
Proceedings of the 2024 Winter Simulation Conference
H. Lam, E. Azar, D. Batur, S. Gao, W. Xie, S. R. Hunter, and M. D. Rossetti, eds.

MODEL-DRIVEN ENGINEERING FOR HIGH-PERFORMANCE PARALLEL DISCRETE
EVENT SIMULATIONS ON HETEROGENEOUS ARCHITECTURES

Romolo Marotta1, and Alessandro Pellegrini1

1Dept. of Civil Eng. and Computer Science Eng., Tor Vergata University of Rome, Rome, ITALY

ABSTRACT

Modern high-performance, large-scale simulations require significant computational power, memory, and
storage, making heterogeneous architectures an attractive option. The presence of accelerators in heteroge-
neous architectures makes model development hard. Domain-specific languages (DSLs) have successfully
simplified model development, but designing a DSL to target heterogeneous architectures can be burden-
some. Model-driven engineering (MDE) can simplify the development of DSLs targeting heterogeneous
architectures. In this paper, we focus on MDE and propose a model-driven approach targeting Parallel
Discrete Event Simulations on heterogeneous architectures. We exercise our MDE-generated models using
a state-of-the-art runtime environment for heterogeneous architectures.

1 INTRODUCTION

Heterogeneous architectures are based on different types of processors, memory systems, and interconnects
within a single computing system, or they employ different computing nodes that have different capabilities
and/or different ways of executing instructions (Zahran 2017). They have become increasingly common
in recent years, as the performance gains from traditional homogeneous architectures have slowed down,
and have emerged as a promising approach for high-performance computing around the world (Gagliardi
et al. 2019; Kothe et al. 2019).

Modern high-performance, large-scale simulations may require non-negligible computational power,
memory, and storage, making heterogeneous architectures attractive. One of their main advantages is
their ability to exploit the strengths of different types of processors. CPUs are well-suited for tasks that
require complex control flow, while GPUs excel at data-parallel computations. FPGAs show a significantly
reduced energy footprint. By combining these processors, heterogeneous architectures can achieve better
performance and energy consumption than either type of processor alone. This is particularly important
for large-scale simulations, which often involve a mix of computation and communication. Simulations in
fluid dynamics, materials science, and astrophysics can require billions of computational elements, making
them extremely demanding in terms of computational resources (see, e.g., Jameson and Vassberg 2001;
Taffoni et al. 2019). As shown by Montesano et al. (2022), the workload mixture can be demanding for
traditional CPU-only simulation environments. Hybrid architectures can provide the necessary level of
performance and scalability needed for these simulations.

At the same time, heterogeneous architectures have introduced a new set of challenges in high-
performance computing. Unlike traditional homogeneous architectures, heterogeneous architectures cannot
hide their internal complexity from the programmer (Sutter 2014). This was already visible in multicore
systems, where the multi-cache hierarchy required memory barriers to ensure the accuracy of algorithms.
In heterogeneous systems, the problem is even more complicated because we need to move data around, in
addition to synchronizing execution explicitly. The presence of accelerators in heterogeneous architectures
makes programming even more challenging. These accelerators are optimized for specific calculations and
require specialized programming models to exploit their potential fully. Programmers must, therefore, deal
with the complexity of the underlying hardware and the intricacies of the programming models required

2202979-8-3315-3420-2/24/$31.00 ©2024

Marotta and Pellegrini

to use the accelerators. This is a significant departure from the traditional programming approach, where
the hardware was completely abstracted away.

Programming a heterogeneous system can be particularly challenging as it involves multiple programming
models and languages. For instance, when programming a system that includes CPUs, GPUs and FPGAs,
we may need to use OpenMP or MPI, alongside CUDA or OpenCL for the GPUs, and HDL for the
FPGAs. This results in a complex programming environment that can be difficult to manage and prone to
errors. To fully exploit the potential of heterogeneous architectures, simulation models must be designed
to take advantage of the different types of hardware available. This may involve partitioning the model
into different components, each optimized for a specific type of hardware. For example, part of the model
may be run on one accelerator while another part is run on a different piece of hardware, at the same time.

Moreover, the workload dynamics may change over time, requiring the re-orchestration of the model’s
execution. This may be necessary for performance reasons to ensure that the most compute-intensive parts
of the model are running on the most appropriate hardware but it requires that almost the entire model’s
code is available in variants that can be run on either hardware device. Alternatively, it may be necessary
for energy efficiency reasons to ensure that the model is running on the most power-efficient hardware
available. As shown by Marotta et al. (2024), re-orchestrating the execution of simulation models on
heterogeneous architectures is a complex task that requires sophisticated resource management techniques.
These techniques must be able to monitor the workload dynamics and make real-time decisions about
allocating resources to different parts of the model. This requires a deep understanding of the underlying
hardware and the model’s performance characteristics.

At the same time, simulationists are professionals who specialize in using computer simulations to
study complex systems. They may not necessarily be computer scientists and are not concerned with
the technical details of the underlying hardware. Instead, their focus is on understanding the physical
phenomena and behavior of the systems being studied. To achieve this, they rely on computer simulations
as a tool to gain a deeper understanding of these systems and make predictions about their behavior. As the
models become more complex and the problems they are trying to solve become larger, the computational
demands increase, requiring significant computer power. In such scenarios, heterogeneous supercomputers
come into play. Therefore, the relevant question is how to identify solutions that enable domain experts to
focus on the definition of the model or the problem they want to solve while hiding away the complexity
of heterogeneous architectures to let them make their large-scale problems tractable.

