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ABSTRACT

Hypertension is a crucial controllable risk factor of atherosclerotic cardiovascular disease, a leading cause
of death in the United States. While traditional analytic techniques may capture the complexities of
hypertension treatment planning, they generally provide unintuitive treatment recommendations. This
paper aims to advance the acceptance of analytic techniques in clinical practice by presenting a method to
obtain interpretable treatment plans. To this end, we introduce the monotone Q-learning algorithm, which
guarantees policies are nondecreasing on patients’ health severity by limiting the exploration of treatment
choices and solving simple integer programs. We represent a set of clinically representative patient profiles
through Markov decision process models and compare the performance of our approximately optimal
monotone policies with the optimal policy, optimal monotone policy, and current clinical guidelines. The
approximately optimal monotone policies outperform the current clinical guidelines while displaying small
losses in quality-adjusted life years compared to the optimal policy.

1 INTRODUCTION

Atherosclerotic cardiovascular disease (ASCVD), mainly manifested through heart attacks and strokes,
is a leading cause of death in the United States (Kochanek et al. 2024). National statistics report that
coronary heart disease, primarily expressed as heart attacks, and stroke account for 40.3% and 17.5% of
deaths attributable to cardiovascular diseases, respectively (Martin et al. 2024). Hypertension or high blood
pressure (BP) is a vital controllable risk factor of ASCVD, which affects 46.7% of adults in the United
States (Martin et al. 2024). Effective hypertension management is key to reducing adverse ASCVD events.

Hypertension treatment guidelines play a critical role in BP management (Whelton et al. 2018). These
guidelines are often developed based on the judgment of experts aiming to synthesize the latest research and
clinical evidence. Nevertheless, expert-designed guidelines may not fully capture all the risks, benefits, and
uncertainties inherent to treatment planning. Moreover, they may be considered subjective and controversial
(Cohen and Townsend 2018; Solberg and Miller 2018; Ioannidis 2018). Conversely, analytic techniques
may better capture the complexities of treatment planning and have outperformed clinical guidelines in
simulation studies (Steimle et al. 2021; Bonifonte et al. 2022). Unfortunately, these techniques may
generate complicated or unintuitive treatment recommendations (Lakkaraju and Rudin 2017). Despite their
potential effectiveness in reducing ASCVD events, a lack of interpretability can limit the usability and
acceptance of analytic techniques in clinical practice (Sethi et al. 2020; Wang et al. 2020).

In this paper, we aim to advance the acceptability of analytic techniques in clinical practice by presenting
a method to obtain interpretable treatment plans. We consider the setting when patients’ health dynamics
are unknown or highly complex but can be estimated through simulation. This setting considers the
problem of finding the best treatment plan among alternatives amenable to human intuition and cognition,
based on patients’ simulated health trajectories and treatment effects. Based on the input from our clinical
collaborators, we define a hypertension treatment plan as interpretable if it is monotone (i.e., it does not
decrease in intensity as a patient gets older or as their health worsens).
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Due to their wide adoption in the healthcare literature, we focus on interpretable treatment plans
obtained by solving Markov decision process (MDP) models (Puterman 2014). The literature on MDP
models in healthcare applications is abundant. Recent examples in cardiovascular disease include research
by Steimle et al. (2021), Marrero et al. (2021), Bonifonte et al. (2022), and Garcia et al. (2024). Most
of these studies show that treatment plans attained through MDP models satisfying certain conditions are
intrinsically interpretable. Unfortunately, the sufficient conditions that guarantee an interpretable optimal
policy are often violated to some degree in clinical practice. Closer to our work, Garcia et al. (2024)
use mixed integer programming to obtain monotone policies for hypertension treatment given an exact
representation of patients’ health evolution. We build upon this prior work by presenting a method to design
monotone treatment plans within the model-based reinforcement learning field (Shakya et al. 2023).

