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ABSTRACT

To support mechanism online learning and facilitate digital twin development for biomanufacturing processes,
this paper develops an efficient Bayesian inference approach for partially observed enzymatic stochastic
reaction network (SRN), a fundamental building block of multi-scale bioprocess mechanistic model. To tackle
the critical challenges brought by the nonlinear stochastic differential equations (SDEs)-based mechanistic
model with partially observed state and having measurement errors, an interpretable Bayesian updating
linear noise approximation (LNA) metamodel, incorporating the structure information of the mechanistic
model, is proposed to approximate the likelihood of observations. Then, an efficient posterior sampling
approach is developed by utilizing the gradients of the derived likelihood to speed up the convergence of
MCMC. The empirical study demonstrates that the proposed approach has a promising performance.

1 INTRODUCTION

Partially observed stochastic reaction network (SRN) modeling the dynamics of a population of interacting
species, such as chemical molecules participating in multiple reactions, is the fundamental building block
of multi-scale bioprocess mechanistic model characterizing the causal interdependences from molecular-
to macro-kinetics. It plays a critical role to: (1) facilitate digital twin development and support mechanism
learning for biomanufacturing processes; (2) allow us to probe critical latent state based on partially observed
information; and (3) serve as a fundamental model for a biofoundry platform (Hillson et al. 2019) that can
integrate heterogeneous online and offline measures collected from different manufacturing processes and
speed up the bioprocess development with much less experiments. Model inference on the SRN mechanistic
model based on heterogeneous data also helps to strengthen the theoretical foundations of federated learning
on bioprocess mechanisms, through which we can train and advance knowledge.

SRN has three key features that make the model inference challenging. First, the continuous-time state
transition model, representing the evolution of concentration or number of molecules, is highly nonlinear.
At any time, the reaction rates, characterizing the regulation mechanisms of enzymatic reaction network,
are a function of random state. We adopt the diffusion approximation in Gillespie (2000) to model the state
dynamics with a set of coupled stochastic differential equations (SDEs). In this case, the state transition
model has double-stochasticity, making it analytically intractable to obtain the state transition densities at
different times and also hard to get the closed form likelihood of observations. Second, since the state is
partially observed, we need to integrate out the unobserved state variables to get the likelihood. Third, the
data collected from biomanufacturing processes are heterogeneous and also subject to measurement errors.

The model inference of enzymatic SRN has found increasing interest especially in biomanufacturing
digital twin development. Even under the situations with the reaction network structure known, that is
built on thousand years of the understanding on biological system mechanisms, the mechanistic model
parameters are often unknown. It is necessary to infer these parameters using the observations collected
from biomanufacturing processes. Since each batch of production can be expensive, we often have very
small amount of experimental observations. Coupled with high inherent stochasticity of biomanufacturing
processes, the model uncertainty tends to be high. However, frequentist model uncertainty quantification
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approaches are built on asymptotic approximation, such as asymptotic normality and bootstrap. Thus, in
this paper, we focus on a Bayesian inference on multi-scale mechanistic model, which can support online
learning and interpretability.

An enormous volume of literature has been dedicated to Bayesian inference for SRN mechanistic model.
As the exact state transition density of the SDEs-based mechanistic model is unknown, coupled with another
challenge (i.e., the partially observed state), the marginal likelihood integrating out the unobserved state
variables is intractable. Thus, many existing works are sampling approaches without the explicit calculations
of the likelihood, such as approximate Bayesian computation (ABC) and its variants (Xie et al. 2022). But
in sampling approaches without using likelihood, the complex structure and high stochasticity of SRN make
the simulation generating a large amount of sample paths computationally expensive and the acceptance
rates of samplers very low. Therefore, we construct a metamodel to approximate the state transition densities
of the SDEs, obtain a likelihood approximation, and utilize it to speed up Bayesian inference.