Blunk and Fischer (2013), Warnke (2020) have shown that Domain-Specific Languages (DSLs) can be
used to handle the increasing complexity of simulation models by tailoring software languages to specific
application domains. This approach allows for clearer and more efficient expression of simulation models
and experiments, as demonstrated by various examples in the field. While the DSL approach can solve the
semantic need of simulationists, from an engineering perspective, they do not necessarily cope with the
underlying hardware complexity. If different hardware is the target of the runtime support for one specific
DSL, the compiling infrastructure must be adapted to deal with the idiosyncratic details of that specific
piece of hardware (Uhrmacher et al. 2024). All this effort is demanded from the designers and developers
of the DSLs. Multiply it for the large number of DSLs the simulation community may want to embrace,
and the complexity of bridging the gap between simulationists and exascale-like supercomputers becomes
too much.

A more viable approach we envisage in this paper is to rely on Model-Driven Engineering (MDE). MDE is
an approach to software development that focuses on using models to design and build systems (Rodrigues da
Silva 2015). In MDE, a model is an abstract representation of a system or its components, while metamodels
define the structure and behavior of models and provide a common language for describing models across
different domains. In the context of simulation, MDE and metamodels can help address the issues of
designing and developing DSLs. Uhrmacher et al. (2024) noted that they can also improve non-functional
properties of the simulation lifecycle (Uhrmacher et al. 2024). By defining a common metamodel for
simulation models, we can provide a uniform representation that can be used across different simulation

2203

Marotta and Pellegrini

tools and domains. This enables simulationists to write their models in a semantically-rich language while
the compiling/runtime infrastructure takes care of the mapping of the model on the available hardware in
a more simplified way.

MDE and metamodels can also help reduce the complexity of simulation modeling by providing a
higher-level abstraction that hides the details of the underlying hardware and software. This can make it
easier for simulationists to focus on the high-level design of their models rather than getting bogged down
in the implementation details.

The rest of this paper is structured as follows. We discuss related work in Section 2. We identify and
discuss the sources of heterogeneity that our MDE-based approach could handle in Section 3. Section 4
discusses our MDE-based approach for heterogeneous architectures. Preliminary results are in Section 5.

2 RELATED WORK

The significance of relying on DSLs to simplify the development of simulation models is clarified by many
proposals that have appeared in the literature. One relevant example is BioNetGen, introduced by Blinov
et al. (2004), which employs a rule-based modeling approach to address the combinatorial complexity
arising from multiple molecular interactions and modifications in signal transduction systems. This approach
provides an efficient way to manage the vast number of potential molecular states that can arise in biological
signaling processes, simplifying the modeling of signal transduction at the molecular level. The model
is written in a very concise but highly expressive way. The methodology used by BioNetGen has paved
the way for the development of ML3, a language designed for agent-based discrete-event modeling and
simulation of linked lives by Reinhardt et al. (2022). ML3 allows for the simulation of complex social
interactions and life courses that are age-dependent and interconnected through social ties, providing a
formal syntax and semantics based on Generalized Semi-Markov Processes. This approach enhances the
accuracy and flexibility of simulations as well as supports efficient algorithmic implementations.

Similarly, OpenABL, a DSL tailored for agent-based modeling on parallel and distributed systems, has
been introduced by Cosenza et al. (2018). OpenABL abstracts the complexity of parallel programming,
allowing modelers to focus on the design and dynamics of simulations without digging into the low-level
details of parallel execution. Xiao et al. (2020) extended OpenABL, proposing an enhanced automatic
code generation framework for agent-based simulations on heterogeneous hardware platforms including
CPUs, GPUs, and FPGAs.

A DSL explicitly targeting heterogeneous systems is Vivaldi by Choi et al. (2014). It is designed
to streamline the process of volume processing and visualization on distributed heterogeneous systems.
Vivaldi offers a Python-like syntax that simplifies the programming experience, making high-throughput
parallel computing accessible to non-experts. It abstracts complex memory and execution management,
which is automatically handled by its runtime system, thus freeing users from the intricacies of parallel
programming. This enables efficient utilization of computing resources such as multi-core CPUs and GPUs
without the need for detailed knowledge of underlying technologies like MPI or CUDA.

While all these DSLs are clearly useful for the end users, targeting heterogeneous architectures is
not easy. Indeed, their implementations are handmade and would require non-minimal work to adapt to
different (future) hardware. Moreover, if the target is the runtime orchestration of simulations, the required
work for each language could be high and not necessarily re-usable. All these are aspects that we explicitly
target with our MDE-based approach.

Code generation for heterogeneous platforms is targeted by Grewe et al. (2013), Li et al. (2015), Xiao
et al. (2020), and Nguyen et al. (2019) by using methods such as pattern-matching to detect parallelizable
C snippets, code templates, or high-level synthesis from OpenCL. These approaches generally focus on
detecting localized sections of the source code that can be parallelized, or target specific domains. By
relying on an MDE-based approach, we could extract more parallelism for multiple domains at the same
time.

2204

Marotta and Pellegrini

Another high-level model description is the Discrete Event System Specification (DEVS) (Zeigler et al.
2000). The beauty of DEVS is its mathematical foundation, which makes it useful for multiple purposes,
from the description of the models to their verification. At the same time, being a mathematical formalism, it
requires some different language or toolkit for proper implementation and execution of the model (Uhrmacher
et al. 2024). One such example, the CD++ toolkit, has been proposed by Wainer (2002). The toolkit’s
support for modular model description facilitates reuse and system integration, reducing development time.
Notably, Liu and Wainer (2010) have used CD++ to accelerate large-scale DEVS-based simulations on the
heterogeneous Cell processor. This research line has shown the viability of improving simulation speeds
by distributing workloads across multiple processing elements. At the same time, adapting the approach to
other DSLs or porting the proposals to different (more complex) heterogeneous infrastructures may require
non-negligible effort. The MDE-based approach we envision in this paper would also allow the CD++
toolkit (or other DEVS-based approaches) to be used as targets.

