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ABSTRACT 

Calibrating a simulation digital twin using real-time observation data is a key requirement for making the 
simulation model aligned with a physical system under study. This paper applies a particle filter-based data 
assimilation framework to online calibration of simulation digital twin, with a focus on calibrating multiple 
model parameters. An overview of the problem formulation and the particle filter-based data assimilation 
is provided. The combination effect of multiple model parameters and its impact on multi-parameter 
calibration is discussed. Experiment results based on a simulation case study example demonstrate the 
effectiveness of the data assimilation for online model calibration of simulation digital twin models.    

1 INTRODUCTION 

Digital twin is a new technology that holds promise for supporting rapid and accurate analysis and real-
time decision making for many systems. While different models have been used in different contexts, a key 
type of digital twin model is simulation models (also referred to as simulation digital twins in this paper) 
that explicitly model the dynamic behavior of physical systems. A simulation digital twin differs from other 
models by modeling a system’s state and state transition over time. The dynamic nature of these models 
makes it possible to run simulations to analyze and predict future behaviors starting from some initial states. 
Simulation digital twins find applications in many domains, such as manufacturing process, city traffic, and 
wildland fire management. 

To achieve full potential of simulation digital twin, it is crucial to synchronize a simulation model with 
the corresponding physical system using real-time observation data collected from the system (Fuller et al. 
2020). The synchronization is necessary because a simulation run needs to start from an initial state, which 
needs to match the real-time state of a physical system in order to support real-time analysis/prediction. 
Furthermore, a simulation model needs to be properly parameterized based on the real-time characteristics 
of a physical system in order to achieve accurate simulation results. Thus, to support synchronization two 
tasks are needed: dynamic state estimation and online model calibration. The former allows a simulation 
run to be initialized to the right state, and the latter allows a simulation model to be correctly parameterized. 
Both dynamic state estimation and online model calibration are key activities of Dynamic Data Driven 
Simulation (DDDS), which refers to a new simulation paradigm where a simulation system continuously 
and systematically assimilates real-time data from a system in operation to support real-time prediction and 
analysis for the system (Hu 2023a).  

Dynamical state estimation and online model calibration are challenging tasks because in many cases 
the state and parameters that need to be estimated/calibrated are hidden, i.e., they cannot be directly 
observed or computed from observation data. Thus, one need to infer the state and parameter values based 
on real-time observation data. An important approach for state/parameter estimation is data assimilation. 
Data assimilation is a methodology that combines observation data with a dynamic model of a system to 
optimally estimate the evolving state of the system. It has been used in many science fields such as 
meteorology and geosciences, but received less attention in the modeling and simulation community. Data 
assimilation in science fields typically deals with continuous models with continuous state variables. 
Recently, Hu (2023a) systematically introduced data assimilation as an enabling technology for DDDS that 
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involves discrete simulation models with discrete or hybrid states. A tutorial on 
Bayesian sequential data assimilation for discrete simulation models can be found in Hu (2023b).  

With growing interest in digital twin technologies, applying data assimilation to simulation digital twins 
becomes an important research topic. In previous work (Hu and Yan 2024), we developed a particle filter-
based data assimilation framework for online model calibration in discrete event simulations. This paper 
extends previous work by applying the framework to online calibration of simulation digital twins, with a 
focus on calibrating multiple model parameters. A challenge of multi-parameter calibration is associated 
with the combination effect of multiple parameters, i.e., there may exist multiple combinations of parameter 
values that produce the same or similar observation data. As a result, the true parameter values cannot be 
effectively distinguished from the observation data. We provide an in-depth discussion of this issue and its 
impact on online model calibration. To evaluate the particle filter-based data assimilation for online 
calibration of digital twins, a case study example of a one-way traffic control system simulation is presented, 
and experiment results are provided.  

It is important to note that the problem of online model calibration is different from the traditional 
problem of calibrating simulation models in an offline fashion. Offline model calibration is considered part 
of the model evaluation process that includes activities such as verification, calibration, and validation 
(Rykiel 1996). Typical offline model calibration methods include parameter sweeps, hill climbing, 
simulated annealing, and genetic algorithms (Malleson 2014). Offline model calibration is usually 
formulated as a global optimization problem by using historical data. On the other hand, online model 
calibration uses real-time data to adjust a simulation model to make it match the real-time characteristics 
of a system. Compared to offline calibration, less work exists for online model calibration. An extended 
Kalman filter-based online calibration algorithm was developed to support real-time calibration of large-
scale traffic simulators (Zhang 2020). Within the context of digital twin, a machine learning-based method 
was developed to support online autonomous calibration of digital twin models for nuclear power plants 
(Song et al. 2022). A particle filter-based method was used to continuously calibrate a digital twin model, 
and its performance was compared with static and sequential Bayesian calibration approaches (Ward et al. 
2021). Titscher et al. (2023) developed a Bayesian calibration method and applied it to online model 
calibration using real measurement data from a lab-based demonstrator bridge.  

2 ONLINE CALIBRATION OF SIMULATION DIGITAL TWIN 

A simulation digital twin typically has many parameters that characterize the physical system under study. 
While some parameters can be determined or calibrated offline using historical data or domain knowledge, 
others need to be calibrated in an online fashion based on real-time observation data. This is because some 
characteristics of the physical system are known only after the system operates in the field, and thus the 
corresponding parameters can only be determined when the system works in real time. Furthermore, a 
system’s characteristics may change or shift over time due to changing operating conditions. For these 
systems, the digital twin models’ parameters are not static – they are dynamic parameters whose values 
need to be calibrated online based on real-time observation data.  