Gaussian Process (GP) is often used as a metamodel. Archambeau et al. (2007) and Garcia et al. (2017)
use GPs as priors for nonparametric estimation of the drift and diffusion terms of SDEs without an exact
knowledge of their functional forms. In this paper, we suppose the structure of SDEs-based mechanistic
model is known. To completely exploit such structure information and improve the interpretability of
constructed metamodel, we refer to the deterministic ordinary differential equation (ODE)-based dynamic
system inference. In particular, Yang et al. (2021) specify a GP prior over the solution to the ODE, and
restrict the GP on a manifold that satisfies the ODE system, to address the incompatibility between the
metamodel and the mechanistic model. And an alternative to GP under SDE-based model is linear noise
approximation (LNA). The LNA was originally proposed to approximate the solution of the chemical
master equation (CME), and it can be derived in a number of ways. For instance, Ferm et al. (2008) and
Ruttor and Opper (2009) follow the idea of an asymptotic system size expansion, and derive the LNA by
approximating the CME through a Taylor expansion. Since the solution of SDE itself is a random variable,
it is difficult to extend the GP approach developed in Yang et al. (2021) to the SDE model inference.
Instead, following Fearnhead et al. (2014), we specify the derived LNA as a prior to the solution of the
SDE, through which we take full advantage of the structure information provided by the SDE model without
the time-consuming numerical integration.

The likelihood of observations can be obtained under the LNA, but the exact Bayesian posterior is still
not analytically tractable as a conjugate prior is hard to find. One thus defers to sampling approaches to
generate samples from the posterior. The most common one is Markov chain Monte Carlo (MCMC), such as
Metropolis-Hastings algorithm. Its effectiveness depends heavily on the choice of the proposal distribution.
Metropolis-adjusted Langevin algorithm (MALA) makes use of the additional gradient information of the
target posterior distribution to construct a better proposal distribution, which is shown to have a faster
mixing time compared with classic MCMC (Chewi et al. 2021). Therefore, in this paper, we specifically
tailor a MALA procedure to generate posterior samples more efficiently.

In specific, we propose a LNA assisted Bayesian inference on the nonlinear multivariate SDE-based
mechanistic model with partially observed state and subject to measurement errors. The main contributions
are twofold. First, an interpretable Bayesian updating LNA metamodel is developed for likelihood approx-
imation. It provides a coherent way to simultaneously satisfy the SDE model and fit the observed data,
allowing us to probe critical latent state based on partially observed information. Second, the proposed
MALA procedure utilizes the gradient information from the derived likelihood to speed up MCMC search
and more efficiently generate posterior samples. The proposed Bayesian inference for SRN can support
online mechanism learning, facilitate digital twin development, and speed up bioprocess design and control.

The paper is organized as follows. We provide a brief introduction of the SDE-based mechanistic
model for enzymatic SRN and problem description in Section 2. To facilitate the model Bayesian inference,
the LNA is used to construct the state transition densities and a closed form likelihood is thus derived
in Section 3. Then, we propose an efficient and interpretable Bayesian posterior sampling algorithm in
Section 4. Its performance is studied in Section 5. Finally, we conclude the paper in Section 6.
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2 STOCHASTIC REACTION NETWORK (SRN) MODEL AND PROBLEM DESCRIPTION

(1) SRN model. We first review a general SRN composed of J species, denoted by XXX = (X1,X2, . . . ,XJ)
⊤,

interacting with each other through K reactions. The number of molecules of species j at time t is denoted
by x j(t) and xxx(t) = (x1(t),x2(t), . . . ,xJ(t))

⊤. Each reaction is characterized by a nonzero reaction vector
CCCk ∈ RJ for k = 1,2 . . . ,K, describing the change in the numbers of J species’ molecules when a k-th
molecular reaction occurs. The associated propensity function, denoted by ωk, describes the probability
with which the k-th reaction occurs per time unit. Specifically, for the k-th reaction equation given by

pk1X1 + pk2X2 + · · ·+ pkJXJ
ωk−→ qk1X1 +qk2X2 + · · ·+qkJXJ,

the reaction relational structure, specified by CCCk = (qk1 − pk1,qk2 − pk2, . . . ,qkJ − pkJ)
⊤, is known for

k = 1,2, . . . ,K. Thus, the stoichiometry matrix CCC = (CCC1,CCC2, . . . ,CCCK) ∈ RJ×K characterizes the structure
information of the reaction network composed of K reactions, where its (i, j)-th element represents the
number of molecules of the i-th species that are either consumed (indicated by a negative value) or produced
(indicated by a positive value) in each random occurrence of the j-th reaction.