A relevant proposal in the literature is Delite (Sujeeth et al. 2014), a framework designed to facilitate
the development of performance-oriented DSLs for heterogeneous systems. Delite’s architecture simplifies
the DSL development process by offering a reusable compiler infrastructure which supports the generation
of optimized code for various hardware configurations, including CPUs and GPUs. It leverages Scala’s
advanced language features to enable embedded DSLs that utilize a sophisticated intermediate representation,
allowing domain-specific optimizations and efficient execution across different hardware platforms. On
top of it, Chafi et al. (2011) propose as an example OptiML, a DSL for machine learning that provides
high-level abstractions for parallel computations. High-level application code is transformed into optimized
parallel operations for heterogeneous devices without requiring source code modifications. The intermediate
representation of Delite is a typical compiler-based intermediate representation. Conversely, we propose to
rely on metamodels as an intermediate representation. This approach allows us to enlarge at will the number
of supported transformations, thus enabling higher reuse also between the different DSL implementations.

The relevance and technical difficulty of transforming code to target heterogeneous computing is
acknowledged by Baskaran et al. (2010), who have developed an automatic C-to-CUDA code generation
tool for affine programs. Their research addresses the challenge of manually translating sequential C
programs into parallel CUDA programs, which can be intricate and error-prone due to CUDA’s complex
memory hierarchy and multi-threaded model. This type of problem is exactly what we target using an
MDE-based approach: metamodels could be leveraged to transform code between different incarnations,
efficiently targeting differentiated hardware.

At the same time, having multiple versions of the same simulation model that could be run on
different hardware platforms does not suffice the optimization goals of modern modeling and simulation. A
fundamental aspect deals with orchestrating the execution of these different model versions when running
a single simulation. O’Neal et al. (2022) discuss a domain-specific runtime designed to orchestrate
computation on heterogeneous platforms, focusing on integrating domain-specific knowledge for scientific
simulations. The proposed approach is aware of domain-specific operations and their data dependencies.
The system facilitates more efficient utilization of heterogeneous computing resources, such as CPUs,
GPUs, and other accelerators. This is achieved through a combination of offline tools for application
configuration and an orchestration runtime subsystem that dynamically manages computation and data
movement. Marotta et al. (2024) have taken this approach further, allowing the same simulation model to
run on CPUs and GPUs for performance and energy efficiency reasons. The runtime orchestrator decides
upon the best-suited hardware platform for a specific execution phase and synchronizes the state of the
two families of devices transparently. Nevertheless, the models’ code should be available for both CPUs
and GPUs in these approaches. Generating efficient code for accelerators starting from a higher-level
description is part of what we tackle in this paper.

3 SOURCES OF HETEROGENEITY AND BENEFITS OF MODEL-DRIVEN ENGINEERING

This section discusses the possible sources of heterogeneity that an MDE-based approach could consider.

2205

Marotta and Pellegrini

Hardware heterogeneity can arise from various sources, including differences in processor architectures,
memory systems, and interconnects within a single computing system. For instance, a system may have
a mix of CPUs, GPUs, FPGAs, and other specialized processors, each with their own strengths and
weaknesses. This is the simplest and most evident form of heterogeneity to deal with. From a technical
perspective, developing efficient software that can run on different architectures and seamlessly switch
from one another can be daunting.

Programming models also contribute to heterogeneity. Different programming models, such as MPI,
OpenMP, and CUDA, may exploit different types of parallelism, such as message passing, shared memory,
or data parallelism. These models may require different programming languages, syntax, and APIs, making
it difficult to write portable, high-performance code that can run on multiple architectures.

Libraries and support software can also introduce heterogeneity. For example, different numerical
libraries may be optimized for specific hardware architectures or programming models, so that choosing
the best library for a given application is challenging. Similarly, simulation frameworks and tools may be
designed for specific architectures or programming models, making it difficult to implement simulations
that can run efficiently on a range of systems.

DSLs can help hide away these sources of heterogeneity from model developers. Nevertheless, from
the point of view of the DSL designer, the situation is not easy. The designer must ensure that the DSL
is optimized for each architecture, which may require significant knowledge of hardware and software
optimization techniques. If multiple DSLs have to be developed, the same repeating (but highly technical)
challenges will be faced.

Conversely, an MDE approach can simplify the development of (multiple) DSLs for heterogeneous
architectures by providing a systematic way of creating high-level abstractions that capture the essence of
the architecture and its components. One of the main benefits of the MDE approach is that it allows for the
reuse of developed assets. Once a model has been created and validated, it can generate code for multiple
DSLs. This reduces the time and effort required to develop new DSLs and ensures consistency across
different DSLs. Additionally, the MDE approach allows for the automatic generation of code optimized
for the heterogeneous architecture being used, which can lead to significant performance gains.

Technical aspects of the MDE approach include the use of modeling languages such as UML, SysML,
or DSLs themselves to create models of the architecture and its components. These models can then be
transformed into code using model transformation languages. The generated code can be further optimized
using more traditional compiler optimizations.

4 METAMODELING FOR PDES ON HETEROGENEOUS ARCHITECTURES

We show in Figure 1 the general architecture that we envisage to support the generation of simulation
model executables that can be run on top of heterogeneous architectures—we refer to these executables as
hybrid binaries. The simulation expert writes a model in a certain DSL. A model-to-model transformation
generates an intermediate representation (IR) of the model. Then, text-to-text transformations generate the
variants of equivalent source code of the original model, targeting diverse hardware architectures. At this
point, standard compilers for the architectures can be used to generate binary representations of the model.
These can be linked together to generate the hybrid binary.