Although the literature on interpretable reinforcement learning is vast (Glanois et al. 2024), there has been
limited research on monotone policies as a definition for interpretability. Most work on monotone policies
in reinforcement learning focuses on threshold learning. Within the context of healthcare applications,
Hu et al. (2018) propose an approach to find health condition thresholds for mobile physical activity
recommendations using Q-learning with function approximation (Murphy 2005). Bertsimas et al. (2022)
present optimal policy trees for personalized threshold learning in mobile health behavioral interventions.
Outside of healthcare applications, Roy et al. (2019) and Roy et al. (2022) consider the problem of
structure-aware online learning and show the asymptotic optimality of their threshold policies. Liu and
Mitra (2020) modify the standard Q-learning algorithm (Watkins and Dayan 1992) by estimating the optimal
policy in a subset of the original problem given the knowledge that it has a threshold structure. In contrast
to these studies, our proposed approach extends past learning a threshold among binary alternatives into
monotonicity across an arbitrary finite number of treatment options.

Beyond thresholds among binary choices, Ngo and Krishnamurthy (2010) provide conditions that
guarantee an optimal policy is a mixture of two monotonically increasing threshold policies. Djonin and
Krishnamurthy (2007) and Fu and Van Der Schaar (2012) exploit the monotonicity exhibited by optimal
solutions to derive learning algorithms that preserve this structural property. Furthermore, Roy et al. (2020)
harness the known monotonicity of an optimal policy to enhance the convergence speed of a learning
algorithm. While these studies focus on finding monotone policies given prior knowledge of the problem,
we center on learning the best monotone policy despite no known structural properties.

1.1 Contributions

This research extends the existing work on monotone policies (Garcia et al. 2024) by exploring cases where
patients’ health progression is not fully known and can be estimated through simulation. Our approach
builds upon the standard Q-learning algorithm (Watkins and Dayan 1992) and constrained optimization.
The primary contributions of this research are summarized as follows:

1. A new model-based Q-learning algorithm that guarantees monotone policies in each iteration,
which we will refer to as monotone Q-learning. This algorithm restricts the exploration of standard
Q-learning (Watkins and Dayan 1992) by leveraging the requirement that the intensity of treatment
must not decrease as a patient’s health worsens. In addition, it ensures that the approximately
optimal treatment plan obtained is monotone by solving a simple integer program.

2. Application of our monotone Q-learning method to personalized hypertension treatment
planning. Using a set of clinically representative patient profiles, we provide interpretable decision
support that is personalized to each patient’s characteristics.

3. Comparison of our monotone Q-learning to methods in the literature within the context of
hypertension treatment planning. We compare the performance of our proposed method to the
optimal and optimal monotone policies (Garcia et al. 2024) as well as the most recent clinical
guidelines (Whelton et al. 2018).
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1.2 Organization of the Paper

The remainder of this paper is organized as follows. We begin by presenting our modeling framework and
defining the monotone treatment planning problem in Section 2. In Section 3, we introduce our monotone
Q-learning algorithm. Section 4 presents our numerical analysis applying the monotone Q-learning method
for the management of hypertension. Lastly, Section 5 discusses conclusions and future research directions.

2 MODELING FRAMEWORK

In this section, we describe our MDP formulation for hypertension treatment planning. A patient’s health
is modeled through a finite number of states S = {1, . . . ,S} comprising their demographic information,
clinical observations, and overall health condition to account for their history of cardiovascular events. At
each year t ∈T = {0,1, . . . ,T}, a decision-maker observes the state st ∈S and prescribes a finite number
of antihypertensive medications at ∈A = {1, . . . ,A}. Once treatment at is prescribed in state st at time t,
the health of the patient evolves to a new state st+1 according to a transition function st+1 = ft+1(st ,at ,ωt),
where ωt ∼U (0,1) is an independent and uniformly distributed random disturbance in (0,1) representing
the uncertainty in the state transition. The transition function is derived from patients’ risk for ASCVD
events, the benefit from treatment, ASCVD mortality, and non-ASCVD mortality. After transitioning to
state st+1, the patient receives a finite reward rt(st+1,at ,ωt) defined as the quality of life weight associated
with state st+1 minus the side effects from treatment at . The terminal reward rT (sT+1,ωT ) represents the
patients’ expected quality-adjusted life years (QALYs) after transitioning to a terminal health state sT+1, a
commonly used metric to quantify the quality and quantity of life a patient lives. Rewards are discounted
annually by γ ∈ (0,1). Given an initial state s, the decision-maker aims to design a treatment policy
π := (πt(st) : t ∈T \{T},st ∈S ) that maximizes the expected total discounted QALYs over the horizon:

Jπ(s) := Eπ

[
T−1

∑
t=0

γ
trt(st+1,πt(st),ωt)+ γ

T rT (sT+1,ωT )