Online model calibration is a challenging task due to multiple reasons. First, the parameter values often 
cannot be directly observed or computed from observation data. Thus, their values need to be inferred 
indirectly from the observation data. For example, a traffic light digital twin model may need to calibrate 
its parameters characterizing the durations of the red/green light. Nevertheless, there may be no direct 
observations about the traffic light state or light switch time. In this case, one need to infer the parameter 
values based on other available observation data, such as the number of cars that passed the intersection in 
previous time intervals. Second, a system’s behavior is influenced not only by its characteristics but also 
by its state that dynamically change over time. This means it is often difficult to separate the task of 
parameter estimation from the task of state estimation because both impact the observation data. Thus, the 
parameters and dynamically-changing states need to be estimated at the same time. Third, often there is a 
need to calibrate multiple model parameters. The multiple parameters bring the combination effect of 
multiple parameters that will be discussed further in Section 2.2.  
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2.1 Overview of Problem Formulation and Particle Filter-based Data Assimilation 

The goal of online calibration of simulation digital twin is to dynamically estimate the parameters of a 
simulation digital twin based on real-time observation data to make the model more accurately capture the 
characteristics of a physical system. As an estimation problem, it can be defined in a probabilistic way. Let 
𝑦௞ ∶ൌ 𝑦ሺ𝑡௞ሻ  be the observation data 𝑦  at time 𝑡௞ ; 𝑦଴:௞ ∶ൌ ሺ𝑦ሺ𝑡଴ሻ,𝑦ሺ𝑡ଵሻ, … ,𝑦ሺ𝑡௞ሻሻ  be the sequence of 
observation data up to time 𝑡௞. Let 𝜃 be the parameter vector to be calibrated. We define 𝜃௞ ∶ൌ 𝜃ሺ𝑡௞ሻ be 
the parameter vector 𝜃 at time 𝑡௞. Then the online calibration problem can be defined as 𝑝ሺ𝜃௞|𝑦଴:௞ሻ, i.e., 
computing the probability distribution of 𝜃௞ conditioned on the observation data 𝑦଴:௞. This is carried out in 
an iterative way: when new observation data become available at time 𝑡௞ାଵ, a new calibration is carried out 
to update the parameter estimate. 

To apply data assimilation to online model calibration, a common approach is to formulate it as a joint 
state-parameter estimation problem. In this approach, the to-be-estimated parameters are included as part 
of the state vector that needs to be estimated. Let 𝑥௞ be the 𝑛-dimensional state vector and 𝜃௞ be the ℎ-
dimensional parameter vector that need to be estimated online at step 𝑘. Typically, the set of parameters 
that need to estimated online is a small subset of all the parameters of a simulation digital twin. We define 

an augmented state vector 𝑥ො௞ by appending the parameter vector 𝜃௞ to the state vector 𝑥௞, i.e., 𝑥ො௞ ൌ ቀ
𝑥௞
𝜃௞
ቁ 

or  𝑥ො௞ ൌ ሺ𝑥ଵ,௞ , 𝑥ଶ,௞ ,⋯ , 𝑥௡,௞ ,𝜃ଵ,௞ , 𝜃ଶ,௞ ,⋯ ,𝜃௛,௞ሻ் , where 𝑥ො௞  is a 𝑛 ൅ ℎ  dimensional vector, 𝑥௜,௞ ሺ𝑖 ൌ
1, … ,𝑛ሻ is the 𝑖th element of the state vector, and 𝜃௝,௞ ሺ𝑗 ൌ 1, … ,ℎሻ is the 𝑗th element of the parameter 
vector. 

In data assimilation, a dynamic system is generally modeled as a dynamic state-space model that 
includes a state transition model and a measurement model. With the augmented state vector 𝑥ො௞, the state 
transition model can be defined as follows.  

 

𝑥ො௞ ൌ ቀ
𝑥௞
𝜃௞
ቁ ൌ 𝑓መ௞ሺ𝑥ො௞ିଵ,𝑢௞ , 𝛾௞ , 𝜁௞ሻ ൌ ൬

𝑓௞ሺ𝑥௞ିଵ,𝜃௞ିଵ,𝑢௞ , 𝛾௞ሻ
𝜃௞ିଵ ൅ 𝜁௞

൰.                  (1) 

 
This model includes two parts. The first part 𝑥௞ ൌ 𝑓௞ሺ𝑥௞ିଵ,𝜃௞ିଵ,𝑢௞ , 𝛾௞ሻ describes how the state 𝑥௞ 

evolves over time. For a simulation digital twin, the 𝑓௞ሺ ሻ is defined by the simulation model that specifies 
a systems’ state transition based on its previous state 𝑥௞ିଵ and the model parameters 𝜃௞ିଵ. The  𝑢௞ is the 
external input of the simulation model at step 𝑘, and 𝛾௞ is the process noise that models the uncertainty of 
the state transition. The second part 𝜃௞ ൌ 𝜃௞ିଵ ൅ 𝜁௞ models how the parameters 𝜃௞ evolve over time. A 
common approach is to add small random perturbations to the parameter values in each step of the transition 
(Liu and West 2001). Typically, the random perturbations are drawn from a zero-mean Gaussian 
distribution, i.e., 𝜁௞~𝑁ሺ0,𝑊௞ሻ, where 𝑊௞ is a diagonal covariance matrix for the Gaussian noises that has 
variance 𝜎௝

ଶ for the 𝑗th parameter. Adding random perturbations to the parameter values allows generating 
new parameter values in each step of the data assimilation. This supports robust estimation even when 
parameters’ initial values are far away from the true values. Large variances of the Gaussian noises lead to 
large changes of the parameter values in each step. Large variances may be necessary if the estimation has 
not converged or if one expects the parameter values change dynamically in a fast pace. Otherwise, small 
variances are preferred. For example, when a parameter under estimation is expected to be a static 
parameter, a small variance will lead to more stable estimation results. 

