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ABSTRACT

Pre-trained large language models (LLM) have emerged as a powerful tool for simulating various scenarios
and generating informative output given specific instructions and multimodal input. In this work, we analyze
the specific use of LLM to enhance a classical supervised machine learning method for classification
problems. We propose a few approaches to integrate LLM into a classical machine learning estimator
to further enhance the prediction performance. We examine the performance of the proposed approaches
through both standard supervised learning binary classification tasks, and a transfer learning task where
the test data observe distribution changes compared to the training data. Numerical experiments using
four publicly available datasets are conducted and suggest that using LLM to enhance classical machine
learning estimators can provide significant improvement on prediction performance.

1 INTRODUCTION

Classification is a fundamental task in supervised machine learning, common across a wide array of
applications. It involves training a model on a dataset where each instance is assigned a specific class
label. When presented with a new, unlabeled instance, the trained model is expected to accurately predict
the instance’s class.

To illustrate, consider a classification problem aimed at predicting whether a customer will find a
product relevant online. In this problem, each instance involves two-fold information on (i) customer
needs, e.g., reflected by the search queries of the customer and other attributes, and (ii) product attributes,
including title, description, and/or images of the product. In the training dataset, each instance is labelled
with one of the two classifying categories: “relevant" or “not relevant".

There are a wide range of well-established machine learning methods for such classification tasks,
ranging from logistic regression, tree-based methods, to neural-networks, among many other; see (Efron
and Hastie 2021). These methods are typically trained and calibrated using the training dataset. Once
trained, they serve as estimators to predict the labels of new, unlabeled instances.

On the other hand, the emergence of pre-trained large language models (LLMs) offers an additional
approach to these classification tasks, capable of functioning as estimators with or without additional fine-
tuning on task-specific data. For instance, GPT (Radford, Narasimhan, Salimans, Sutskever, et al. 2018)
by OpenAI can serve as an estimator by simply taking an instance (comprising customer query and product
information) as input and generating a prediction on whether the product is relevant to the customer’s needs.
Moreover, prompt engineering and fine-tuning can further enhance the model’s performance on specific
classification tasks.

This work is motivated by the following questions. Can we integrate LLM to classical machine learning
methods to significantly enhance the performance, compared to the separate use of LLM or the separate
use of a classical machine learning model? What are the different ways of doing such integration, and how
do they perform compared to benchmarks?
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We deliver the following results and analysis in this work.

1. We analyze the linear combination of an LLM model and a machine learning (ML) model. We
observe that generally LLM predictions are more reliable than that of a machine learning model
on borderline data. We then develop an adaptive weighted linear combination of LLM and ML to
further enhance the performance via the heavier use of LLM on those regions where ML shows
less confidence.

2. By treating LLM predictions as additional group information, we apply model calibration methods
to classical machine learning models. This method is straightforward to carry out and can be used
upon any classical machine learning model.

3. We consider the integration of LLM and ML on a transfer learning classification tasks. For the
transfer learning task with covariate shift, we improve the machine learning model by augmenting
the training data with additional samples from the target distribution, where the labels of those
samples are generated by LLM. We then train a machine learning model on the augmented dataset
to obtain better performance on the target distribution.

4. We illustrate the empirical performances of our methods on four public datasets, including tasks
such as relevance prediction, emotion recognition and hate speech detection. Numerical results
show that all our methods perform better than only using LLM or only using a classical machine
learning model.