∣∣∣∣s
]
,

where Eπ denotes the expectation following policy π with respect to the joint distribution of ω1, . . . ,ωT .
The optimal policy is given by π∗ = argmaxπ∈Π Jπ(s), where Π denotes the set of all admissible policies.
Splitting the problem into decision epochs, we obtain the set of dynamic programming equations:

Qt(st ,at) := Eπ
[
rt(st ,at ,ωt)+ γvt+1 ( ft+1(st ,at ,ωt)) |st ,at

]
,

where at = πt(st), vt(st) := maxat∈A Qt(st ,at) and vT (sT ) := E[rT (st ,ωt)|st ]. Starting from the terminal
period T and proceeding backward until the initial year 0, we can find an optimal decision rule π∗t (st) ∈
argmaxat∈A Qt(st ,at) at each year t to identify an optimal policy π∗ = (π∗t (st) : t ∈T \{T},st ∈S ).

2.1 Monotone Policies

In this paper, we are interested in learning treatment plans that maximize the expected total discounted
rewards over the planning horizon while leveraging the inherent interpretability of monotonicity. We assume
S and A are ordered and focus on the set of all admissible monotone policies ΠM ⊂Π defined as:
Definition 1 Under ordered states and actions, a monotone policy is a function π : S → A such that
π(st)≤ π(s′t) for all st ,s′t ∈S when st ≤ s′t .

Due to their ease of interpretation and implementation, monotone policies are typically appealing to
practitioners. For example, clinicians may find treatment policies more interpretable if they follow a natural
order, like increasing treatment intensity as patients’ health worsens. Similar to Garcia et al. (2024), our
goal is to determine the policy πM ∈ ΠM which achieves the greatest expected total discounted reward
without requiring any conditions on the MDP data. Formally, our optimization problem is given by:

π
M = argmax

π∈ΠM
Jπ(s).
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However, we do not presume perfect knowledge of the state transitions or rewards. We assume that these
two components in MDP models can be estimated through simulation instead.

3 MODEL-BASED Q-LEARNING FOR MONOTONE POLICIES

We now present our approach to learning monotone policies based on simulated health trajectories in
MDP models with ordered states and actions, referred to as monotone Q-learning. Our goal is to learn
an approximately optimal monotone policy π̂M from action-value function estimates Q̂t(st ,at) that are
updated through the exploration of actions taken according to a behavior policy b. Although we present our
algorithm within the context of hypertension treatment planning, the ideas extend beyond this application
and outside model-based learning. Our procedure is included as Algorithm 1.

Algorithm 1: Monotone Q-Learning.
Input : Let b be an ε-greedy policy with ε = 1.

Initialize N ∈ N, A −
t (st) = A, A +

t (st) = 1, and Q̂t(st ,at) = 0 for all st ∈S \S and
at ∈A .

1 for n← 1 to N do
2 Initialize s0.
3 for t = 0,1, . . . until st is terminal do
4 if st = 1 then
5 Set At(st)←{at ∈A : 1≤ at ≤A −

t (st +1)}
6 else if st = S then
7 Set At(st)←{at ∈A : A +

t (st −1)≤ at ≤ A}
8 else
9 Set At(st)←{at ∈A : A +

t (st −1)≤ at ≤A −
t (st +1)}.

10 end if
11 Set greedy← argmaxat∈A (st) Q̂t(st ,at).

12 Set ε ← 1
n+1 and let bt(at |st)←


1− ε + ε

|At(st)| if at = greedy
ε

|At(st)| if at ̸= greedy, at ∈At(st)

0 otherwise
13 Choose at ∼ bt(st), generate st+1← ft+1(st ,at ,ωt), and observe rt(st+1,at ,ωt).
14 Update Q̂t(st ,at) using equation (1) and set st ← st+1.
15 end for
16 end for
17 Obtain {xt(st ,at) : st ∈S ,at ∈A } from formulation (2) with {Q̂t(st ,at) : st ∈S ,at ∈A }.
18 Set π̂M

t (st)← argmaxat
xt(st ,at) for all st ∈S \S.

Output: {Q̂(s,a) : s ∈S ,a ∈A }, π̂M.

Before the algorithm starts, we initialize the action value function estimates Q̂t(st ,at) for all t, st , and
at . We then select a patient’s initial state s0 according to their characteristics prior to the decision-making
process in every simulated health trajectory n = 1, ...,N.