With the augmented state vector 𝑥ො௞, the measurement model is defined as  
 

 𝑦௞ ൌ 𝑔ො௞ሺ𝑥ො௞ , 𝜀௞ሻ ≝ 𝑔௞ሺ𝑥௞ , 𝜀௞ሻ,                     (2) 
 
where 𝑔ො௞ሺሻ maps from the augmented state vector 𝑥ො௞  to the observation data vector 𝑦௞ , and 𝜀௞  is the 
measurement noise. The 𝑔ො௞ሺ𝑥ො௞ , 𝜀௞ሻ is equivalent to the function 𝑔௞ሺ𝑥௞ , 𝜀௞ሻ that defines the mapping from 
the state 𝑥௞ to the observation data 𝑦௞. This is because the state space formulation of data assimilation 
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generally assumes the Markov property, which means the observation data 𝑦௞  at step k is completely 
defined by the state 𝑥௞ at that step. More explanations of the state transition model and measurement model 
described above can be found in Hu (2023a).  

The state space formulation described above allows us to carry out data assimilation to estimate the state 
and model parameters at the same time. In this work, we employ particle filters to carry out data 
assimilation. Particle filters are a set of algorithms that use the Monte Carlo techniques to realize sequential 
Bayesian filtering. They are non-parametric filters that work well with simulation models with discrete or 
hybrid states. They also have the advantage of working with systems that have non-linear non-gaussian 
behaviors, which is the case for many simulation models. Specifically, we choose to use the bootstrap filter 
algorithm (Doucet et al. 2001; Arulampalam et al. 2002) to carry out data assimilation. The bootstrap filter 
algorithm uses the state transition model to evolve particles during the sampling step. For the joint state-
parameter estimation problem, the state transition model is defined by Equation (1) described above. 
Another major advantage of the bootstrap algorithm is that it simplifies the computation of particles’ 
importance weights, where the weight is defined by the likelihood probability that can be computed from 
the measurement model (Equation (2)). 

In particle filtering, the belief distribution of the state under estimation is represented by a set of samples, 
each of which is called a particle. A particle is a concrete instantiation of the augmented state vector 𝑥ො. Let 

ሼ𝑥ො௞
ሺଵሻ, 𝑥ො௞

ሺଶሻ,⋯ , 𝑥ො௞
ሺேሻሽ be the set of particles representing the posterior distribution 𝑝ሺ𝑥ො௞|𝑦ଵ:௞ ,𝑢ଵ:௞ሻ at time 

step 𝑘, where 𝑁 is the size of the particle set. The bootstrap algorithm has a standard algorithmic structure 
that includes three sub-steps in each data assimilation step: 1) sampling, 2) importance weight computation, 
and 3) resampling. The sampling step evolves each particle to a new state using the state transition model 
(Equation (1)). The outcome of the sampling step is a set of particles representing the prior distribution of 
the state estimate. Then the importance weight of each particle is computed according to its likelihood 
probability of observing the observation data at this step. A higher likelihood probability leads to a larger 
weight and a lower likelihood probability leads to a smaller weight. After all particles’ weights are 
computed, a set of weighted particles are formed, which act as an intermediate approximation for the 
posterior distribution at step 𝑘. Subsequently, the resampling step selects the particles according to their 
importance weights. The particles with large weights are selected multiple times while the particles with 
small weights may be eliminated. The set of resampled particles represent the final posterior distribution of 
the state at this step, which also serve as the input for the next iteration of the bootstrap filter algorithm. 
More details about the bootstrap filter algorithm and its implementation for data assimilation can be found 
in Hu (2023a; 2023b) and Hu and Yan (2024). 

Initialization of the bootstrap filter algorithm needs to generate 𝑁 initial particles following the belief 
of the initial state. When knowledge about the initial state is available, the initial set of particles can be 
generated using that knowledge. Otherwise, a common practice is to generate the initial particles randomly 
covering a wide state space in a uniform way. For the model parameters that need to be calibrated online, 
their initial values may be sampled around the baseline values based on an offline model calibration. 

2.2 The Combination Effect of Multiple Model Parameters 

The problem formulation and particle filter-based data assimilation described above are applicable to both 
single-parameter and multi-parameter calibration. Compared to calibrating a single parameter, calibrating 
multiple parameters works with a higher dimensional augmented state vector, which makes it more difficult 
for the data assimilation to converge to the true state/parameter values. More importantly, multi-parameter 
calibration brings another challenge: there may exist multiple combinations of parameter values that make 
a physical system to exhibit the same or similar observation data. In this case, the true parameter values of 
the physical system cannot be effectively inferred or distinguished from the observation data. This issue 
was also reported in an earlier work of parameter calibration for wildfire spread simulation (Bai et al. 2011).   
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To better illustrate this issue, we consider a simplified version of the one-way traffic control system that 
will be described in Section 3. This simplified one-way traffic control system includes a road segment 
controlled by a traffic light. The system assigns green light to the west-to-east moving direction for a 
duration of 𝑇ௐଶா, and then switch to the east-to-west direction for a duration of 𝑇ாଶௐ. It then switches back 
and repeats the cycle. During a green light, cars move through the road segment one by one: a car enters 
into the road segment only after its front car has finished crossing the road segment. It takes a constant time 
(denoted as 𝑇௖௔௥) for all cars to move across the road segment. The observation data is the number of cars 
that finish crossing the road segment from west to east (denoted as 𝑦ௐଶா

ௗ௘௣௔௥௧) in a 30-second time interval, 
and these data are collected every 30 seconds starting from time 0.  