Then, we describe the state transition model for bioprocess. As a multi-scale bioprocess representing
the dependence from molecular- to macro-kinetics, it is built on the fundamental building block, i.e.,
molecular reaction network. Let dRRR(t) represent a K-dimensional vector of occurrences of each molecular
reaction in an infinitesimal time interval (t, t +dt]. It follows a distribution with parameters depending on
the propensity functions ωωω(xxx(t);θθθ) = (ω1(xxx(t);θθθ 1),ω2(xxx(t);θθθ 2), . . . ,ωK(xxx(t);θθθ K))

⊤, where the structure
of each ωk(xxx(t);θθθ k), characterizing the bioprocess regulation mechanism for the k-th molecular reaction,
is given and we focus on the inference of the unknown parameters θθθ = (θθθ⊤

1 ,θθθ
⊤
2 , . . . ,θθθ

⊤
K )

⊤.
Due to the fact that reaction events change species numbers by an integer amount, the state transition

model is naturally characterized by a continuous-time Markov jump process (Anderson and Kurtz 2011).
In particular, assuming that two reactions cannot occur at exactly the same time, one can represent the
occurrences number of each k-th reaction in an infinitesimal time interval (t, t + dt], denoted by dRk(t)
(i.e., the k-th component of dRRR(t)), using one of the most elementary counting process, namely, the
nonhomogeneous Poisson process. Since the dynamic change of propensity function in any infinitesimal
time interval (t, t+dt] is negligible, the intensity of dRk(t) becomes ωk(xxx(t);θθθ k)dt. And conditional on xxx(t),
dRk(t) for k = 1,2, . . . ,K can be considered as independent of one another and are Poisson(ωk(xxx(t);θθθ k)dt)
random variables, from which we have E(dRRR(t)) = ωωω(xxx(t);θθθ)dt and Cov(dRRR(t)) = diag{ωωω(xxx(t);θθθ)}dt.
Under the Poisson assumption, we adopt the diffusion approximation to Markov jump process following
the study Gillespie (2000) and then model dRRR(t) with Itô SDE, i.e.,

dRRR(t) = E(dRRR(t))+{Cov(dRRR(t))}
1
2 dBBB(t) =ωωω(xxx(t);θθθ)dt +{diag{ωωω(xxx(t);θθθ)}}

1
2 dBBB(t),

where dBBB(t) is the increment of a K-dimensional standard Brownian motion. Given the reaction network
structure specified by the stoichiometry matrix CCC, the impact on the process dynamics becomes,

dxxx(t) =CCCdRRR(t) =CCCωωω(xxx(t);θθθ)dt +
{

CCCdiag{ωωω(xxx(t);θθθ)}CCC⊤
} 1

2
dBBB(t). (1)

For both theoretical study and practical application purposes, the system is assumed to have a size
parameter Ω (such as the volume of bioreactor). Then s j(t) = x j(t)/Ω represents the concentration of
molecules of species j. At any time t, let sss(t) = (s1(t),s2(t), . . . ,sJ(t))⊤ = Ω−1xxx(t) be the bioprocess state.
And the propensity functions ωk(xxx(t);θθθ k) for k = 1,2, . . . ,K can be written as