As no action has been taken before the first health trajectory n = 1, we initialize the set of permissible
treatment choices At(st) to the complete action space by setting A −

t (st) = A and A +
t (st) = 1. For each

health trajectory n > 1 and state 1 < st < S at year t = 0,1, ...,T − 1, we update the set of permissible
treatment choices as:

At(st)←{at ∈A : A +
t (st −1)≤ at ≤A −

t (st +1)},
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where A −
t (st +1) := min{āt(st +1), . . . , āt(S),A}, A +

t (st −1) := max{1, āt(1), . . . , āt(st −1)}, and āt(st)
denotes the last action taken at state st , provided it has been observed. When st = 1 or st = S, we replace
A +

t (st − 1) by 1 and A −
t (st + 1) by A, respectively. Through these sets, we restrict the exploration of

the algorithm to actions that are monotone in the state order. Subsequently, we identify an action that
maximizes the current estimate of the action-value function Q̂t(st ,at) at state st (i.e., a greedy action) and
update the behavior policy bt to only cover actions in At(st). We then select action at ∼ bt(st) according to
behavior policy bt at state st and simulate a realization of ωt ∼U (0,1). Next, we use at and ωt to generate
the next state st+1 = ft+1(st ,at ,ωt) and reward rt(st+1,at ,ωt). Based on this information, we update our
estimate of the action value function in state st as:

Q̂t(st ,at)← Q̂t(st ,at)+αn

([
rt(st+1,at ,ωt)+ γ max

at+1∈A
Q̂(st+1,at+1)

]
− Q̂t(st ,at)

)
(1)

where αn ∈ (0,1) is the learning rate of the algorithm at health trajectory n. We then let st+1← st and the
same procedure is repeated at time t +1 until T −1. Once the patient reaches this stage, their next state
action-value function is replaced by the terminal reward rT (sT+1,ωT ) and we proceed to the next health
trajectory simulation n+1.

To ensure the policy π̂M
t (st) obtained from the current action-value function estimates is monotone,

we solve the following binary integer program:

max
x ∑

t∈T \{T}
∑

st∈S
∑

at∈A
Q̂t(st ,at)xt(st ,at) (2a)

s.t. xt(st ,at)≤ ∑
a′t≥at

xt(st +1,a′t) for all t ∈T \{T},st ∈S \S,at ∈A , (2b)

xt(st ,at) ∈ {0,1} for all t ∈T \{T},st ∈S ,at ∈A . (2c)

After formulation (2) is solved, a monotone policy may be obtained as π̂M
t (st) = argmaxat

xt(st ,at) for all
st ∈S \S.

3.1 Justification for the Monotone Q-learning Algorithm

This section presents our result on the convergence of the monotone Q-learning algorithm, assuming the
standard Robbins–Monro conditions (Powell 2011) on the learning rate are satisfied. The proof of our
claim can be found in Appendix A.
Theorem 1 The monotone policy obtained from the monotone Q-learning algorithm converges to an optimal
monotone policy as N→ ∞.

4 PERSONALIZED HYPERTENSION TREATMENT NUMERICAL ANALYSIS

We now present our simulation model to evaluate approximately optimal monotone hypertension treatment
plans developed with the proposed monotone Q-learning algorithm. For comparison purposes, we also
evaluate the optimal monotone and optimal treatment plans as described in Garcia et al. (2024) and the
2017 Hypertension Clinical Practice Guidelines (Whelton et al. 2018). These clinical guidelines suggest
pharmacological treatment for patients with stage 1 hypertension (i.e., systolic BP of 130-139 mm Hg or
diastolic BP of 80-89 mm Hg) if their 10-year risk for ASCVD exceeds 10%. For patients with stage 2
hypertension (i.e., systolic BP of at least 140 mm Hg or a diastolic BP of at least 90 mm Hg), the guidelines
recommend treatment until they reach controlled BP levels below stage 1 hypertension.

The trajectory of a single patient in our simulation framework is summarized in Figure 1. We first
calculate the risk for ASCVD events each year (Yadlowsky et al. 2018). Subsequently, we estimate
transition probabilities and transition functions. We then execute N = 100,000 episodes (i.e., patients’
health trajectories) of the monotone Q-learning method and use formulation (2) to find an approximately
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optimal monotone policy. Lastly, we determine the optimal and optimal monotone treatment strategies
along with the clinical guidelines for comparison purposes.