In this example, the 𝑇ௐଶா, 𝑇ாଶௐ, and 𝑇௖௔௥ are parameters of the one-way traffic control system, and the 
𝑦ௐଶா
ௗ௘௣௔௥௧ is the observation data. During rush hours when there are many cars on both sides of the road 

segment, the number of cars that can cross the road segment in a 30-second time interval is directly related 
to the green light duration of the corresponding direction within the 30-second interval as well as the time 
for a car to cross the road segment. Figure 1 shows the 𝑦ௐଶா

ௗ௘௣௔௥௧  observation data (blue line) for two cases 
that have different parameters: 1) Case 1: 𝑇௖௔௥ ൌ 4.0𝑠, 𝑇ாଶௐ ൌ 40𝑠, 𝑇ௐଶா ൌ 20𝑠, and 2) Case 2: 𝑇௖௔௥ ൌ
5.0𝑠, 𝑇ாଶௐ ൌ 35𝑠, 𝑇ௐଶா ൌ 25𝑠. As can be seen, the two cases have the exactly same 𝑦ௐଶா

ௗ௘௣௔௥௧: the first data 
point (at time=30s) is 5 and the second data point (at time=60s) is 0, and then the remaining data points 
repeat the 5-0-5-0…cycle. This is because in Case 1 the west-to-east green light is 20s and it takes 4.0s for 
a car to cross the road segment. Thus, in the first 30s only 5 cars can cross the road segment from west to 
east; and in the second 30s no car can cross the road segment from west to east because the traffic light is 
in the opposite direction. In Case 2 the west-to-east green light is 25s and it takes 5.0s for a car to cross the 
road segment. Again, 5 cars can cross the road segment from west to east in the first 30s, and 0 car can 
cross the road segment from west to east in the second 30s. This is the same as in Case 1. In both cases, a 
new traffic light cycle starts at time=60s that repeats the observation data from the previous cycle.   

 

 
Figure 1: Observation data for two cases with different parameter values. 

 
For this system, there exist many other combinations of parameter values that result in the same 𝑦ௐଶா

ௗ௘௣௔௥௧  
(i.e., 5-0-5-0-5-0…) as shown in Figure 1. For example, the combination of 𝑇ௐଶா ൌ 30𝑠, 𝑇ாଶௐ=30s, and 
𝑇௖௔௥ ൌ 6.0𝑚/𝑠 will also make the 𝑦ௐଶா

ௗ௘௣௔௥௧ be 5-0-5-0…. In fact, as long as 𝑇ௐଶா ൑ 30𝑠, and 𝑇ௐଶா/𝑇௖௔௥ ൌ
5, and 𝑇ௐଶா ൅ 𝑇ாଶௐ ൌ 60𝑠, then the 𝑦ௐଶா

ௗ௘௣௔௥௧ will be the same as shown in Figure 1.  
The fact that there exist two or more combinations of parameters that result in the same observation data 

means that it is impossible to determine the exact parameter values from observation data. In the above 
example, we assume the observation data has zero noise and the system has deterministic behavior (e.g., 
all cars use the same constant time to cross the road segment and the traffic light has a fixed schedule). To 
complicate things further, observation data are noisy and there exists uncertainty in system behavior. The 
noisy observation data and uncertain system behavior bring more challenges for precisely estimating the 
true parameter values from observation data. A major advantage of particle filter-based data assimilation is 
that it can represent multimodal distributions or other arbitrary distributions that are needed for handling 
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the combination effect of multiple parameters. For example, when there are two possible combinations of 
parameter values, particles will represent a bimodal distribution that has two local peaks. When there are 
multiple or infinite combinations of parameter values, the corresponding distributions can be represented 
by particles too. This will be demonstrated by the experiment results in Section 4.2.  

The challenge associated with the combination effect of multiple parameters is closely related to the 
limited observability of observation data used in data assimilation. In the above example, the observation 
data 𝑦ௐଶா

ௗ௘௣௔௥௧ carries limited information that is insufficient to distinguish the parameter values. When this 
happens, other observation data (if available) may be used to help distinguish the parameter values. For 
example, let us assume the observation data (denoted as 𝑦ாଶௐ

ௗ௘௣௔௥௧) of the number of cars that finish crossing 
the road segment from east to west in every 30s is also available, as shown in Figure 1 (red line). One can 
see that the two cases have different 𝑦ாଶௐ

ௗ௘௣௔௥௧: Case 1’s 𝑦ாଶௐ
ௗ௘௣௔௥௧ are 2-8-2-8…, and Case 2’s 𝑦ாଶௐ

ௗ௘௣௔௥௧ are 1-

6-1-6… When assimilating both data of 𝑦ௐଶா
ௗ௘௣௔௥௧  and 𝑦ாଶௐ

ௗ௘௣௔௥௧ , the data assimilation should be able to 
distinguish the two cases from one to another. Section 4.2 shows some results to demonstrate this.   