Additional aspects are relevant for generating a hybrid binary that can orchestrate the execution of the
model on heterogeneous architectures, moving parts of the model’s execution on the available hardware.
First, this runtime orchestration requires knowing how to move the data across the various available hardware
instances. For this purpose, the shape and organization of the simulation model state must be known by the
runtime environment. Because we can work at the metamodel level, some additional transformations can
be used for this purpose. The data dependency tracker is a component of our architecture that performs
additional model-to-text transformations to output what we call an access trace file. This access trace
describes at what points of execution the simulation model allocates memory buffers or where variable
updates are performed. This information can be represented in any way that is suitable for the runtime

2206

Marotta and Pellegrini

sources
arch. 1

. . .

compiler
for

arch. 1

compiler
for

arch. 2

compiler
for

arch. n

. . .

Data dependency
tracker

Compiling
Infrastructure

binary
arch. 1

access
trace

External
Libraries

Linker
&

Combiner

Hybrid
Binary

DSL Sources

Intermediate
Model

Model 2 Model Transformation

Model to
 Text

Transfo
rm

ationsApplication Domain

sources
arch. 2

sources
arch.n

binary
arch. 2

binary
arch. n

Figure 1: Generation of Simulation Models from DSLs using an MDE Approach.

orchestrator to track the updates to the simulation state. Notable examples are already present in the literature
for simulation runtime environments that track the simulation state evolution over time for housekeeping
operations (see, e.g., Steinman 1993; West and Panesar 1996; Pellegrini et al. 2015).

Additional components should be linked together to produce a fully working hybrid binary. First and
foremost, the runtime/orchestrator. It could be a monolithic runtime environment, or it may be composed of,
e.g. different runtimes for CPUs, GPUs, and FPGAs, all glued together by some orchestration logic—this
is, for example, the approach taken by Marotta et al. (2024). From the perspective of the metamodeling
approach, it does not change much. The metamodel for the IR should at least allow to describe the following:

• A portion of the simulation model. The simulation object/logical process abstractions (Fujimoto
1990a), for example, are perfectly suitable here. This portion of the model is a process component
that can be logically moved around the available hardware at runtime. It is logically associated
with all the events the object is in charge of processing.

• Simulation runtime interface. It is the API exposed by the simulation runtime/orchestrator that the
model can implicitly or explicitly invoke. Also, the API related to explicit migration of the objects
or to trigger some object allocation across the different hardware instances can be considered.

• Library interfaces. They allow the representation of specific support exploited by the model and
implemented in third-party libraries, or they can relate to specific capabilities of the runtime system.
For example, we could use our metamodeling approach to generate reverse events (Carothers et al.
1999) on the fly, using approaches similar to what LaPre et al. (2014) did at the compiler IR level.

We show in Figure 2 the UML representation of the main components of our IR metamodel. The DES
Model is the root concept of our IR metamodel, which is essentially a composition of the minimal elements
required to describe a Discrete Event Simulation model: struct definitions, variables and event handlers.

Struct definitions were introduced to simplify the representation of concepts like custom types, event
payloads, and simulation object states—Figure 2 is simplified and does not adequately represent all required

2207

Marotta and Pellegrini

DES Model

Global Constant

Variable

Per-Object Variable

Statement

Simulator Call Library Call

Init Handler

Handler

Event Handler

Struct Definition
1

*

*

*

**

1

1

1

1

1

1

handlers

globals

locals

Figure 2: Simplified UML class diagram of the proposed Intermediate Representation metamodel.

concepts, such as fields and field types. The variables in a DES Model can be of two types: global and per-
object. The former represent simulation model parameters that are usually accessible from any simulation
object and, for this reason, are usually read-only—as future development, we plan to include techniques for
reversible global variables management, similarly to the proposal of Pellegrini et al. (2016), at metamodel
level. Conversely, per-object variables are read/write, representing the state of each simulation object.

Handlers are procedures, namely sequences of statements, responsible for updating/accessing simulation
variables. We distinguish between initialization and regular event handlers. Statements are strings belonging
to a functional language used to express operational semantics, which, in our case, is a simplified version
of C. In our IR language, two types of function calls play a crucial role: simulator and library calls.
Simulator calls describe the interface of an abstract DES simulator (e.g., creating and sending a new
event). Conversely, library calls represent any third-party software module (e.g., pseudo-random number
generators) the simulation model requires. Having both explicitly represented in our IR language allows
us to easily cope with them when targeting different simulation platforms and environments.

Transforming the IR model into a text is a two-step process. In the first step, the IR model is transformed
into a standard C model, where both simulator and library calls are resolved to C calls targeting specific
software libraries using user-provided bindings. This approach allows us to simplify translating DSL-
defined models to different simulation platforms. For instance, when a simulator-call binding is defined for
a specific DES simulator, the same binding can be reused to translate any IR model to a source targeting
that platform. Secondly, the C model is transformed into a text, which is the final code to compile.

5 EXPERIMENTAL RESULTS

We evaluate here the proof of concept of the proposed approach: Section 5.1 describes the PDES engines
and the orchestrator we used; Section 5.2 presents the model written in our IR language that we used as
an application example; we discuss the results of our experimental evaluation in Section 5.3.

2208

Marotta and Pellegrini

5.1 Experimental Setup

To exercise our MDE approach, we relied on the recent “follow the leader” (FTL) orchestrator (Marotta
et al. 2024). It is an interoperability and optimization layer between two different speculative PDES engines
based on the Time Warp synchronization protocol by Jefferson (1985), namely ROOT-Sim (CPU-based)
by Pellegrini et al. (2012) and GPUTW (targeting GPUs) by Liu and Andelfinger (2017). When provided
with a C and CUDA version of the same simulation model, FTL periodically synchronizes the simulation
state and starts a “challenge” between simulations run on CPUs and GPUs. After a short execution on
both, a performance estimation for the near future is carried out, and the best-suited hardware architecture
continues to run the simulation.