We would like to add some discussions before proceeding to the main sections of this work. The
advantage of leveraging LLMs to enhance classical ML methods comes from two primary sources. Firstly,
LLMs can serve as a variance reduction tool in addition to a classical machine learning model trained
on the dataset. The use of LLMs in this context draws a close analogy to the method of control variates
as a variance reduction tool in simulation literature; refer to (Asmussen and Glynn 2007). Secondly,
LLMs can enhance model accuracy by leveraging their knowledge on a broader range of data; see (Møller,
Aarup Dalsgaard, Pera, and Aiello 2023; Gao, Sheng, Xiang, Xiong, Wang, and Zhang 2023; Chen, Mao,
Li, Jin, Wen, Wei, Wang, Yin, Fan, Liu, et al. 2024). This aspect is particularly beneficial for improving
classical ML models in transfer learning tasks. We also note that the use of LLM in a classical data-driven
method creates additional needs for input data uncertainty analysis, and leave that for future discussions;
see (Song, Nelson, and Pegden 2014; Feng and Song 2019).

2 PROBLEM FORMULATION AND NOTATION

In this work, we focus on binary classification problems, using the task of predicting relevance as a
representative example to illustrate our approach. The mathematical formulation for this task is consistent
with other tasks, and we will further discuss in the numerical experiments section. The classification task is
formulated as follows. The training data are given by {(queryi,producti, labeli)}n

i=1. Here, queryi consists
of the searching content of a customer, e.g. “modern outdoor furniture". Next, producti consists of a set of
product information that includes product description, product features and possibly product image. The
labeli denoted the true relevance label of “relevant" or “irrelevant", usually obtained by manual annotation
validated by several independent human annotators. For classification tasks, embeddings are utilized to
derive embedded vectors of queryi and producti, denoted by vi1 ∈ Rd1 ,vi2 ∈ Rd2 . The feature covariate xi
is then given by concatenating vi1 and vi2 as xi = concat(vi1,vi2) ∈ Rd , where d = d1 +d2. In text-based
classification, it’s also common to concatenate text strings using a special token before vectorization. We do
not consider the fine-tuning of LLM at this stage, and simply consider the integration of a simple machine
learning model and a pre-trained LLM model without fine tuning.

The training dataset is then given by Dtrain = {(xi,yi)}n
i=1, where xi (1 ≤ i ≤ n) ∈ Rd are features and

yi (1 ≤ i ≤ n) ∈ {0,1} are the relevance label. Here it is set that yi = 0 if labeli is relevant, and yi = 1 for
the irrelevant label. This formulation is generic for a wide range of binary classification problems.
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One can train a classical machine learning model f̂n(·) on Dtrain, where f̂n : Rd → [0,1] maps the feature
xi to a score between 0 and 1, where the score represents the chance of irrelevance. If ŷi = f̂n(xi)≤ 0.5,
one predicts “relevant" and otherwise “irrelevant". The test set is given by Dtest = {(xi,yi)}n+m

i=n+1 an1d a
trained machine learning model is evaluated by Ltest =

1
m ∑

n+m
i=n+1 l (yi, ŷi) for some loss function l(·, ·). In

addition to the classical machine learning model, in this work we also use a pre-trained large language
model (LLM) to predict yi. The LLM is given the input of a query-product pair and asked to output a
score between 0 and 1 representing how likely the LLM evaluates the query and product as irrelevant. We
denote the output of LLM for the i-th pair as zi ∈ [0,1] for i = 1, · · · ,n+m.

3 INTEGRATING LLM INTO A CLASSICAL ML ESTIMATOR

One naive way to utilize LLM is to treat it as a trained model, so zi (1 ≤ i ≤ n+m) are just estimators of
yi (1 ≤ i ≤ n+m), in addition to the classical trained machine learning (ML) model, e.g., logistic regression.
Then a first thought is to combine the two models (LLM and classical ML) to create a better ensemble
model (noted as LLM-ML in this work). This is a standard combination task and can be executed by several
methods. We illustrate such combination task by examining a simple linear combination of ML and LLM
estimators. We first discuss a straightforward approach using a fixed constant weight. We then demonstrate
through empirical data analysis that the performance can be enhanced by employing an adaptive weighting
strategy, which adjusts the weights according to the prediction scores generated by the ML estimator. Such
adaptive weighting strategy carries the thought that LLM may be more heavily used for instances where
the classical ML is not that certain of.