Calculate risk for 
ASCVD events over 

planning horizon

Estimate transition 
probabilities and 

transition functions

No

Yes
Is ! = #?

Evaluate each 
treatment policy in 

transition 
probabilities

Execute episode of 
monotone 
Q-learning

Solve formulation (2) 
to obtain 

approximately optimal 
monotone policy

Determine clinical 
guidelines, optimal 

policy, and monotone 
optimal policy

Set ! ← 1

! ← ! + 1

Figure 1: Summary of simulation framework for a single patient. The index n represents the episode in
monotone Q-learning.

We now describe our patient profiles, MDP formulation, and patients’ outcomes following the recom-
mendations obtained with each treatment strategy.

4.1 Patient Profiles

Based on conversations with clinical collaborators, we identify a set of patient profiles that are representative
of a population with a high prevalence of ASCVD that can benefit considerably from hypertension treatment.
We first consider a patient profile with no major clinical risk factors for ASCVD. This base patient profile
has the following characteristics: 45-year-old, non-diabetic, non-smoker, normal BP, and normal cholesterol
levels. We then modify the BP levels of the patient profile to elevated BP, stage 1, and stage 2 hypertension,
as defined by the 2017 Hypertension Clinical Practice Guidelines (Whelton et al. 2018).

We use data from the National Health and Nutrition Examination Survey (NHANES) to parameterize the
health evolution of our patient profiles. Our population is composed of adult Caucasian or African-American
patients from 40 to 60 years old with no history of ASCVD. Assuming that smoking and diabetes status
remain constant, we linearly regress systolic BP, diastolic BP, high-density lipoprotein, and total cholesterol
on age, age squared, sex, race, smoking status, and diabetes status. This regression model allows us to
estimate the progression of patients’ risk factors over the planning horizon. We then use these estimates as
inputs into the revised pooled cohort equations to calculate each patient’s ASCVD risk (Yadlowsky et al.
2018), which is adjusted if the patient experiences an adverse event. Death from non-ASCVD causes is
modeled as an independent process and not considered in the risk factor progression.

4.2 Markov Decision Process Formulation

In this study, we adopt the MDP simulation model in Marrero et al. (2021). However, the objective of the
MDP simulation model in our study is to determine the treatment strategy that maximizes the expected
total discounted QALYs instead of the life years before an adverse event. The adjusted model has the
following elements:

• T : 10-year planning horizon with decisions made at the beginning of each year t ∈ T \ {10}.
We use T = 10 to represent the effects of treatment on patients’ lifetime. This planning horizon is
selected based on the major high BP management guidelines (Whelton et al. 2018).

• S : state space composed of patients’ age, sex, race, smoking status (i.e., demographic information),
BP, diabetes status, cholesterol readings (i.e., clinical observations), and health condition ht to account
for their history of cardiovascular events. We categorize patients’ health condition into the following
mutually-exclusive groups: healthy (ht = 1), history of heart attack but no adverse event in the
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current year (ht = 2), history of stroke but no adverse event in the current year (ht = 3), history of
heart attack and stroke but no adverse event in the current year (ht = 4), survival of a heart attack
(ht = 5), survival of a stroke (ht = 6), death from a non-ASCVD related cause (ht = 7), death from a
heart attack (ht = 8), death from stroke (ht = 9), and dead (ht = 10). We use st to denote a patient’s
state or st(ht) when a specific health condition must be emphasized.

• A : action space comprising from 0 to 5 antihypertensive medications at a half and standard dosage,
totaling A = 21 treatment choices. In contrast to Garcia et al. (2024), this paper focuses only on
the number of medications since research suggests that the benefit from treatment is determined by
the BP reduction achieved, with little effect attributable to specific drugs (Sundström et al. 2014).

• ft+1(st ,at ,ωt): transition function derived from a patient’s risk for ASCVD events (Yadlowsky
et al. 2018), benefit from treatment (Sundström et al. 2014; Sussman et al. 2013), ASCVD event
mortality (NCHS 2017), and non-ASCVD mortality (Arias and Xu 2019). Similar to previous
studies (Garcia et al. 2024; Marrero et al. 2021), we assume independence among heart attacks and
strokes. Furthermore, heart attacks account for 70% of the ASCVD risk and stroke events account
for the remaining 30%. In addition, we assume that patients are more likely to have additional heart
attacks or strokes if they have a history of such ASCVD events. We incorporate this assumption
by adjusting patients’ heart attack and stroke odds if they have a history of either ASCVD event
(Brønnnum-Hansen et al. 2001; Burn et al. 1994).