ωk(xxx(t);θθθ k) = Ωvk
(
Ω

−1xxx(t);θθθ k
)
= Ωvk(sss(t);θθθ k), (2)

where vk is the reaction rate associated with the k-th reaction, specified by the parameters θθθ k and depending
on the current system state sss(t). By plugging the relation between the propensity function and the reaction
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rate (i.e., Equation (2)) into Equation (1), we get the state transition,

dsss(t) = Ω
−1dxxx(t) =CCCvvv(sss(t);θθθ)dt +Ω

− 1
2

{
CCCdiag{vvv(sss(t);θθθ)}CCC⊤

} 1
2

dBBB(t)

≜ µµµ(sss(t);θθθ)dt +Ω
− 1

2 {DDD(sss(t);θθθ)}
1
2 dBBB(t), (3)

where vvv(sss(t);θθθ) = (v1(sss(t);θθθ 1),v2(sss(t);θθθ 2), . . . ,vK(sss(t);θθθ K))
⊤ is the reaction rate vector. Equation (3) also

represents the doubly stochastic property of SRN, that is, both mean µµµ(sss(t);θθθ) and variance DDD(sss(t);θθθ) are
functions of the current system state sss(t) and characterized by the parameters θθθ , while sss(t) is a random state
vector that changes over time and its evolution (i.e., dsss(t)) is characterized by µµµ(sss(t);θθθ) and DDD(sss(t);θθθ).
(2) Partially observed state and heterogeneous data collection. The measures of partially observed
state variables are often heterogeneous and subject to measurement errors. The observations for different
observable state components are also asynchronous; see Figure 1(a). In particular, we represent all observation
times of state as the time set, denoted by TTT = {t0, t1, . . . , tH}, where t0 < t1 < · · ·< tH , and the time intervals
∆th = th+1 − th can be variable for h = 0,1, . . . ,H −1. At each observation time th, we denote the set of
observed components’ subscripts of underlying state sss by JJJh, i.e., JJJh = { j ∈ [J] : s j is observed at time th}
where [J] represents {1,2, . . . ,J}, and let JJJy =∪H

h=0JJJh be the set of subscripts of the components that can be
observed at certain times of experiments. The observations are denoted by yyyh(th) ∈ RM|JJJh|, where |JJJh| ≤ J
is the cardinality of JJJh representing the dimension of observed components of underlying state sss at time
th, and M is the batch size of experiments. Then, the observations at time th can be modeled as

yyyh(th) =GGGhsss(th)+εεεh(th). (4)

Suppose the measurement errors follow a multivariate Gaussian distribution εεεh(th)∼N (000,ΣΣΣh), where
ΣΣΣh is a diagonal matrix with M vectors of σσσh on the main diagonal, and σσσh =

{
σ j j : j ∈ JJJh

}⊤ is the vector of

measurement error level at time th. Further, let σσσ =
{

σ j j : j ∈ JJJy
}⊤ be the vector of measurement error level

of all observed components. And GGGh is a M|JJJh|-by-J constant matrix, mapping the entire J-dimensional
vector of underlying state sss(th) into the M batches of |JJJh|-dimensional vector containing only the counterpart
of observed components at time th. Notice that the dimension |JJJh| can change at different observation times
accounting for the fact that the measures of partially observed state are asynchronous.

Given the observed data set denoted by DM = {yyyh(th)}H
h=0, the model uncertainty is quantified by a

posterior distribution p(θθθ ,σσσ |DM) ∝ p(θθθ) p(σσσ) p(DM|θθθ ,σσσ). With the collection of new experiment data
∆D , the model uncertainty can be updated as p(θθθ ,σσσ |DM ∪∆D) ∝ p(θθθ ,σσσ |DM) p(∆D |θθθ ,σσσ) .

(3) Key challenges on Bayesian inference and summary of the proposed inference approach. Our focus
in this paper is to develop a computationally efficient Bayesian inference approach on unknown model
parameters θθθ ∈ ΘΘΘN with emphasis on nonlinear µµµ(sss(t);θθθ) and DDD(sss(t);θθθ) characterizing the regulation
mechanisms of SRN as shown in (3), where ΘΘΘN ⊂RN is the feasible parameter space. The first challenge
is partially observed state subject to random measurement error. The observed components of system
state sss are recorded at limited discrete time points and the observation time points of each observable
component may not be synchronized; see Figure 1(a). Moreover, there are often some components of state
sss unobservable. To tackle this challenge, we develop an interpretable Bayesian updating LNA metamodel
on underlying state sss(t) in Section 3 so that we can predict all components of sss(t) at any time t.