3.1 Linear combination of ML and LLM estimators

To combine the ML estimator and LLM estimator, one simple method is to consider the linear combination
with constant weight, i.e.,

ŷLinear
i = α ŷi +(1−α)zi, (1)

with some weight α ∈ [0,1].
The choice of α can be determined through standard cross validation procedure as follows. By randomly

splitting Dtrain as ∪k
i= jD

j
train for some k ∈N+, we can train k machine learning models f̂ j

n (·) for j = 1, · · · ,k,
where f̂ j

n (·) is trained on ∪k
i=1,i ̸= jD

i
train. Then the best weight α∗ is given by

α̂n = arg min
α∈[0,1]

1
n

k

∑
j=1

∑
(xi,yi)∈D j

train

l
(
α f̂ j

n (xi)+(1−α)zi,yi
)
. (2)

If we omit the superscript j and denote f̂ j
n (xi) by ŷcv

i , for the l2 loss l(x,y) = (x− y)2, this procedure is
equivalent to regress {yi− zi}n

i=1 on {ŷcv
i − zi}n

i=1, which gives α̂ l2
n = ∑

n
i=1(yi−zi)(ŷcv

i −zi)

(ŷcv
i −zi)2 . Informally speaking,

if we assume (xi,zi,yi)
i.i.d.∼ P for some distribution P on Rd × [0,1]2, and assume that f̂n converges to some

f0 as n →+∞, then we will have

α̂n,l2 → α
∗ =

EP [(Y −Z)( f0(X)−Z)]

EP ( f0(X)−Z)2 , as n →+∞,

which is the minimizer of the mean-squared error MSEL(α) =E [α f0(X)+(1−α)Z −Y ]2 , so MSEL(α
∗)≤

MSEL(0) =E(Z−Y )2 and MSEL(α
∗)≤MSEL(1) =E( f0(X)−Y )2, which means the asymptotic behaviour

of the LLM-ML ensemble estimator is no worse than two baseline estimators.
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Figure 1: t-SNE visualization of an illustration data set

3.2 Linear combination with adaptive weights

One can improve this method by taking α to be dependent on ŷi as α(ŷi). Consider the following visualization
results in Figure 1. Here t-SNE (Hinton and Roweis 2002) is a statistical method for visualizing high-
dimensional data by giving each sample a location in a two-dimensional map. We can see the classical
machine learning model sometimes does not do well on the boundary of relevant samples and irrelevant
samples, and many of such errors are made when the prediction score ŷi is close to 0.5. On the contrary,
the LLM model shows different patterns, in the sense that its accuracy is relatively stable even for those
borderline data. We refer to the red circles in the figure for some illustration. This motivates us to take
α(ŷi) to be larger when ŷi is close to 0 or 1, and if ŷi is close to 0.5, which indicates xi is likely to located
on the boundary, we set it to be smaller.

In this case, the LLM-ML estimator is given as an adaptive weighted linear combination of two
estimator:

ŷAL
i = α(ŷi) · ŷi +(1−α(ŷi)) · zi. (3)

We would expect α(·) : [0,1]→ [0,1] to be a decreasing function on [0,0.5], and then increases on [0.5,1].
By taking a predetermined hypothesis space A ⊂ {α|α : [0,1]→ [0,1]} for all possible choices of α(·)
we are interested, the choice of α(·) can similarly be determined through cross validation as what we just
did for a fixed α . To see this, we can now modify (2) as:

α̂n = arg min
α∈A

1
n

n

∑
i=1

l (α (ŷcv
i ) · ŷcv

i +(1−α (ŷcv
i )) · zi,yi) , (4)

where ŷcv
i = f̂ j

n (xi) and by slightly abusing the notation α̂n is now a function in A .
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We now consider the choice of A . A large A such as all continuous functions from [0,1] to [0,1]
{α|α : [0,1]→ [0,1],α ∈C} will make the optimization problem in (4) intractable and can easily lead to
overfit, but a simple A such as all constant functions on [0,1] will just give a fixed weight and cannot
fully use the strength of LLM. In this work, we consider the class of piecewise constant functions, i.e.