We used the classical PHold model (Fujimoto 1990b) generated with the MDE approach and used it
with two execution phases: balanced and unbalanced. FTL’s orchestration capabilities benefit from cycling
through these phases as CPU/GPU simulators respond differently to them. We ran on a heterogeneous
CPU/GPU node equipped with an Intel i7-12700H, an Nvidia RTX 3060, and 64GB of RAM.

5.2 PHold Model

1 phold {
2 description: "this is an alternating balanced/unbalanced phold"
3 struct definitions:
4 state_t {
5 int me
6 int rcv_evts
7 rand_t seed
8 }
9

10 global constants:
11 double lambda = 1.0
12 double hot_fraction = 0.01
13 double phase_window_size = 8000000
14 double end_sim_gvt = 60000000
15
16 model state variable:
17 state_t lp_state
18
19 handler INIT:
20 lp_state.rcv_evts = lp_state.rcv_evts + 1
21 SendEvent EVT to MySelf() at now+rnd::Exponential(seed, lambda) with NULL
22
23 handler EVT:
24 lp_state.rcv_evts = lp_state.rcv_evts + 1
25 int dest = GetRandomObject()
26 int cur_hot_phase = (now / phase_window_size)
27 int unbalanced = cur_hot_phase%2;
28 if(unbalanced)
29 dest = dest % (hot_fraction * GetNumObjects())
30 SendEvent EVT to dest at now+rnd::Exponential(seed, lambda) with NULL
31 return now >= end_sim_gvt
32
33 }

Figure 3: Intermediate Representation Model of Alternating PHold.

2209

Marotta and Pellegrini

IR Simple C

Simple
PHOLD

CPU
PHOLD

GPU
PHOLD

Model 2 Model Model 2 Text

CPU
SRC

GPU
SRC

+

+

CPU
BINDINGS

GPU
BINDINGS

conforms to

conforms to

Figure 4: Scheme of transformations used to generate CPU/GPU source code from IR PHold model.

Figure 3 shows the PHold model we used as a use-case. It is written directly in our IR language and
implemented within the IntelliJ MPS modeling framework (Pech 2021). Lines 3-7 define a new struct used
as a simulation object state (see lines 15–16), essentially a counter of the received events and an integer
representing the simulation object identifier. Lines 9–13 define the global constants accessible by handlers.
Finally, lines 18-30 provide the actual code of handlers. The INIT handler simply increments the counter
and sends an event of type EVT to the simulation object currently running the INIT handler. This makes
the simulation start by injecting the very first events at line 20. Line 21 simulator and library calls, namely
SendEvent, Myself, now and rnd::Exponential. The EVT handler describes the behavior of a
simulation object when it receives an EVT event. In particular, it increments the counter of received events
and defines the simulation object that should be the target of the next SendEvent. To do so, it first detects
the current simulation phase. If balanced, any simulation object can receive the new event. Conversely, if
unbalanced, the newly generated event can be sent to a small subset of the simulation object, whose size
is the 1% of the simulation objects.

The process to transform the PHold model written in our IR language to source code compatible with
both the target PDES engines is summarized in Figure 4. As described in Section 4, it runs in two phases.
In the first, we exploit a model-to-model transformation to generate a pair of simulation models conforming
to a metamodel, which describes standard C/CUDA programs. Each model targets a different PDES engine:
a CPU engine (ROOT-Sim) and a GPU engine (GPU-TW). The transformation takes an additional model
representing bindings between simulator/library calls in the IR model and actual C/CUDA function calls.
It also maps IR types to simulator/library types. This step is crucial to resolve the idiosyncrasy of different
simulators and platforms. For instance, SendEvent calls are mapped to calls to schedule a new event for
each simulator, and Exponential calls are mapped to the proper CPU/GPU CuRand implementation.
Since the target metamodel represents C source files, we exploit this stage to add proper includes to reference
the required libraries—the definition of those bindings is reusable across different IR models.

Once the bindings are complete, we proceed with the last stage, which transforms both CPU/GPU
models into text with proper formatting, namely C files that can be compiled against each PDES platform.

5.3 Results

We have replicated the same experiments in (Marotta et al. 2024). The results, perfectly compatible with
the original publication, are shown in Figure 5. In the balanced configuration, the GPU version significantly

2210

Marotta and Pellegrini

 0
 8x106

 1.6x107
 2.4x107
 3.2x107

 4x107
 4.8x107
 5.6x107
 6.4x107

 0 50 100 150 200 250 300 350

G
lo

ba
l V

ir
tu

al
 T

im
e

Wall Clock Time (s)
Unbalanced

Balanced
On CPU
On GPU

(a) CPU only.

 0
 8x106

 1.6x107
 2.4x107
 3.2x107

 4x107
 4.8x107
 5.6x107
 6.4x107

 0 50 100 150 200 250 300 350

G
lo

ba
l V

ir
tu

al
 T

im
e

Wall Clock Time (s)
Unbalanced

Balanced
On CPU
On GPU

(b) GPU only.

 0
 8x106

 1.6x107
 2.4x107
 3.2x107

 4x107
 4.8x107
 5.6x107
 6.4x107

 0 50 100 150 200 250 300 350

G
lo

ba
l V

ir
tu

al
 T

im
e

Wall Clock Time (s)
Unbalanced

Balanced
On CPU
On GPU

(c) Dynamic Selection.

Figure 5: Performance Results using FTL. The orchestrator runs every 2 wall-clock seconds.

outperforms the CPU version. Conversely, the unbalanced configuration favors the CPU implementation.
The FTL orchestrator can effectively capture these dynamics, thus showing a higher overall performance,
by promptly switching across the two implementations. For space constraints, we cannot discuss energy-
related results, but we essentially observe no significant discontinuity with the energy profile of CPU-only
or GPU-only simulations, providing a performance improvement for free. We refer the reader to the original
paper for a more thorough discussion on this aspect.