Such a metamodel needs to have capability to characterize the dependence between components of sss(t)
and handle the doubly stochasticity of SRN. Luckily, we have a SDE model (3) representing the mechanism
of state change. This brings us to the second challenge. On the one hand, the nonlinear drift and diffusion
terms of the SDE (3) make solving it directly to get the metamodel of sss(t) require time-consuming numerical
integration methods. On the other hand, the regulation mechanism structure information from the SDE
cannot be completely exploited which impacts on interpretability if we choose a black-box metamodel. To
take full advantage of the structure information about the state transition provided by the SDE (3), and to
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avoid the use of numerical integration to solve these SDEs, we place LNA priors on the dynamics of state
sss(t) to facilitate inference of model parameters θθθ . Under the LNA, the underlying process {sss(t) : t ≥ 0}
follows a multivariate Gaussian distribution, combined with the assumption of linear Gaussian relation
between each observation yyyh(th) and underlying state value sss(th) as shown in Equation (4) to give a tractable
approximation to the likelihood of the observations {yyyh(th)}H

h=0. The key to our approach is, to avoid a poor
approximation to the true distribution of sss(t) as t gets large, we reinitialize the LNA for each time interval
(th, th+1] using the derived posterior distribution of sss(th) given yyyh(th),yyyh−1(th−1), . . . ,yyy0(t0); see Figure 1(b).

(a) Sample observations (b) Bayesian updating linear noise approximation (LNA) metamodel

Figure 1: An illustration of (a) the partially observed state with measurement error; and (b) the proposed
interpretable Bayesian updating LNA metamodel for enzymatic stochastic reaction network (SRN).

3 BAYESIAN UPDATING LINEAR NOISE APPROXIMATION (LNA) METAMODEL

In this section, we first utilize the LNA to approximate the SDE model (3) and then develop a Bayesian
updating LNA metamodel to reduce the approximation error between the true solution to the SDE (3) and
LNA model. The LNA divides the path {sss(t) : t ≥ 0} of the SDE (3) into a deterministic path {s̄ss(t) : t ≥ 0}
and a stochastic perturbation {ξξξ (t) : t ≥ 0}, where the fluctuations in sss(t) at any given time t are assumed
to be of O(Ω− 1

2 ); see Ferm et al. (2008) and Fearnhead et al. (2014) for a rigorous derivation and detailed
discussion. Under this partition, through a Taylor expansion of the SDE (3) around s̄ss(t) up to order Ω− 1

2 ,
we split the SDE (3) into one deterministic ODE with the solution s̄ss(t) as shown in Equation (5),

ds̄ss(t) = µµµ(s̄ss(t);θθθ)dt (5)

with initial value s̄ss(0), and one SDE with its solution ξξξ (t) following a Gaussian distribution for any fixed
or Gaussian distributed initial condition on ξξξ (0), denoting by ξξξ (t)∼ N (ϕϕϕ(t),ΨΨΨ(t)). And its mean vector
ϕϕϕ(t) and covariance matrix ΨΨΨ(t) for any t ≥ 0 can be obtained by solving the ODEs in (6) and (7),

dϕϕϕ(t) = ∇sssµµµ(sss;θθθ)|sss=s̄ss(t)ϕϕϕ(t)dt, (6)

dΨΨΨ(t) =
{

ΨΨΨ(t)
(
∇sssµµµ(sss;θθθ)|sss=s̄ss(t)

)⊤
+∇sssµµµ(sss;θθθ)|sss=s̄ss(t)ΨΨΨ(t)+DDD(s̄ss(t);θθθ)