3 THE CASE STUDY EXAMPLE 

We consider a one-way traffic control system as illustrated in Figure 2, which is adapted from the example 
originally described in Hu (2022). During road construction, the one-way traffic control is managed by two 
persons deployed to the west and east ends of the road segment. Each person carries a STOP/SLOW hand-
held traffic paddle to control the traffic, where the STOP sign means cars should stop and wait, and the 
SLOW sign means cars can slowly move ahead to pass the road segment. It is assumed that the two persons 
coordinate and always use the STOP/SLOW signs in opposite directions. In the following description, we 
refer to the STOP sign as the red traffic light and the SLOW sign as the green traffic light, and refer to cars’ 
moving directions as west-to-east (also called east-moving) and east-to-west (also called west-moving). 
During the time when the traffic light is green on a specific direction, the arrival cars moving in the opposite 
direction are queued. The queues at the west side and east side of the road segment are named as the west-
side queue and east-side queue, respectively.  The cars at both sides of the road segment arrive randomly 
and independently, modeled by two Poisson distributions that have arriving rates of 𝜆௘௔௦௧ெ௢௩ and  𝜆௪௘௦௧ெ௢௩ 
for the east-moving and west-moving cars, respectively.  

 

 
Figure 2: The one-way traffic control system. Adapted from Hu (2022). 

 
To ensure safety, only one car is allowed to move on the road segment at any time. The time it takes for 

a car to cross the road segment is modeled as a random number drawn from a truncated normal distribution 
that has mean 𝑇௖௔௥ (seconds), variance 𝜎ଶ ൌ 0.5ଶ, and lies within the range of [𝑇௖௔௥ െ 1, 𝑇௖௔௥ ൅ 1]. During 
a green light period, the traffic-control person on the corresponding side would signal a car to move ahead 
only after the previous car has finished crossing the road segment. The traffic control system switches the 
traffic lights using two rules: 1) Rule 1: switch the traffic light if the elapsed time for the current moving 
direction reaches a pre-defined threshold. The pre-defined thresholds for the west-to-east and east-to-west 
moving directions may be different, described by two parameters 𝑇௪ଶா  and 𝑇ாଶௐ, respectively. 2) Rule 2: 
if the current moving direction has no car waiting and the opposite direction has cars waiting, switch the 
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traffic light even if the pre-defined time threshold has not reached. We note that in both cases, the traffic 
light switches only after the road segment is cleared if there is already a car moving on the road. 

A discrete event simulation model was developed to model this system based on the DEVS formalism 
(Zeigler et al. 2000). The DEVS model includes three atomic models: eastMovCarGenr, westMovCarGenr, 
and oneWayTrafficRoad. The eastMovCarGenr generates the east-moving traffic arriving at the west side 
of the road segment. The westMovCarGenr generates the west-moving traffic arriving at the east side of 
the road segment. The oneWayTrafficRoad models the one-way traffic road segment, including the traffic 
control logic as well as the time for cars to cross the road segment. This model has two input ports 
eastMovArrival and westMovArrival that receive cars generated from the eastMovCarGenr and 
westMovCarGenr, respectively. The cars finishing crossing the road segment are sent out through the 
eastMovDeparture and westMovDeparture output ports.  

The oneWayTrafficRoad model use several parameters. In this study, we consider the following three 
parameters as candidates of online model calibration: 

 𝑇௖௔௥: this parameter specifies the average time for a car to cross the road segment.  
 𝑇ௐଶா: this parameter specifies the threshold for the traffic light to switch from west-to-east direction 

to east-to-west direction under Rule 1. 
 𝑇ாଶௐ: this parameter specifies the threshold for the traffic light to switch from east-to-west direction 

to west-to-east direction under Rule 1.  
 To collect observation data from the system, observers (sensors) are deployed at the west-side and east-
side locations as marked in Figure 2. The east-side observer is able to count the number of cars moving 
crossing its location for the west-to-east departure cars (denoted as 𝑦ௐଶா

ௗ௘௣௔௥௧ ) and east-to-west arrival cars 
(denoted as 𝑦ாଶௐ

௔௥௥௜௩௔௟). Similarly, the west-side observer is able to count the number of cars moving crossing 
its location for the east-to-west departure cars (denoted as 𝑦ாଶௐ

ௗ௘௣௔௥௧ ) and west-to-east arrival cars (denoted 
as 𝑦ௐଶா

௔௥௥௜௩௔௟). Each observer reports data every 30 seconds. It does not record the specific time that a car 
crosses the observation location – all it reports is the total number of cars that have departed and arrived in 
the past time interval. The data reported by the observer is noisy, with a 10% noise added to the actual 
number of cars crossing the observer location. 

4 EXPERIMENT RESULTS 

We use the identical twin experiment (Hu 2023a; Hu and Yan 2024) to evaluate the data assimilation for 
online parameter calibration. In the identical twin experiment, a simulation is first run to represent the 
“physical system” under study. The observation data obtained from this simulation are regarded as the 
observation data collected from the physical system, and the state trajectory recorded and parameters used 
in this simulation are considered the “true” state and “true” parameters, respectively. Using the collected 
observation data, data assimilation is then carried out and the state/parameter estimates are checked against 
the “true” state/parameters. In this work, the first simulation that serves as the physical system is based on 
the same simulation model as the one used in data assimilation. Nevertheless, it has different model 
configurations including different initial condition, input trajectories of west-side and east-side car arriving, 
and random number seeds. More importantly, it uses model parameters that are “unknown” to the data 
assimilation. The goal of data assimilation for online model calibration is to estimate the unknown model 
parameters of the physical system based on real-time data that are collected from the physical system.  