Ar = {α|α(x) =
r

∑
i=1

wi1{x∈Ii} with wi ∈ [0,1](i = 1, · · · ,r)}, (5)

here r ∈N+ is a pre-determined positive integer and Ii(1 ≤ i ≤ r) is a partition of [0,1]. For simplicity, we
take Ii = [ i−1

r , i
r ) for 1 ≤ i ≤ r−1 and Ir = [ r−1

r ,1]. In this case, (4) can now be formulated as:

α̂n,r = arg min
α∈Ar

1
n

n

∑
i=1

l (α (ŷcv
i ) · ŷcv

i +(1−α (ŷcv
i )) · zi,yi)

= arg min
w1,··· ,wr

1
n

r

∑
j=1

∑
i:ŷcv

i ∈I j

l (w jŷcv
i +(1−w j)zi,yi) .

(6)

This is equivalent to solve r optimization problems for samples with indices in {i|ŷcv
i ∈ I j}( j = 1, · · · ,r)

separately, and each of them is what we just discussed in last part. If we are using l2 loss then clearly this
piecewise constant weight function gives an MSE no larger than any fixed constant weight.

Algorithm 1 Adaptive weighted linear combination of LLM and ML
1: Input: Dtrain = {(xi,zi,yi)}n

i=1, Number of pieces r, and a partition of [0,1] Ii(1 ≤ i ≤ r);
2: Train a ML model f (·) on {(xi,yi)}n

i=1 and construct cross validation predictions {(xi, ŷcv
i )}n

i=1.
3: Solve subproblems w j = argminw ∑i:ŷcv

i ∈I j l (wŷcv
i +(1−w)zi,yi) for j = 1, · · · ,r.

4: Output: the weight function α(x) = ∑
r
i= j w j1{x∈I j}.

4 CALIBRATION WITH LLM

In this section, we consider calibrating a classical ML model (e.g., logistic regression) with LLM. We start
by introducing some backgrounds on calibration, then we discuss how to use LLM to calibrate a classical
ML model.

4.1 Background on calibration

Suppose our data are realizations of (X ,Y )∼ D with Y ∈ {0,1}, and the model is f . Ideally, we hope to
find a model such that

f (x) = P(Y = 1|X = x). (Informally) (7)

However, this is generally unrealistic and there are at least two reasons. First, for each fixed x, the label is
already determined, and there is no randomness so the probability in the RHS is not well-defined. Second,
the domain of X in our scenario consists of pairs of query and item, and each of them comes from an
extremely large set of English words, so it is generally impossible to find such a function with limited
samples. Calibration is a tractable condition that can be viewed as a coarsening of the condition above.
Definition 1 (Calibration) For (X ,Y )∼ D , the bias of f at the p-th level set is defined as

∆p( f )≜ ED [Y − f (X)| f (X) = p]. (8)

If ∆p( f )≡ 0, we say that f is calibrated w.r.t. D . We omit the subscript D when there is no ambiguity.
Intuitively, calibration can be considered as a minimal condition for a model f to be good, in the

sense that the probability of Y = 1 conditional on f (x) = p is indeed p. For each model f , if it is not
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calibrated, we can define f̂ (x) = f (x)+∆ f (x)( f ) and it is straightforward to verify that f̂ is calibrated.
However, it is infeasible to conditional on f (X) = p in practice with finite samples, and a simple strategy
is to do discretization on a uniform grid and calibrate f on the grid. Specifically, we define the uniform
grid [ 1

M ] = { i
m}

M
i=0 for some M ∈ N+, and define

f ′(x) = arg min
u∈[ 1

M ]
| f (x)−u|. (9)

This rounds the output of f to the grid [ 1
M ] and can be viewed as a discretization of [0,1]. Now, for our

data {(xi,yi)}n
i=1, we can construct the calibration of f as

f̂ (M)(x) = f (x)+ ∆̂ f ′(x)( f ), (10)

where ∆̂ f ′(x)( f ) can be estimated through data by calculating the mean of yi − f (xi) conditional on the
value of f ′(xi). We refer to Roth (2022) for more theoretical results of f̂ (M).