}
dt, (7)

with initial values ϕϕϕ(0) and ΨΨΨ(0). Without loss of generality, in the following discussion, we simplify the
notation and assume an unit system size Ω = 1. Suppose the initial condition for the SDE (3) with Ω = 1
is sss(0) ∼ N (ααα∗(0),βββ ∗(0)), then for arbitrary s̄ss(0), we can set ϕϕϕ(0) = ααα∗(0)− s̄ss(0) and ΨΨΨ(0) = βββ ∗(0).
Integrating the ODEs (5), (6), and (7) through time 0 to t provides the LNA

sss(t)∼ N (s̄ss(t)+ϕϕϕ(t),ΨΨΨ(t)) . (8)

Under the LNA model (8) on the partially observed state sss(th) with measurement error εεεh(th) as shown in
(4) for h = 0,1, . . . ,H, the likelihood of the observations DM is tractable. In particular, the ODE components
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of the LNA (i.e., Equations (5), (6), and (7)) are solved once over the entire time interval for given initial
values. However, LNA can lead to a poor approximation to the true sss(t), due to the approximation error
between the true solution to the SDE (3) and the LNA (8) gradually accumulates as t gets large.

To tackle this issue, we construct the likelihood of the observations DM through using the updated
LNA model at each observation time point th with h = 0,1, . . . ,H. In particular, given an estimate of
model parameters θθθ and measure error level σσσ , we first set the LNA model (8) with the initial condition
sss(t0)∼ N (s̄ss(t0)+ϕϕϕ(t0),ΨΨΨ(t0)) as a prior, and then the observations yyyh(th) ∈ DM are used to sequentially
update the prior on sss(th) for each th with the procedure shown in Figure 1(b). Therefore, we can approximate
the distribution of yyyh(th) given all observations up to time th and obtain the likelihood. The detailed procedure
is summarized in the following three steps.

Step 1: At the initial observation time point t0, given the prior sss(t0) ∼ N (s̄ss(t0)+ϕϕϕ(t0),ΨΨΨ(t0)) and
the observational uncertainty (4), we can directly have

yyy0(t0)|σσσ ∼ N
(

GGG0 {s̄ss(t0)+ϕϕϕ(t0)} ,GGG0ΨΨΨ(t0)GGG⊤
0 +ΣΣΣ0

)
. (9)

Combining the LNA prior of sss(t0) with (9), we obtain the joint distribution of sss(t0) and yyy0(t0) as(
sss(t0)
yyy0(t0)

)∣∣∣∣σσσ ∼ N

{(
s̄ss(t0)+ϕϕϕ(t0)

GGG0 {s̄ss(t0)+ϕϕϕ(t0)}

)
,

(
ΨΨΨ(t0) ΨΨΨ(t0)GGG⊤

0
GGG0ΨΨΨ(t0) GGG0ΨΨΨ(t0)GGG⊤

0 +ΣΣΣ0

)}
.

By applying the conditional distribution properties of multivariate Gaussian distribution, the posterior
distribution of sss(t0) is updated based on the observation yyy0(t0), i.e.,

sss(t0)|yyy0(t0);σσσ ∼ N (ααα(t0),βββ (t0)) ,

where

ααα(t0) = s̄ss(t0)+ϕϕϕ(t0)+ΨΨΨ(t0)GGG⊤
0

(
GGG0ΨΨΨ(t0)GGG⊤

0 +ΣΣΣ0

)−1
(yyy0(t0)−GGG0 {s̄ss(t0)+ϕϕϕ(t0)}) , (10)

βββ (t0) =ΨΨΨ(t0)−ΨΨΨ(t0)GGG⊤
0

(
GGG0ΨΨΨ(t0)GGG⊤

0 +ΣΣΣ0

)−1
GGG0ΨΨΨ(t0). (11)