• rt(st+1,at ,ωt): reward given by the quality of life weight associated with patients’ health condition
ht (Kohli-Lynch et al. 2019) minus the disutility from medication at (Sussman et al. 2013).

• rT (sT+1,ωT ): terminal reward representing each patient’s total QALYs after transitioning to state
sT+1 computed as the product of their expected lifetime (Arias and Xu 2019), a mortality factor that
accounts for the effect of ASCVD events on future mortality (Pandya et al. 2015), and a terminal
quality of life weight (Kohli-Lynch et al. 2019).

• γ: 3% discount on future quality-adjusted life-year gains as recommended in the medical literature
(Neumann et al. 2016); γ = 0.97.

Table 1 lists the parameters used in our analyses. Please refer to Appendix B in Marrero et al. (2021)
for a description of the calibration and validation of our MDP simulation model.

4.2.1 State and Action Ordering

Our state ordering is based on patients’ associated risk for ASCVD events. At each decision epoch t, each
patient’s state has the same demographic information and estimated clinical observations. Differences in the
risk for ASCVD events between each patient’s states are driven by their health condition ht . Consequently,
each patient’s state ordering is determined by the severity of their health condition ht . Excluding health
conditions related to death, this observation leads to the following order of states for each patient at a fixed
decision epoch: st(ht = 1)< st(ht = 2)< st(ht = 5)< st(ht = 3)< st(ht = 6)< st(ht = 4).

We order actions in terms of their associated number of medications. This order is equivalent to sorting
medications according to their expected systolic BP or risk reductions (Sundström et al. 2014).

4.3 Numerical Results

In this subsection, we evaluate and offer insights into the implications of approximately optimal monotone
treatment. We frame our results in terms of the price of interpretability of monotone policies. This quantity
is defined by Garcia et al. (2024) as the difference between the expected total discounted QALYs between
an optimal and a monotone policy:

PI(ΠM) := Jπ∗(s)− max
π∈ΠM

Jπ(s).
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Table 1: Base case parameters.

Parameter Value Source

BP reduction: standard dose (half dose)
Systolic BP 5.5 (3.7) mm Hg (Sundström et al. 2014; Sussman et al. 2013)
Diastolic BP 3.3 (2.2) mm Hg (Sundström et al. 2014; Sussman et al. 2013)

Risk for ASCVD events Varies by patient (Yadlowsky et al. 2018)
ASCVD risk reduction: standard dose (half dose)

Heart attack 13% (7%) (Sundström et al. 2014; Sussman et al. 2013)
Stroke 21% (14%) (Sundström et al. 2014; Sussman et al. 2013)

ASCVD risk due to heart attack 70% (Martin et al. 2024)
Mortality from ASCVD events

Heart attack Varies by patient (NCHS 2017)
Stroke Varies by patient (NCHS 2017)

Scaling factor to account for history of ASCVD events
Heart attack (ht = 2,5) 3 (Brønnnum-Hansen et al. 2001)
Stroke (ht = 3,6) 2,3 (Burn et al. 1994)

Quality of life weight (Kohli-Lynch et al. 2019)
Healthy (ht = 1) 1
ASCVD events (ht = 2, . . . ,6) Varies by patient
Dead (ht = 7, . . . ,10) 0

Treatment-related disutility
Half dose 0.001 (Marrero et al. 2021; Sussman et al. 2013)
Full dose 0.002 (Marrero et al. 2021; Sussman et al. 2013)

Life expectancy Varies by patient (Arias and Xu 2019)
Non-ASCVD mortality Varies by patient (Arias and Xu 2019)

4.3.1 Insights from Interpretable Treatment

To understand the implications of approximately optimal interpretable treatment plans, we examine the
effect of patients’ characteristics on the policies obtained with monotone Q-learning. For comparison
purposes, we also determine the optimal monotone and optimal policies along with the recommendations
from the clinical guidelines as described in Garcia et al. (2024).

