. Thus

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2γk (f(xk)− f(x∗)) + 2L0

√
n+ 1γkηk − µγk∥xk − x∗∥2

− 2γkw
⊤
k (xk − x∗) + γ2k∥g̃ηk(xk, vk, zk, ξk)∥

2. (3.6)

Since x∗ is optimal, f(xk)− f(x∗) ≥ 0. Thus, from (3.6), we obtain

∥xk+1 − x∗∥2 ≤ (1− µγk)∥xk − x∗∥2 + 2L0

√
n+ 1γkηk − 2γkw

⊤
k (xk − x∗) + γ2k∥g̃ηk(xk, vk, zk, ξk)∥

2.

Taking expectations of both sides with respect to Vk, Zk and ξk, given Fk, we obtain

E[∥xk+1 − x∗∥2 | Fk] ≤ (1− µγk)∥xk − x∗∥2 + 2L0

√
n+ 1γkηk + γ2kE

[
∥g̃ηk(xk, Vk, Zk, ξk)∥2 | Fk

]
≤ (1− µγk)∥xk − x∗∥2 + 2L0

√
n+ 1γkηk +

4L2
0n
π γ2k . (3.7)

From Assumption 2.1,
∑∞

k=0 γk = ∞ and
∑∞

k=0(2L0

√
n+ 1γkηk +

4L2
0n
π γ2k) < ∞. In addition note,

limk→∞(2L0

√
n+ 1γkηk +

4L2
0n
π γ2k)/µγk → 0. Thus by Lemma 3.1 the result holds.

Lemma 3.2. (Shapiro, Dentcheva, and Ruszczyński 2014) Consider the following recursion: bk+1 ≤
(1− 2cθ/k)bk +

1
2θ

2M2/k2, where θ and M are positive constants, bk ≥ 0, and (1− 2cθ) < 0. Then for

k ≥ 1, we have that 2bk ≤
max

(
θ2

2cθ−⌊2cθ⌋M
2,2b1

)
k .

We now prove a ZO variant of an analogous result from (Shapiro, Dentcheva, and Ruszczyński 2014).
Proposition 3.4 (Convergence in mean and rate statement under strong convexity). Under the setting
of Proposition 3.3. In addition, suppose X is a bounded set such that ∥x− x∗∥ ≤ C for all x ∈ X and
γk = θ

k , where θ > 1/µ. Then the sequence {xk} converges to x∗ in mean and

E
[
∥xk − x∗∥2

]
≤

max

{
θ2(4L0

√
n+1+

8L2
0n

π
)(µθ−1)−1,C2

}
k ≲ O

(
n
k

)
.

Proof. Recall the recursion obtained from (3.7):

E
[
∥xk+1 − x∗∥2 | Fk

]
≤ (1− µγk)∥xk − x∗∥2 + 2L0

√
n+ 1γkηk +

4L2
0n
π γ2k .

By setting ηk = γk = θ
k , it follows that by taking unconditional expectations we have that

E
[
∥xk+1 − x∗∥2

]
≤ (1− µγk)E

[
∥xk − x∗∥2

]
+ (2L0

√
n+ 1 +

4L2
0n
π )γ2k .

Choosingθ > 1/µ andM2/2 = (2L0

√
n+ 1+

4L2
0n
π ) in Lemma 3.2, and noting thata20 = ∥x0 − x∗∥2 ≤ C2,

we obtain the result for all k.

4 NUMERICS

In this section, we provide some preliminary numerics, comparing the proposed scheme with three ZO
schemes. To ensure parity, we terminated all algorithms after the same number of calls to the function
oracle; specifically, we ran 200 iterations of our method and 200n steps of the other methods. We generated
20 replications of each scheme. For each problem considered, we provided a tabulation of error given by the
empirical average of either E[f(x̄K)− f∗] or E[f(xK)− f∗] over the replications while “time” represents
the average runtime in Matlab. Our first problem is a nonsmooth convex stochastic quadratic optimization
problem in which F (x, ξ) = 1

2x
⊤Q̂x + b(ξ)⊤x + 0.5∥x∥1, X ≜ [−1, 1]n, Q̂ = Q + W (Q ∈ Sn++),
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Table 3: Strongly Convex Quadratic Objective
Nesterov and

Spokoiny
(2017)

Cui et al.
(2023) Spall (1992) This work

n error time error time error time error time
10 0.0700 0.0096 0.0558 0.0092 0.0562 0.0114 0.0280 0.0044
20 0.1580 0.0390 0.1444 0.0293 0.1334 0.0350 0.0285 0.0092
50 0.4047 0.5408 0.3273 0.4965 0.3432 0.5224 0.0383 0.0436
100 0.6066 3.0719 0.6360 3.0741 0.6337 3.0199 0.0615 0.1178
150 0.8232 11.5668 0.8070 12.6310 0.8680 11.9770 0.0828 0.2913
200 1.0683 39.0659 1.0025 38.0015 1.0228 37.4888 0.0955 0.6088
250 1.1982 69.4609 1.1731 71.8910 1.1298 70.4420 0.1185 0.9991

Table 4: Strongly Convex Piecewise-Linear Objective
Nesterov and

Spokoiny (2017)
Cui et al.