Step 2: For the subsequent observation time points t1, t2, . . . , tH , we apply the idea of Kalman filter to se-
quentially update the LNA prior forsss(th+1) and calculate the approximate p(yyyh+1(th+1)|yyyh(th), . . . ,yyy0(t0);θθθ ,σσσ)
recursively for h = 0,1, . . . ,H −1. Specifically, we first reinitialize the initial values of the ODEs (5) and
(7) to the posterior mean and covariance of sss(th) respectively. That is, set s̄ss(th) =ααα(th) and ΨΨΨ(th) = βββ (th).
We let ϕϕϕ(th) = 0 as ϕϕϕ(tk) = 0 for all k ≥ h according to the ODE (6). By integrating the ODEs (5) and (7)
through time th to th+1, we obtain s̄ss(th+1) and ΨΨΨ(th+1). In practice we work with their discretized versions,
given by the Euler method,

s̄ss(th+1) = s̄ss(th)+µµµ(s̄ss(th);θθθ)∆th, (12)

ΨΨΨ(th+1) =ΨΨΨ(th)+
{

ΨΨΨ(th)
(
∇sssµµµ(sss;θθθ)|sss=s̄ss(th)

)⊤
+∇sssµµµ(sss;θθθ)|sss=s̄ss(th)ΨΨΨ(th)+DDD(s̄ss(th);θθθ)

}
∆th. (13)

As ∆th = th+1 − th is often too large to be used as a time step in (12) and (13), we introduce ∆zh = ∆th/Ih
for some positive integer Ih ≥ 1. By choosing Ih to be sufficiently large, we can ensure the discretization
error associated with the Euler method is arbitrarily small. That is, to compute s̄ss(th+1) and ΨΨΨ(th+1) more
accurately, we recursively calculate the following equations for i = 0,1, . . . , Ih −1,

s̄ss(th +(i+1)∆zh) = s̄ss(th + i∆zh)+µµµ(s̄ss(th + i∆zh);θθθ)∆zh, (14)

ΨΨΨ(th +(i+1)∆zh) =ΨΨΨ(th + i∆zh)+
{

ΨΨΨ(th + i∆zh)
(
∇sssµµµ(sss;θθθ)|sss=s̄ss(th+i∆zh)

)⊤
+
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∇sssµµµ(sss;θθθ)|sss=s̄ss(th+i∆zh)ΨΨΨ(th + i∆zh)+DDD(s̄ss(th + i∆zh);θθθ)
}

∆zh. (15)

Therefore, we get the updated LNA prior on sss(th+1) by applying (8), i.e.,

sss(th+1)|yyyh(th), . . . ,yyy0(t0);θθθ ,σσσ ∼ N (s̄ss(th+1),ΨΨΨ(th+1)) . (16)

Here, LNA gives us a Gaussian approximation to the transition density from sss(th)|yyyh(th), . . . ,yyy0(t0);θθθ ,σσσ to
sss(th+1)|yyyh(th), . . . ,yyy0(t0);θθθ ,σσσ . Then, based on the model of measurement uncertainty or error in (4), we
get a one-step forecast of the observation yyyh+1(th+1) as

yyyh+1(th+1)|yyyh(th), . . . ,yyy0(t0);θθθ ,σσσ ∼ N
(

GGGh+1s̄ss(th+1),GGGh+1ΨΨΨ(th+1)GGG⊤
h+1 +ΣΣΣh+1

)
. (17)

Combining the distributions (16) and (17), we obtain the joint distribution as(
sss(th+1)

yyyh+1(th+1)

)∣∣∣∣yyyh(th), . . . ,yyy0(t0);θθθ ,σσσ ∼N

{(
s̄ss(th+1)

GGGh+1s̄ss(th+1)

)
,

(
ΨΨΨ(th+1) ΨΨΨ(th+1)GGG⊤

h+1
GGGh+1ΨΨΨ(th+1) GGGh+1ΨΨΨ(th+1)GGG⊤

h+1 +ΣΣΣh+1

)}
.