4.2 Calibrate ML model with LLM

Above calibration procedure only involves the model f , and we now integrate LLM into this procedure.
In this scenario, we assume our data are realizations of (X ,Z,Y ) ∼ P, where Z ∈ [0,1] is the output of
LLM. We have a ML model f and we want to use it to construct a improved model, which takes X and Z
as inputs and generates a prediction for Y . We start by introducing an enhanced version of Definition 1,
which is also known as the “multi-accuracy" condition in (Kim, Ghorbani, and Zou 2019).
Definition 2 (Multi-accuracy with LLM) Suppose (X ,Z,Y )∼ P, A model f is multi-accurate w.r.t. Z if

EP [Y − f (X)|Z] = 0. (11)

If we treat Z as a covariate, then Definition 2 can be viewed as a condition for a model f to be
consistent conditional on the covariate. Now, with both Definition 1 and 2, we want to construct some
f̂ M,M′

from f such that f̂ M,M′
is calibrated and multi-accurate. Again it is infeasible to conditional on Z if

Z is continuously distributed with finite samples, so we consider a discretization similar as what we did
in (9). Let [ 1

M′ ] = { i
m}

M
i=0 for some M′ ∈ N+, and define

Sp,q( f ) =

{
(x,z)

∣∣∣arg min
u∈[ 1

M ]
|u− f (x)|= p,arg min

v∈[ 1
M′ ]

|v− z|= q

}
(12)

for p = i
M (0 ≤ i ≤ M) and q = j

M′ (0 ≤ j ≤ M′). Also define

∆p,q( f̂ , f )≜ E
[
Y − f̂ (X)|Sp,q( f )

]
. (13)

Then one simple way to construct some f̂ M,M′
is to make sure ∆p,q( f̂ M,M′

, f ) = 0 for all p,q. Informally
speaking, if ∆p,q( f̂ M,M′

, f )= 0 for all p,q then f̂ M,M′
is calibrated and multi-accurate up to some discretization

error. This naturally leads to the following choice:

f̂ M,M′

1 (x) = f (x)+ ∆̂p,q( f , f ), if (x,z) ∈ Sp,q( f ), (14)

where

∆̂p,q( f , f ) =
∑1≤i≤n,(xi,zi)∈Sp,q( f ) (yi − f (xi))

∑1≤i≤n,(xi,zi)∈Sp,q( f ) 1
(15)
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is the empirical mean of Y − f (X) conditional on Sp,q( f ) with samples in the training set. Then, if we

assume {(xi,zi,yi)}n+m
i=1

i.i.d.∼ P, we have

∆p,q( f̂ M,M′

1 , f )

=E
[
Y − f̂ M,M′

(X)
∣∣Sp,q( f )

]
=E [Y − f (X)|Sp,q( f )]−E

[
∆̂p,q( f , f )|Sp,q( f )

]
=0,

(16)

which is exactly what we want.
While (14) gives one way to construct a function that is both calibrated and multi-accurate up to some

discretization error, the problem is that it involves calculating (M + 1)× (M′+ 1) conditional means for
Sp,q( f ). When M and M′ are large, this quantity may be of the same order of the sample size n or even
larger, making the estimation of conditional means not precise enough. This motivates the following choice.
We take

f̂ M,M′

2 (x) = f (x)+ ŵi,0 + ŵ j,1, if (x,z) ∈ S i
M , j

M′
( f ), (17)

where ŵi,0(0 ≤ i ≤ M) and ŵ j,1(0 ≤ j ≤ M′) are determined by the following optimization problem:

ŵ0,0, · · · , ŵM,0, ŵ0,1, · · · , ŵM′,1 = arg min
w0,0,··· ,wM,0,
w0,1,··· ,wM′,1

n

∑
i=1

(
f̂ M,M′

2 (xi)− yi

)2
. (18)

Since this is a least square linear regression problem, the solution always exists. For any solution, the
optimality conditions give:

∑
f ′(xi)=

j
M

(
f̂ M,M′

2 (xi)− yi

)
= 0, ∀ 0 ≤ j ≤ M, (19)

so E
[
Y − f̂ M,M′

2 (X)
∣∣∣ f ′(X)

]
= 0, which implies f̂ M,M′

2 is calibrated up to some discretization error. Similarly,

it is also multi-accurate up to some discretization error. The construction of f̂ M,M′

2 only requires the estimation
of M+M′+2 parameters, which is much smaller than (M+1)× (M′+1) parameters for f̂ M,M′

1 , and can
thus mitigate issues such as large estimation error and overfitting in f̂ M,M′

1 .

Algorithm 2 Calibrate ML model with LLM
1: Input: Dtrain = {(xi,zi,yi)}n

i=1, M,M′ ∈ N+;
2: Train a ML model f (·) on {(xi,yi)}n

i=1.
3: Output: the calibration of f (·) given by f̂ M,M′

1 (·) in (14) or f̂ M,M′

2 (·) in (17).

5 TRANSFER LEARNING WITH LLM

Recall that in Figure 1 we saw that LLM can perform more stable than a classical ML model, this motivates
us to apply LLM to transfer learning, where the training distribution of the model can be different from
that of its application. Such transfer learning tasks can be challenging to a classical ML model.

Again consider the relevance label prediction task, suppose that there are no or very few samples in
the labeled training set that contains products related to “bed", but the test datasets contain a large number
of products related to “bed". This can happen in applications where a new type of product is introduced to
the platform. We would expect that the classical ML model may not do well on the test datasets because
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the model has not seen much information about “bed". One possible remedy is to utilize LLM to augment
the training set for the bed category by adding data labeled with predictions from the LLM. This can be
formulated as follows. Suppose we have a training set Dtrain = {(xi,yi)}n

i=1
i.i.d.∼ P1, and we train a ML model

f̂n ∈ F on Dtrain for some model class F . We want to evaluate its performance by its expected loss on P2
w.r.t. some loss function l: E(X ,Y )∼P2

[
l( f̂n(X),Y )

]
. Here we assume P1 = PX ,1 ×PY |X and P2 = PX ,2 ×PY |X ,

where PX ,l (l = 1,2) are two distributions of X on its domain X and the conditional distribution of Y |X is
given by PY |X and is the same for P1 and P2. This scenario is usually referred as covariate shift (Sugiyama,
Krauledat, and Müller 2007). While we do not have other labeled training data, we are accessible to sample
more X as we want, that is to say, we can augment the training set by adding {(xi,zi)}n+m

i=n+1 for some xi

and m ∈ N+ as we want. With the augmented training set, we can train a new ML model f̂n,m as follows:

f̂n,m = arg min
f∈F

1
n+m

n

∑
i=1

l ( f (xi),yi)+
1

n+m

n+m

∑
i=n+1

l0( f (xi),zi). (20)

Here l(·, ·) is the loss we are interested, and l0(·, ·) is some weak-supervised loss that can be viewed as a
relaxation of l(·, ·). The rational is that the label of {xi}n+m

i=n+1 are generated from LLM and may be biased
and noisy, so a relaxed loss such as l0(x,y) = minε∈[−a,a] l (x,y+ ε) for some a ≥ 0 gives looser penalization
on those samples.