Figure 2 illustrates each of the policies over the health conditions of the patient profiles with stage 1 and
stage 2 hypertension in the last year of our study. The policies are less aggressive in earlier years because of
our monotonicity restrictions on the actions over time. All policies recommend no treatment (not shown) in
the base patient profile. If the profile’s BP is increased to elevated levels or stage 1 hypertension, the policies
prescribe either two medications at half dose or one medication at half dose and another at standard dose in
the healthy state. However, the optimal policy decreases the intensity to no treatment if the patient’s profile
experiences a stroke. While optimal in terms of QALYs gained, this policy is not intuitive for physicians
or their patients. Contrastingly, the interpretable policies maintain treatment intensity if the patient were to
experience more severe states. There is no considerable consequence for providing interpretability in these
patient profiles as the difference between their price of interpretability is at most 0.001 QALYs. When the
patient profile’s BP rises to stage 2 hypertension, the optimal monotone and optimal policies recommend
three medications at half dose while the approximately optimal monotone policy prescribes two medications
at half dose. Similarly to the profiles with elevated BP or stage 1 hypertension, the optimal policy decreases
intensity while the optimal monotone maintains aggressiveness. Nevertheless, the approximately optimal
monotone policy increases intensity to two medications at standard dose as the patient’s health worsens.
We note that three medications at half dose provide the same benefit as two medications at standard dose.
The differences among the policies’ price of interpretability reach a maximum of 0.007 QALYs between
the optimal policy and the approximately optimal monotone policy in stage 2 hypertension.
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Figure 2: Treatment policies over the health conditions of profiles with (a) stage 1 and (b) stage 2
hypertension. H-: History of; HA: heart attack; NT: No treatment; Number before and after forward slash
represent medications at standard and half dose, respectively.

We exclude the clinical guidelines from Figure 2 to facilitate the comparison between the approximately
optimal monotone policy with the optimal and optimal monotone policies. The clinical guidelines prescribe
no treatment for normal and elevated BP levels. The profile with stage 1 hypertension is recommended
one medication at standard dose across all the states. In stage 2 hypertension, the guidelines recommend
one medication at standard dose for the healthy state and two medications at standard dose at the ASCVD-
related states. Following the clinical guidelines may have implications on patients’ health as the price of
interpretability paid for each patient profile is higher than in the interpretable treatment strategies.

Our patient-level results lead to three critical observations. First, similar to the findings in Garcia et al.
(2024), the optimal policy typically suggests less treatment as patients’ health severity increases. This
behavior does not reflect physicians’ intuition in practice. A potential reason for this behavior is that the
policy aims to maximize the expected discounted QALYs and not to minimize the total number of ASCVD
events. Second, we also find the optimal monotone policy typically prescribes a constant treatment across
all health conditions in each year of the planning horizon. Lastly, the policies obtained with monotone
Q-learning tend to recommend less aggressive treatment than the optimal monotone policies in healthier
states and coincide with the optimal monotone policies in more severe states. While the three strategies
may lead to different treatment recommendations, they all result in prices of interpretability within 0.007
QALYs which may not be practically meaningful. The patterns displayed by the approximately optimal
monotone and optimal monotone policies align with the intuition of clinicians in practice. They both
provide more intuitive strategies than the optimal policy with only a small loss in QALYs.

5 CONCLUSIONS

In this paper, we introduced a new approach to obtain approximately optimal monotone policies in MDP
simulation models. We presented a modification of the standard Q-learning algorithm, which we called
monotone Q-learning. Our algorithm restricts the exploration in standard Q-learning acknowledging that
actions must be monotone on an order of states specified by a decision maker. Furthermore, it guarantees
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that the approximately optimal policies obtained are monotone by solving a simple binary integer program.
Although presented when a simulator is available, our approach holds for model-free situations where a
transition function is not accessible.

Our numerical analysis studied the implications of approximately optimal monotone antihypertensive
treatment plans. Two principal conclusions can be made from our analysis. First, the optimal monotone
policy typically prescribes a constant treatment across all health conditions in each year of the planning
horizon, while the approximately optimal monotone policies tend to recommend slightly less intense
treatment in healthier states and become marginally more aggressive as patients’ health worsen. Second,
the performance losses of the optimal monotone and approximately optimal monotone policies with respect
to the optimal policy are comparable. The losses in QALYs associated with the interpretability of these
policies are likely practically negligible.