The data assimilation carries out joint state-parameter estimation. For the one-way traffic control 
system, the state variables that need to be estimated include the westSideQueue size and eastSideQueue 
size, the traffic light state (i.e., red or green), and the elapsed time in the current traffic light state. Our 
previous work (Hu and Yan 2024) has reported results on joint state-parameter estimation involving a single 
parameter for this system. We observed similar state estimation results when carrying out joint state-
parameter estimation involving multiple parameters. Due to this reason, in the following experiments we 
skip the state estimation results and focuses only on the results for the multiple parameters.   
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In all the experiments except for the ones in Section 4.2, the Poisson distributions used to generate 
incoming cars have the arriving rates 𝜆௘௔௦௧ெ௢௩ ൌ 1/9 (1 car per 9 seconds in average) and  𝜆௪௘௦௧ெ௢௩ ൌ
1/7 (1 car per 7 seconds in average). With these arriving rates, in the beginning there are not many cars on 
either side of the road segment. The small number of cars means that the traffic light can switch frequently 
in the beginning because once one side has no car waiting, the traffic light switches even when the elapsed 
time has not reached 𝑇ௐଶா  or 𝑇ாଶௐ (due to the Rule 2 described in Section 3). This makes it difficult for 
the data assimilation to infer the true 𝑇ௐଶா  and 𝑇ாଶௐ  in the beginning, as will be observed from the 
experiment results. All the experiments in this section use the data assimilation step of 30s, which is the 
same as how often observation data are collected. We run 200 steps of data assimilation (6000s) for all the 
experiments. Except for the last experiment in Section 4.2, all experiments assimilate only the observation 
data collected from the east-side observer, i.e., 𝑦ௐଶா

ௗ௘௣௔௥௧ and 𝑦ாଶௐ
௔௥௥௜௩௔௟ . In all the experiments, the particle 

filter algorithm uses 5000 particles.  

4.1  Online Calibration of Two and Three Parameters 

Our first experiment studies online model calibration involving two parameters. In this experiment, the one-
way traffic control system uses the same time threshold for the traffic light to switch from west to east and 
from east to west. In other words, the system uses only one parameter that is shared by 𝑇ௐଶா  and 𝑇ாଶௐ. For 
simplicity, we refer to this parameter as 𝑇௧௥௔௙௙௜௖௅௜௚௛௧. This parameter and the other parameter 𝑇௖௔௥ of the 
physical system are unknow and need to be estimated in real time based on real-time observation data. 

To set up the experiment, we make the physical system use different combinations of 𝑇௖௔௥  and 
𝑇௧௥௔௙௙௜௖௅௜௚௛௧  to generate observation data. Four combination cases are considered, including: Case 1: 
𝑇௖௔௥ ൌ 4.0𝑠 and 𝑇௧௥௔௙௙௜௖௅௜௚௛௧ ൌ 90𝑠; Case 2: 𝑇௖௔௥ ൌ 4.0𝑠 and 𝑇௧௥௔௙௙௜௖௅௜௚௛௧ ൌ 150𝑠; Case 3: 𝑇௖௔௥ ൌ 5.0𝑠 
and 𝑇௧௥௔௙௙௜௖௅௜௚௛௧ ൌ 90𝑠; and Case 4: 𝑇௖௔௥ ൌ 5.0𝑠 and 𝑇௧௥௔௙௙௜௖௅௜௚௛௧ ൌ 150𝑠. Figure 3 shows the parameter 
estimation results for the four combination cases, each of which includes two charts. The top shows the 
result for the 𝑇௖௔௥ parameter, and the bottom shows the result for the 𝑇௧௥௔௙௙௜௖௅௜௚௛௧ parameter. In each chart, 
the horizontal axis represents the time (seconds) and the vertical axis represents the corresponding 
parameter value. The blue line (denoted with a “true_” prefix) is the true parameter value from the physical 
system that needs to be estimated. The red line (denoted with a “ave_” prefix) is the estimation result from 
the data assimilation. The estimation result in each step is averaged from all the particles of that step. 

 

 
Figure 3: Online calibration of two model parameters. 

 
As can be seen, in all the cases, the estimates converge to the true parameter values within some error 

bounds after some time. The time of convergence is different. For the case of 𝑇௖௔௥ ൌ 4.0𝑠  and 
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𝑇௧௥௔௙௙௜௖௅௜௚௛௧ ൌ 90𝑠, it takes about 1000s for the 𝑇௧௥௔௙௙௜௖௅௜௚௛௧ to converge to the true state. For the case of 
𝑇௖௔௥ ൌ 4.0𝑠 and 𝑇௧௥௔௙௙௜௖௅௜௚௛௧ ൌ 150𝑠, it takes about 2000s to converge. The longer convergence time is 
due to the fact that when 𝑇௧௥௔௙௙௜௖௅௜௚௛௧ ൌ 150𝑠, it is easier for all the waiting cars on one side to finish 
crossing the road segment, and thus make the traffic light switch earlier. The early switch of traffic light 
makes it more difficult to infer that the 𝑇௧௥௔௙௙௜௖௅௜௚௛௧ is actually150s. A similar pattern can be observed 
when 𝑇௖௔௥ ൌ 5.0𝑠. Comparing the cases of 𝑇௖௔௥ ൌ 4.0𝑠 and 𝑇௖௔௥ ൌ 5.0𝑠, we can see that the 𝑇௖௔௥ ൌ 5.0𝑠 
cases converge earlier. This is because cars move faster when 𝑇௖௔௥ ൌ 4.0𝑠, which makes it more likely for 
all the cars on one side to finish crossing the road segment, and thus make the traffic light switch earlier.  