These results are relevant because they confirm the ability of our MDE-based approach to generate source
code variants that can be compiled to a hybrid binary plugging existing runtime simulation environments,
able to orchestrate the execution of a single simulation model on heterogeneous architectures. Starting
from a simple DSL, the burden of generating optimized code for GPUs and CPUs is demanded for multiple
model-to-model and model-to-text transformations.

6 CONCLUSIONS AND FUTURE WORK

This work has explored how MDE can optimize parallel discrete event simulations on heterogeneous
architectures. By abstracting hardware complexities, MDE enables simulation experts to focus on model
fidelity, optimizing the use of varied hardware and enhancing the efficiency and scalability of simulations.
Domain-specific languages integrated with MDE provide a framework that reduces development time
and enhances performance, setting the groundwork for dynamic, adaptive simulation frameworks that can
harness the evolving capabilities of heterogeneous computing environments.

In future work, we plan to target additional sources of heterogeneity identified in Section 3, also
focusing on the interoperability of simulation models with different runtime environments or orchestrators.
We also plan to broaden the set of hardware accelerators supported by our MDE approach (e.g., FPGAs),
to benefit from more diverse execution capabilities, both in terms of performance and energy efficiency.

ACKNOWLEDGMENTS

This paper has been partially supported by the Italian MUR PRIN 2022 Project: Domain (Grant Agreement
#2022TSYYKJ) financed by NextGenEu, and partially by the Spoke 1 “FutureHPC & BigData” of the
Italian Research Center on High Performance Computing, Big Data and Quantum Computing (ICSC)
funded by MUR Missione 4 Componente 2 Investimento 1.4: Potenziamento strutture di ricerca e creazione
di “campioni nazionali” di R&S (M4C2-19) - Next Generation EU (NGEU).

REFERENCES
Baskaran, M. M., J. Ramanujam, and P. Sadayappan. 2010. “Automatic C-to-CUDA code generation for affine programs”. In

Compiler Construction, edited by R. Gupta, Volume 6011 LNCS of Lecture notes in computer science, 244–263. Berlin,
Heidelberg: Springer https://doi.org/10.1007/978-3-642-11970-5_14.

2211

https://doi.org/10.1007/978-3-642-11970-5_14

Marotta and Pellegrini

Blinov, M. L., J. R. Faeder, B. Goldstein, and W. S. Hlavacek. 2004. “BioNetGen: software for rule-based modeling of
signal transduction based on the interactions of molecular domains”. Bioinformatics (Oxford, England) 20(17):3289–
3291 https://doi.org/10.1093/bioinformatics/bth378.

Blunk, A. and J. Fischer. 2013. “Efficient development of domain-specific simulation modelling languages and tools”. In
Lecture Notes in Computer Science, Lecture notes in computer science, 163–181. Berlin, Heidelberg: Springer Berlin
Heidelberg https://doi.org/10.1007/978-3-642-38911-5_10.

Carothers, C. D., K. S. Perumalla, and R. M. Fujimoto. 1999. “Efficient Optimistic Parallel Simulations Using Reverse
Computation”. ACM Transactions on Modeling and Computer Simulation 9(3):224–253 https://doi.org/10.1145/347823.
347828.

Chafi, H., A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya and K. Olukotun. 2011. “A domain-specific approach to
heterogeneous parallelism”. ACM SIGPLAN Notices 46(8):35–46 https://doi.org/10.1145/2038037.1941561.

Choi, H., W. Choi, T. M. Quan, D. G. C. Hildebrand, H. Pfister and W.-K. Jeong. 2014. “Vivaldi: A domain-specific language
for volume processing and visualization on distributed heterogeneous systems”. IEEE transactions on visualization and
computer graphics 20(12):2407–2416 https://doi.org/10.1109/TVCG.2014.2346322.

Cosenza, B., N. Popov, B. Juurlink, P. Richmond, M. K. Chimeh, C. Spagnuolo, et al. 2018. “OpenABL: A domain-
specific language for parallel and distributed agent-based simulations”. In Euro-Par 2018: Parallel Processing, edited by
M. Aldinucci, L. Padovani, and M. Torquati, Lecture notes in computer science, 505–518. Cham: Springer International
Publishing https://doi.org/10.1007/978-3-319-96983-1_36.

Fujimoto, R. M. 1990a. “Parallel Discrete Event Simulation”. Communications of the ACM 33(10):30–53 https://doi.org/10.
1145/84537.84545.

Fujimoto, R. M. 1990b. “Performance of Time Warp Under Synthetic Workloads”. In Distributed Simulation, edited by D. Nicol,
PADS’90, 23–28. San Diego, CA, USA: Society for Computer Simulation International.

Gagliardi, F., M. Moreto, M. Olivieri, and M. Valero. 2019. “The international race towards Exascale in Europe”. CCF
transactions on high performance computing 1(1):3–13 https://doi.org/10.1007/s42514-019-00002-y.

Grewe, D., Z. Wang, and M. F. P. O’Boyle. 2013. “Portable mapping of data parallel programs to OpenCL for heterogeneous
systems”. In Proceedings of the 2013 IEEE/ACM International Symposium on Code Generation and Optimization, GCO’13,
1–10. Piscataway, NJ, USA: IEEE https://doi.org/10.1109/cgo.2013.6494993.

Jameson, A. and J. C. Vassberg. 2001. “Computational fluid dynamics for aerodynamic design: Its current and future impact”.
In Proceedings of the 39th AIAA Aerospace Sciences Meeting & Exhibit, 1–26. Reston, VA, USA: American Institute of
Aeronautics & Astronautics https://doi.org/10.2514/6.2001-538.