Our work on approximately optimal monotone antihypertensive treatment plans can be extended in
multiple ways. From a technical point of view, the ideas from our algorithm can be adapted to ensure
monotone policies in other temporal-difference reinforcement learning methods. Our algorithm inherits
some of the limitations of the standard Q-learning in large state and action spaces. Future work may
focus on overcoming these challenges. From a clinical perspective, this research can be expanded by
incorporating other conditions, such as high cholesterol or diabetes. Moreover, future work may also
consider a population-level analysis or examining the effects of varying model parameters.

The monotone Q-learning algorithm continues a line of work aiming to increase the acceptance of
MDP models in practice by providing policies that harness the natural interpretability of monotonicity.
Strategies that follow an intuitive order may offer decision-makers support that is amenable to their cognition.
We showed that approximately optimal monotone policies are capable of leading to minor performance
losses when compared to optimal policies, even in complex settings like personalized treatment planning.
Interpretable policies have great potential to enable the implementation of MDP-guided recommendations
into practice within and beyond healthcare applications.

A PROOF OF THEOREM 1

The proof of Theorem 1 depends on the following lemma:
Lemma 1 Every action at ∈A is included infinitely often in At(st)⊆A as N→ ∞.

Proof. Rewrite At(st) = A \
(
[1,A +

t (st −1))∪ (A −
t (st +1),A])

)
. We first show that A +

t (st − 1)
will change with positive probability for an arbitrary state st visited at time t and episode n. When
state st is visited again at time t in some episode n′ > n, A +

t (st − 1) has shifted with probability
∑

st−1
s′=1 pt

(
s′|s, ā(s)

)
∑

ā(st)−1
a′=A +

t (s′−1) bt(a′|s′)> 0 for each state s ∈S visited during episodes between n and n′

as long as pt
(
s′|s, ā(s)

)
> 0 for some s′ = 1, ...,st −1 and ā(s′) ̸= A +

t (st −1) for all s′ = 1, ...,st −1. In
here, pt

(
s′|s, ā(s)

)
:= E[1{ ft+1(s, ā(s),ωt) = s′}|s, ā(s)] and 1{·} represents an indicator function.

We now show that |At(st)|> 1 for some episode m > n′ if ā(s′) = A +
t (st−1) for all s′ = 1, ...,st−1

between n and n′. Let S R := {s ∈S : |At(s)| = 1} denote the set of states with only one permissible
action (i.e., restricted states), S U := S \S R the set of unrestricted states, and S B := {s ∈S R : (s−1 ∈
S U)∨ (s+1 ∈S U)} the set of boundary states. Under an ε-greedy behavior policy, any state s ∈S B can
become unrestricted as an action â ̸= ā(s) will be taken with positive probability when state s−1 ∈S U or
s+1∈S U is visited. Moreover, any state s∈S R can become a boundary state. If s−1∈S B or s+1∈S B,
the behavior policy guarantees the boundary state will become unrestricted with positive probability, which
implies s will then become a boundary state. If s∈S R has multiple restricted predecessors and successors,
s will inductively become a boundary state and eventually an unrestricted state.

As a result, A −
t (s′+ 1) for s′ ∈ {1, ...,st − 1} is expanded with at least one action which implies

that A +
t (st −1) will shift with positive probability in a later episode. Symmetrically, the probability that

A −
t (st +1) shifts is positive for every st . This result suggests that there exist episodes when A +

t (st−1) = 1
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or A −
t (st +1) = A. Since At(st) is a consecutive sequence of actions from 1 to A, this observation implies

that every action is included in each subset At(st) infinitely often as N→ ∞.

Proof of Theorem 1. Lemma 1 implies that every state-action pair will be visited infinitely often. Thus,
the monotone Q-learning algorithm finds decision rules in the same spaces as the traditional Q-learning
algorithm. By Watkins and Dayan (1992), it follows that Q̂t(st ,at)→Qt(st ,at) with probability 1 as N→∞.

Formulation (2) guarantees the algorithm searches within the same space as formulation (5) in Garcia
et al. (2024). Thus, our monotone Q-learning algorithm outputs an approximately optimal monotone policy
π̂M that converges to an optimal monotone policy πM as N→∞. Moreover, π̂M→ πM when the monotone
optimal policy is unique.
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