The results shown in Figure 3 are based on four specific data assimilation runs. To quantitatively show 
the effectiveness of the parameter estimation, for each case we carry out 20 independent data assimilation 
runs and compute the Root Mean Square Error (RMSE) of the data assimilation results. The RMSE is 
calculated based on the differences between the estimated parameter and the true parameter, averaged from 
all 20 runs and from all the particles. The RMSE of the two parameters for the fours combination cases 
described above are: Case 1: RMSE_𝑇௖௔௥ = 0.6, RMSE_𝑇௧௥௔௙௙௜௖௅௜௚௛௧= 3.6; Case 2: RMSE_𝑇௖௔௥ = 0.6, 
RMSE_𝑇௧௥௔௙௙௜௖௅௜௚௛௧= 4.2; Case 3: RMSE_𝑇௖௔௥ = 0.6, RMSE_𝑇௧௥௔௙௙௜௖௅௜௚௛௧= 2.5; Case 4: RMSE_𝑇௖௔௥ = 
0.6, RMSE_𝑇௧௥௔௙௙௜௖௅௜௚௛௧= 2.9. As can be seen, they are all relatively small, indicating the effectiveness of 
the data assimilation for the online parameter calibration.  

Our next experiment studies online model calibration involving three parameters. To set up the 
experiment, we make the physical system use different combinations of 𝑇௖௔௥, 𝑇ாଶௐ and 𝑇ௐଶா  to generate 
observation data. The 𝑇௖௔௥, 𝑇ாଶௐ and 𝑇ௐଶா  are unknown to the data assimilation and need to be estimated 
based on real-time observation data. Figure 4 shows a specific simulation run for the case when the true 
𝑇௖௔௥ ൌ 4.0𝑠, 𝑇ாଶௐ ൌ 120𝑠, and 𝑇ௐଶா ൌ 80𝑠. Similar as in Figure 3, the blue line is the true parameter 
value and the red line is the estimation result from the data assimilation. The estimation result in each step 
is averaged from all the particles of that step. 
 

 
Figure 4: Online calibration of three parameters. The true 𝑇௖௔௥ ൌ 4.0𝑠, 𝑇ாଶௐ ൌ 120𝑠, 𝑇ௐଶா ൌ 80𝑠. 

 
One can see that the estimated 𝑇௖௔௥, 𝑇ாଶௐ and 𝑇ௐଶா all converge to the corresponding true values after 

some time and stayed close to the true values for the rest of the data assimilation. Specifically, it took less 
than 200s for the estimated 𝑇௖௔௥ to converge to the true value, and it took a bit more than 1000s for the 
estimated 𝑇ாଶௐ  and 𝑇ௐଶா  to converge the true values. We note that the time for the 𝑇ாଶௐ  and 𝑇ௐଶா  to 
converge is significantly influenced by the number of cars arriving at the west or east side of the road 
segment. When there is less cars arriving, the traffic light can switch early frequently, making it more 
difficult for the 𝑇ாଶௐ and 𝑇ௐଶா  to converge (due to the same reason as explained for the two-parameter 
cases). Again, to quantitatively show the parameter estimation results, we carry out 20 independent data 
assimilation runs for this case of 𝑇௖௔௥ ൌ 4.0𝑠, 𝑇ாଶௐ ൌ 120𝑠, and 𝑇ௐଶா ൌ 80𝑠 and compute the RMSE 
values. The results are: RMSE_𝑇௖௔௥ = 0.6, RMSE_𝑇ாଶௐ= 4.3, and RMSE_𝑇ௐଶா=4.3.  

4.2 Studying the Combination Effect of Multiple Parameters  

This experiment evaluates and demonstrates how the particle filter-based data assimilation works when 
there exists the combination effect of multiple parameters as described in Section 2.2. To set up this 
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experiment, we make the physical system have the same parameters as the ones described in Section 2.2. 
Specifically, we consider two cases of the physical system that have the following parameters: 1) Case 1: 
𝑇௖௔௥ ൌ 4.0𝑠, 𝑇ாଶௐ ൌ 40𝑠, 𝑇ௐଶா ൌ 20𝑠, and 2) Case 2: 𝑇௖௔௥ ൌ 5.0𝑠, 𝑇ாଶௐ ൌ 35𝑠, 𝑇ௐଶா ൌ 25𝑠. For the 
illustrative example described in Section 2.2, these two sets of parameters make the system generate exactly 
the same 𝑦ௐଶா

ௗ௘௣௔௥௧. The one-way traffic control system considered in this experiment is more complex than 
the illustrative example from Section 2.2, due to the following factors: 1) observation data is noisy; 2) cars 
arrive randomly; 3) traffic light can switch early if the current direction has no car waiting; 4) the time to 
cross the road segment is a random number; and 5) traffic light switches only after the road segment is 
cleared if there is a car already on the road. This last factor means in most cases the actual green time is 
longer than 𝑇ௐଶா  (or 𝑇ாଶ୛) because when 𝑇ௐଶா  (or 𝑇ாଶ୛) is reached the traffic light still needs to stay in 
green until the car (if any) on the road segment finishes crossing it. For better demonstration, in this 
experiment both the west side and east side have high car arriving rates: 𝜆௘௔௦௧ெ௢௩ ൌ 1/2 and 𝜆௪௘௦௧ெ௢௩ ൌ
1/2. With these high arriving rate, both sides of the road segment can quickly accumulate a large number 
of cars that need to cross the road segment. As a result, the complexity associated with the factors 2) and 
3) described above is minimized.  