(2023)
Spall

(1992) This work

n error time error time error time error time
10 0.0672 0.0055 0.0844 0.0048 0.1008 0.0067 0.0205 0.0024
100 0.2111 0.0938 0.5434 0.0860 0.5292 0.1190 0.0228 0.0241
150 0.3264 0.1709 0.6346 0.1589 0.6507 0.2206 0.0314 0.0739
200 0.4014 0.2697 0.7299 0.2539 0.7627 0.3466 0.0400 0.1217
500 0.9795 1.2842 0.9311 1.3229 0.9448 1.7489 0.1098 0.1431
1000 1.6041 4.9934 1.8245 4.8908 1.7411 6.3167 0.1870 2.1960
2000 2.4267 16.9147 2.4379 17.1208 2.4572 22.4920 0.3253 2.5243
3000 3.1195 38.0462 3.1155 38.4532 3.0184 50.4454 0.5203 5.8374
4000 3.6107 92.6660 3.5918 101.2859 3.5943 133.5990 0.7237 10.1906

(a) (b) (c) (d)

Figures (a) and (b) represent replications of n = 200 quadratic problem with Nesterov-Spokoiny and (esGS), respectively, while Figures (c)

and (d) represent replications of n = 200 piecwise-linear problem with Nesterov-Spokoiny and (esGS), respectively.

b(ξ) = b+ ξ, ξ ∼ N (0, 1), and W = 1
nB

⊤B where the components of B are generated from N (0, 0.01).
All algorithms utilize the same steplength and smoothing parameters γk = ηk = 1/(norm(Q)

√
k) and

a deterministic starting point x0 = (5, 5, 5, 5, 5, 0, 0, · · · ). In our second problem, we consider a
piecewise-linear objective given by F (x, ξ) = ϕ

(∑n
i=1

(
i
n + ξi

)
xi
)
+ µ

2∥x∥
2, X = {x | ∥x∥ ≤ 1 },

where ϕ(t) = max1≤j≤m(vj + sjt), and ξi ∼ N (0, 1). We choose {vj}5j=1 = {0.2, 0.3, 0.6, 0.5, 0.8},
{sj}5j=1 = {0.9, 0.2, 0.1, 0.5, 0.5} and µ = 1. All algorithms employ the same steplength and smoothing
sequences given by γk = ηk = 1/k0.52.

Tables 3 and 4 represent the comparisons across the ZO schemes and our proposed framework with the
(esGS) estimator for the quadratic and piecewise-linear problem, respectively. Figures (a) – (d) represent
the trajectories and the spread across replications across the two problems, comparing our method with
that by Nesterov and Spokoiny. Insights. (a) Empirical error. The empirical error produced by our
scheme is nearly one order of magnitude better than competing schemes in the first example, while similar
benefits emerge in the piecewise-linear setting. (b) Computational time. In terms of computational time,
the distinctions are even more pronounced, a consequence of the iteration complexity of our scheme being
O(n) better than its counterparts. For instance, in quadratic settings when n = 200, our scheme requires
0.609s while the scheme developed by Nesterov and Spokoiny takes approximately 39s, while producing
an empirical error that is more than 10 times worse. The distinctions are significant, if not as pronounced,
in the piecewise-linear setting. We further note that the distinctions in computational time and empirical
error distinctions increase dramatically with dimension, in alignment with our theory.

5 CONCLUDING REMARKS
Conventional avenues for developing gradient estimators via Gaussian smoothing are afflicted by a key
concern in that moment bounds on the estimators grow at the rate of O(n2). As a consequence, iteration
complexity bounds for computing a ε-solution in convex settings is O(n2ε−2). This pronounced dependence
on dimension impedes the application of zeroth-order schemes to large-scale settings. Via a simple change-
of-variable argument, we develop an exponentially shifted Gaussian smoothing (esGS) estimator, reliant
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on shifting via exponential random variables, whose moment bound grows at the rate of O(n) and the
resulting iteration complexity is O(nε−2). Preliminary numerics support these findings, with our scheme
providing far more accurate solutions while requiring a fraction of the computational time, compared with
competing schemes.
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