Jefferson, D. R. 1985. “Virtual Time”. ACM Transactions on Programming Languages and Systems 7(3):404–425 https:
//doi.org/10.1145/3916.3988.

Kothe, D., S. Lee, and I. Qualters. 2019. “Exascale computing in the United States”. Computing in science & engineering 21(1):17–
29 https://doi.org/10.1109/mcse.2018.2875366.

LaPre, J. M., E. J. Gonsiorowski, and C. D. Carothers. 2014. “LORAIN: a step closer to the PDES ’holy grail”’. In Proceedings
of the 2nd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, SIGSIM-PADS’14, 3–14. New York,
NY, USA: ACM https://doi.org/10.1145/2601381.2601397.

Li, P., E. Brunet, F. Trahay, C. Parrot, G. Thomas and R. Namyst. 2015. “Automatic OpenCL code generation for multi-device
heterogeneous architectures”. In 2015 44th International Conference on Parallel Processing: IEEE https://doi.org/10.1109/
icpp.2015.105.

Liu, Q. and G. Wainer. 2010. “Accelerating large-scale DEVS-based simulation on the cell processor”. In Proceedings of
the 2010 Spring Simulation Multiconference. San Diego, CA, USA: Society for Computer Simulation International https:
//doi.org/10.1145/1878537.1878667.

Liu, X. and P. Andelfinger. 2017. “Time Warp on the GPU: Design and Assessment”. In Proceedings of the 2017 ACM
SIGSIM Conference on Principles of Advanced Discrete Simulation, SIGSIM-PADS ’17, 109–120. New York, NY, USA:
ACM https://doi.org/10.1145/3064911.3064912.

Marotta, R., A. Pellegrini, and P. Andelfinger. 2024. “Follow the Leader: Alternating CPU/GPU Computations in PDES”. In
Proceedings of the 2024 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, SIGSIM-PADS ’24.
Atlanta, GA, USA: ACM https://doi.org/10.1145/3615979.3656056.

Montesano, F., R. Marotta, and F. Quaglia. 2022. “Spatial/Temporal Locality-based Load-sharing in Speculative Discrete Event
Simulation on Multi-core Machines”. In Proceedings of the 2022 ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation, SIGSIM-PADS ’22, 81–92. New York, NY, USA: Association for Computing Machinery https:
//doi.org/10.1145/3518997.3531026.

Nguyen, Q. A. P., P. Andelfinger, W. Cai, and A. Knoll. 2019. “Transitioning Spiking Neural Network Simulators to
Heterogeneous Hardware”. In Proceedings of the 2019 ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation, SIGSIM-PADS, 115–126. New York, NY, USA: ACM https://doi.org/10.1145/3316480.3322893.

2212

https://doi.org/10.1093/bioinformatics/bth378
https://doi.org/10.1007/978-3-642-38911-5_10
https://doi.org/10.1145/347823.347828
https://doi.org/10.1145/347823.347828
https://doi.org/10.1145/2038037.1941561
https://doi.org/10.1109/TVCG.2014.2346322
https://doi.org/10.1007/978-3-319-96983-1_36
https://doi.org/10.1145/84537.84545
https://doi.org/10.1145/84537.84545
https://doi.org/10.1007/s42514-019-00002-y
https://doi.org/10.1109/cgo.2013.6494993
https://doi.org/10.2514/6.2001-538
https://doi.org/10.1145/3916.3988
https://doi.org/10.1145/3916.3988
https://doi.org/10.1109/mcse.2018.2875366
https://doi.org/10.1145/2601381.2601397
https://doi.org/10.1109/icpp.2015.105
https://doi.org/10.1109/icpp.2015.105
https://doi.org/10.1145/1878537.1878667
https://doi.org/10.1145/1878537.1878667
https://doi.org/10.1145/3064911.3064912
https://doi.org/10.1145/3615979.3656056
https://doi.org/10.1145/3518997.3531026
https://doi.org/10.1145/3518997.3531026
https://doi.org/10.1145/3316480.3322893

Marotta and Pellegrini

O’Neal, J., M. Wahib, A. Dubey, K. Weide, T. Klosterman and J. Rudi. 2022. “Domain-specific runtime to orchestrate
computation on heterogeneous platforms”. In Euro-Par 2021: Parallel Processing Workshops, Lecture notes in computer
science, 154–165. Cham: Springer International Publishing https://doi.org/10.1007/978-3-031-06156-1_13.

Pech, V. 2021. “JetBrains MPS: Why modern language workbenches matter”. In Domain-Specific Languages in Practice, 1–22.
Cham: Springer International Publishing https://doi.org/10.1007/978-3-030-73758-0_1.

Pellegrini, A., S. Peluso, F. Quaglia, and R. Vitali. 2016. “Transparent speculative parallelization of discrete event simulation
applications using global variables”. International journal of parallel programming 44(6):1200–1247 https://doi.org/10.
1007/s10766-016-0429-2.

Pellegrini, A., R. Vitali, and F. Quaglia. 2012. “The ROme OpTimistic Simulator: Core Internals and Programming Model”.
In Proceedings of the 4th International ICST Conference on Simulation Tools and Techniques, SIMUTOOLS, 96–98.
Brussels, Belgium: ICST https://doi.org/10.4108/icst.simutools.2011.245551.

Pellegrini, A., R. Vitali, and F. Quaglia. 2015. “Autonomic State Management for Optimistic Simulation Platforms”. IEEE
Transactions on Parallel and Distributed Systems 26:1560–1569 https://doi.org/10.1109/TPDS.2014.2323967.