Figure 5 shows the observation data 𝑦ௐଶா
ௗ௘௣௔௥௧  and 𝑦ாଶௐ

ௗ௘௣௔௥௧  for a typical run of the two cases of the 

physical system. As can be seen, the 𝑦ௐଶா
ௗ௘௣௔௥௧  data between the two cases are different, which are also 

different from what was shown in Figure 1. These differences are due to the noisy observation data and the 
complexity and uncertainty associated with the system behavior as explained above. Despite the 
differences, one can see that there is significant similarity between the two cases’ 𝑦ௐଶா

ௗ௘௣௔௥௧. This similarity 
of observation data will make it difficult for the data assimilation to distinguish the two sets of parameters 
during online model calibration. 

  

 
Figure 5: Observation data for two cases of the physical system that have different parameters. 

 
We carry out particle filter-based data assimilation to estimate the three parameters for the two cases. 

We first assimilate only the observation data 𝑦ௐଶா
ௗ௘௣௔௥௧ and 𝑦ாଶௐ

௔௥௥௜௩௔௟. Figure 6 shows the estimation results 
for the three parameters 𝑇ௐଶா , 𝑇ாଶௐ , 𝑇௖௔௥  for both cases. Similar as before, the blue line is the true 
parameter value and the red line is the estimation result, which is averaged from all the particles in each 
step. As can be seen, in both cases, the 𝑇௖௔௥  and 𝑇ாଶௐ  have relatively large errors. Specifically, the 
estimated 𝑇௖௔௥ is larger than the true 𝑇௖௔௥ for both cases, and the estimated 𝑇ாଶௐ is smaller than the true 
𝑇ாଶௐ for both cases. Compared to 𝑇௖௔௥ and 𝑇ாଶௐ, the estimated 𝑇ௐଶா has relatively small error but still 
does not converge to the true value – it is larger than the true value for both cases.  

 The results from Figure 6 show that the particles did not converge to the true parameter values. This is 
due to the combination effect of the multiple parameters as described in Section 2.2. Since there exist 
multiple combinations of parameter values that can produce similar 𝑦ௐଶா

ௗ௘௣௔௥௧as the ones sown in Figure 5, 
all these combinations of parameter values are represented by the particles during data assimilation. When 
this happens, one should not rely on the average from all the particles as the data assimilation results, 
because the posterior distribution represented by the particles is not a typical normal distribution. To further 
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check this, Figure 7(a) shows the histogram of all the particles’ estimates for  𝑇௖௔௥ at step 100 (time=3000s) 
for the Case 2 when assimilating only the east-side observation data 𝑦ௐଶா

ௗ௘௣௔௥௧ and 𝑦ாଶௐ
௔௥௥௜௩௔௟. As can be seen, 

the posterior distribution represented by the particles spans a wide range between 4.1 to 7.6. In particular, 
it forms a plateau shape from 5.3 to 6.6, indicating that there is high likelihood for the 𝑇௖௔௥ to be any value 
in this range. We note that the true 𝑇௖௔௥ ൌ 5.0 does not have the highest representation by the particles but 
still has a significant representation.  

 

 
Figure 6: Parameter estimation when there exists combination effect of multiple parameters. 

 

 
Figure 7: Histogram of particles’ estimates of 𝑇௖௔௥. 

 

 
Figure 8: Parameter estimation by assimilating both the east- and west-side observation data. 

 
As mentioned before, one way to address the combination effect of multiple parameters is to assimilate 

more observation data. To demonstrate this, we assimilate the observation data from both the east- and 
west-side observers. Figure 8 shows the estimation results for Case 2 (results for Case 1 is omitted to save 
space). Compare these results with the Case 2 results in Figure 6, one can see that the results have 
significantly improved. All the three parameters were able to quickly converge to the true values. Figure 
7(b) shows the histogram of all the particles’ estimates for  𝑇௖௔௥ at step 100 when assimilating observation 
data from both sides of the observers. Compared to the histogram of Figure 7(a), the posterior distribution 
represented by the particles in Figure 7(b) is roughly a normal distribution with a much narrow span 
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(between 4.1 and 5.8). Furthermore, the mean of this normal distribution correctly lies at the true value of 
5.0. This means the particles have correctly converged to the true parameter value. 

5 CONCLUSION 

This paper applies a particle filter-based data assimilation framework to online calibration of simulation 
digital twin models. Experiment results show that the data assimilation can effectively support online 
calibration of multiple model parameters using real-time observation data. The results also demonstrate the 
challenge associated with the combination effect of multiple parameters and its impact on data assimilation. 
This asks for rigorous approaches to handle the challenge of the combination effect of multiple parameters 
in future work. Other future works include more in-depth analysis of multi-parameter calibration under 
various situations, and development and evaluation of dynamic parameter calibration.  
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