Regarding the choice of {xi}n+m
i=n+1, suppose we sample them from some distribution PX ,3. Let the

probability density function of PX ,3 be pi(x) for i = 1,2,3, then in the ideal case we would expect

n
n+m

p1(x)+
m

n+m
p3(x)≡ p2(x), (21)

which then gives a choice of P3 as

p3(x) = p2(x)+
n
m
(p2(x)− p1(x)) . (22)

However, in order to make sure p3(x)≥ 0, we need m ≥ supx
p1(x)−p2(x)

p2(x)
n. When the quantity in the RHS

is large, we will need lots of labels generated from LLM, which may not be a reasonable choice. In the
extreme scenario that p2(x) = 0 and p1(x) > 0, it is impossible to find a p3(x) ∈ [0,1] satisfying (22).
Thus, in these scenarios, a heuristic choice such as p3(x) ∝ max

(
p2(x)+ n

m (p2(x)− p1(x)) ,0
)

or simply
p3(x) = p2(x) may be better. In Section 6.3, we illustrate our method in the scenario that the supports of
p1(·) and p2(·) are disjoint, and we show that a naive choice of p3(x) = p2(x) can already significantly
improve the performance of the classical machine learning model.

Algorithm 3 Transfer learning with LLM
1: Input: Dtrain = {(xi,zi,yi)}n

i=1 and a training distribution P1, a target distribution P2, m ∈ N+;
2: Choose a sampling distribution PX ,3 based on P1 and P2, sample {xi}n+m

i=n+1.
3: Label {xi}n+m

i=n+1 with LLM to obtain {(xi,zi)}n+m
i=n+1

4: Train a ML model f̂n,m on {(xi,yi)}n
i=1 ∪{(xi,zi)}n+m

i=n+1.
5: Output: f̂n,m.

6 NUMERICAL EXPERIMENTS

We now illustrate the performances of the proposed LLM-ML integration methods through numerical
experiments. In Section 6.1, we provide the information of the datasets in use. In Section 6.2, we compare
the performances of the proposed methods in Section 3 and 4. In Section 6.3, we consider the transfer
learning task in Section 5. Our code is available at https://github.com/wyhArturia/llm_enhanced_ml.
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6.1 Datasets

We illustrate our methods on four public datasets. For predicting relevance labels, we use the Wayfair
Annotation DataSet (WANDS) (Chen, Liu, Liu, Sun, Baltrunas, and Schroeder 2022). WANDS is a
discriminative, reusable, and fair human-labeled dataset for e-commerce scenarios. It is one of the biggest
publicly available search relevance dataset in the e-commerce domains and is effective in evaluating
and discriminating between different models. It consists of 480 queries, 42994 products, and 233000
annotated query-product relevance labels. We also use the following three public datasets: Yelp’s dataset
(https://www.yelp.com/dataset), Emotion dataset (Saravia, Liu, Huang, Wu, and Chen 2018) and Hate
speech dataset (De Gibert, Perez, García-Pablos, and Cuadros 2018). All of them are NLP classification
tasks and have similar formulations as the relevance label prediction task as described in the manuscript.

6.2 Combined estimators and calibration with LLM

We first illustrate the LLM-ML combined estimators in Section 3 and the calibrated estimators in Section
4 on four datasets. We randomly split each dataset into a training set and a testing set, and we compare
the performances of following methods on testing sets:

1. The large language model method (LLM): directly use GPT-3.5-Turbo-Instruct to classify the input
instance. The prompt for each task consists of step-by-step instructions such as key indicators,
evaluation rules, examples and quality checks. All prompts are provided in our code.

2. The machine learning method (ML): for each training set which consists of word vectors and labels,
we train a logistic regression model and apply it to the testing set for predictions. We use this
simple machine learning model for illustration purposes, as we are mainly focus on how to use
LLM to improve the ML model instead of the performance of the ML model.

3. Naive linear combination of LLM and ML methods (Linear): our method in Section 3.1 that uses
a linear combination of LLM and ML estimators with a fixed weight. The weight is estimated
through least square method on the training set.