Reinhardt, O., T. Warnke, and A. M. Uhrmacher. 2022. “A language for agent-based discrete-event modeling and simulation of
Linked Lives”. ACM transactions on modeling and computer simulation: a publication of the Association for Computing
Machinery 32(1):1–26 https://doi.org/10.1145/3486634.

Rodrigues da Silva, A. 2015. “Model-driven engineering: A survey supported by the unified conceptual model”. Computer
languages, systems & structures 43:139–155 https://doi.org/10.1016/j.cl.2015.06.001.

Steinman, J. S. 1993. “Incremental State Saving in SPEEDES Using C Plus Plus”. 687–696: Society for Computer Simulation.
Sujeeth, A. K., K. J. Brown, H. Lee, T. Rompf, H. Chafi, M. Odersky et al. 2014. “Delite: A Compiler Architecture for Performance-

Oriented Embedded Domain-Specific Languages”. ACM Transactions on Embedded Computing Systems 13(4s):1–25 https:
//doi.org/10.1145/2584665.

Sutter, H. 2014. “Welcome to the Jungle: Or, a Heterogeneous Supercomputer in Every Pocket”. Technical report, Sutter’s
Mill: Herb Sutter on software development.

Taffoni, G., L. Tornatore, D. Goz, A. Ragagnin, S. Bertocco, I. Coretti, et al. 2019. “Towards exascale: Measuring the
energy footprint of astrophysics HPC simulations”. In 2019 15th International Conference on eScience (eScience):
IEEE https://doi.org/10.1109/escience.2019.00052.

Uhrmacher, A., P. Frazier, R. Hähnle, et al. 2024. “Context, composition, automation, and communication - the C 2 AC
roadmap for modeling and simulation”. ACM Transactions on Modeling and Computer Simulation.

Wainer, G. 2002. “CD++: A toolkit to develop DEVS models”. Software—Practice and Experience 32:1261–1306 https:
//doi.org/10.1002/spe.482.

Warnke, T. 2020. “Domain-specific languages for modeling and simulation”. Master’s thesis, Universität Rostock, Rostock,
Germany https://doi.org/10.18453/ROSDOK_ID00002966.

West, D. and K. Panesar. 1996. “Automatic Incremental State Saving”. In Proceedings of the 10th Workshop on Parallel and
Distributed Simulation, PADS, 78–85. Piscataway, NJ, USA: IEEE https://doi.org/10.1109/PADS.1996.761565.

Xiao, J., P. Andelfinger, W. Cai, P. Richmond, A. Knoll and D. Eckhoff. 2020. “OpenABLext: An automatic code generation
framework for agent-based simulations on CPU-GPU-FPGA heterogeneous platforms”. Concurrency and computation:
practice & experience 32(21):1–15 https://doi.org/10.1002/cpe.5807.

Xiao, J., G. Kilinç, P. Andelfinger, D. Eckhoff, W. Cai and A. Knoll. 2020. “Pedal to the Bare Metal: Road Traffic Simulation
on FPGAs Using High-Level Synthesis”. 117–121: ACM https://doi.org/10.1145/3384441.3395979.

Zahran, M. 2017. “Heterogeneous computing: here to stay”. Communications of the ACM 60(3):42–45 https://doi.org/10.1145/
3024918.

Zeigler, B. P., T. G. Kim, and H. Praehofer. 2000. Theory of Modeling and Simulation. London, UK: Academic Press https:
//doi.org/10.1016/C2016-0-03987-6.

AUTHOR BIOGRAPHIES
ROMOLO MAROTTA received a Ph.D. in Computer Engineering from Sapienza University of Rome. He is a researcher
at the University of Rome Tor Vergata and has been a postdoctoral researcher at the University of L’Aquila. His research
activities mainly focus on concurrent data structures, synchronization algorithms, operating systems and parallel simulation.
His email address is r.marotta@ing.uniroma2.it and his website is https://romolomarotta.github.io/.

ALESSANDRO PELLEGRINI received a PhD degree in Computer Engineering from Sapienza, University of Rome in 2014.
His research interests are in the simulation of parallel and distributed architectures, a field in which he has more than 100
publications in books, journals and conference proceedings. His email address is a.pellegrini@ing.uniroma2.it and his website
is https://alessandropellegrini.it.

2213

https://doi.org/10.1007/978-3-031-06156-1_13
https://doi.org/10.1007/978-3-030-73758-0_1
https://doi.org/10.1007/s10766-016-0429-2
https://doi.org/10.1007/s10766-016-0429-2
https://doi.org/10.4108/icst.simutools.2011.245551
https://doi.org/10.1109/TPDS.2014.2323967
https://doi.org/10.1145/3486634
https://doi.org/10.1016/j.cl.2015.06.001
https://doi.org/10.1145/2584665
https://doi.org/10.1145/2584665
https://doi.org/10.1109/escience.2019.00052
https://doi.org/10.1002/spe.482
https://doi.org/10.1002/spe.482
https://doi.org/10.18453/ROSDOK_ID00002966
https://doi.org/10.1109/PADS.1996.761565
https://doi.org/10.1002/cpe.5807
https://doi.org/10.1145/3384441.3395979
https://doi.org/10.1145/3024918
https://doi.org/10.1145/3024918
https://doi.org/10.1016/C2016-0-03987-6
https://doi.org/10.1016/C2016-0-03987-6
mailto://r.marotta@ing.uniroma2.it
https://romolomarotta.github.io/
mailto://a.pellegrini@ing.uniroma2.it
https://alessandropellegrini.it

	Introduction
	Related Work
	Sources of Heterogeneity and Benefits of Model-Driven Engineering
	Metamodeling for PDES on Heterogeneous Architectures
	Experimental Results
	Experimental Setup
	PHold Model
	Results

	Conclusions and Future Work