4. Adaptive weighted linear combination (AdaLinear): our method in Section 3.2 that uses a linear
combination of LLM and ML estimators with a piecewise constant weight function. The weight
function is estimated through least square method on the training set. The number of pieces r is
also tuned on the training set, but its value will not affect the performance too much as long as it
is not too small (r = 1) or too large (r > 20).

5. Calibrated estimator with LLM (Calibration): our method in Section 4.2 that calibrates the ML
estimator with LLM predictions. Since our LLM predictions are binary, we take M′ = 2. The value
of M is tuned on the training set. We use the construction in (14) for simplicity.

We use the prediction accuracy as our measure. The results are given as follows:

Table 1: Test accuracy of different methods on four datasets

LLM ML Linear AdaLinear(r) Calibration(M)

WANDS 0.775 0.803 0.838 0.846(4) 0.840(10)
Yelp 0.724 0.691 0.739 0.742(4) 0.743(20)

Emotion 0.759 0.799 0.806 0.812(10) 0.806(10)
Hate 0.672 0.717 0.720 0.724(4) 0.731(12)

From the above results we can see that, on all four datasets, our three methods (Linear, AdaLinear
and Calibration) that utilizing both ML and LLM estimators perform better than only use LLM or ML.
The AdaLinear method performs better than the Linear method, which is reasonable as Linear is a special
case of AdaLinear. AdaLinear and Calibration have comparable performances, indicating that both model
ensemble and calibration are reasonable ways to enhance ML models with LLM.
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6.3 Transfer learning with LLM

We now consider the task of transfer learning with LLM in Section 5. In order to illustrate the performance
of our method, we manually construct a table dataset and a bed dataset from the WANDS dataset and are
provided in our code. We compare the performances of following methods on testing sets:

1. The large language model method (LLM): directly use GPT-3.5-Turbo to classify the input instances,
similar as that in Section 6.2.

2. The machine learning model for the table dataset (MLTable): we train a logistic regression model
on 1000 word vectors in the table dataset. We would expect this ML model works well on the table
dataset, but may not do well on the bed dataset.

3. Naive linear combination of LLM and ML methods (Linear): our method in Section 3.1 that uses
a linear combination of LLM and MLTable methods with a fixed weight, similar as that in Section
6.2. We use this as one baseline method. The reason we do not use an adaptive weight function is
that, we can only calculate the weight function on the training set, which can lead to overfitting as
the target distribution is different from the training set.

4. The transfer learning method with LLM discussed in Section 5 (Transfer(m)): we randomly add m
bed samples and corresponding labels generated by LLM into our table dataset, then train a logistic
regression model on all 1000+m word vectors. With the notations in Section 5, this is equivalent
to take p3(x) = p2(x).

We uses a table testing set and a bed testing set to evaluate these methods. The results are given as follows:

Table 2: Test accuracy of four methods on two datasets

LLM MLTable Linear Transfer(500) Transfer(1000) Transfer(1500)
Table 0.733 0.887 0.893 0.890 0.892 0.893
Bed 0.757 0.720 0.758 0.765 0.784 0.779

We can see that the Transfer method always performs better than LLM and MLTable on both the table
dataset and the bed dataset, regardless of the choice of m. However, the choice of m is subtle and can still
affect the performance of our method.

In addition, despite the great performances of LLM enhanced estimators, we also want to point out that
the time cost of LLM prediction is relatively high compared with the standard machine learning model.
One need to take this trade-off into consideration when she wants to use LLM-enhanced ML models.

7 CONCLUSION

We conclude the work by discussing some unexplored aspects of this work. Our goal is to show that
LLM can enhance a classification machine learning method for classification problems. We have selected
the standard logistic regression method as the benchmark machine learning method. We believe that the
exact size of improvement brought by LLM will vary by choosing different machine learning methods
as benchmark. Also, the performance of LLM can vary by using different prompts. We did not push
on prompt engineering to figure out the best way to design prompts to max out the LLM potential. The
proposed approaches in this work may be further expanded by integrating prompt engineering and fine
tuning with certain training data.
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