Thus, the posterior distribution of sss(th+1) becomes

sss(th+1)|yyyh+1(th+1), . . . ,yyy0(t0);θθθ ,σσσ ∼ N (ααα(th+1),βββ (th+1)) ,

where

ααα(th+1) = s̄ss(th+1)+ΨΨΨ(th+1)GGG⊤
h+1

(
GGGh+1ΨΨΨ(th+1)GGG⊤

h+1 +ΣΣΣh+1

)−1
(yyyh+1(th+1)−GGGh+1s̄ss(th+1)) , (18)

βββ (th+1) =ΨΨΨ(th+1)−ΨΨΨ(th+1)GGG⊤
h+1

(
GGGh+1ΨΨΨ(th+1)GGG⊤

h+1 +ΣΣΣh+1

)−1
GGGh+1ΨΨΨ(th+1). (19)

Step 3: From the distributions (9) and (17) for h = 0,1, . . . ,H −1, the likelihood of the observations
DM can be calculated by the following decomposition,

p(yyy0(t0),yyy1(t1), . . . ,yyyH(tH)|θθθ ,σσσ) = p(yyy0(t0)|θθθ ,σσσ)
H−1

∏
h=0

p(yyyh+1(th+1)|yyyh(th), . . . ,yyy0(t0);θθθ ,σσσ) .

4 BAYESIAN ANALYSIS AND ALGORITHM DEVELOPMENT

In this section, we simultaneously infer the model parameters θθθ and the measurement error level σσσ from
the observations DM. By applying the Bayes’ rule, we have the joint posterior distribution of θθθ and σσσ ,

p(θθθ ,σσσ |DM) ∝ p(θθθ) p(σσσ)exp
{
−1

2

[
M|JJJ0| log(2π)+ log

∣∣∣GGG0ΨΨΨ(t0)GGG⊤
0 +ΣΣΣ0

∣∣∣
+(yyy0(t0)−GGG0 {s̄ss(t0)+ϕϕϕ(t0)})⊤

(
GGG0ΨΨΨ(t0)GGG⊤

0 +ΣΣΣ0

)−1
(yyy0(t0)−GGG0 {s̄ss(t0)+ϕϕϕ(t0)})

]
− 1

2

H−1

∑
h=0

[
M|JJJh+1| log(2π)+ log

∣∣∣GGGh+1ΨΨΨ(th+1)GGG⊤
h+1 +ΣΣΣh+1

∣∣∣
+(yyyh+1(th+1)−GGGh+1s̄ss(th+1))

⊤
(

GGGh+1ΨΨΨ(th+1)GGG⊤
h+1 +ΣΣΣh+1

)−1
(yyyh+1(th+1)−GGGh+1s̄ss(th+1))

]}
,

(20)

where p(θθθ) and p(σσσ) are the priors for θθθ and σσσ respectively. By utilizing the joint posterior distribution
p(θθθ ,σσσ |DM) in (20), we further develop a MALA procedure to efficiently generate posterior samples of
the L-dimensional parameters ηηη ≡

(
θθθ⊤,σσσ⊤)⊤ where L = N + |JJJy|.
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By utilizing the gradients of posterior (20), MALA generates more promising candidate samples at
the parameter space with higher posterior probability. It improves the mixing of classic MCMC algorithm
through utilizing a combination of two mechanisms, i.e., Langevin diffusion and Metropolis-Hastings step.
Langevin diffusion is originally a gradient descent of a potential function (representing a force field in
physics) plus a Brownian motion term accounting for thermodynamics. To overcome the limitation of
random walk-based search strategies used in classic MCMC, we leverage on the information provided by
the closed form posterior distribution p(ηηη |DM) and use Langevin diffusion to develop a more efficient
posterior sampling approach. We construct a continuous-time stochastic process characterizing the Langevin
diffusion-based posterior search. Specifically, we consider the following (overdamped) Langevin diffusion

dηηη(τ) = ∇ηηη log p(ηηη |DM) |ηηη=ηηη(τ)dτ +
√

2dWWW (τ) (21)

driven by the time derivative of an L-dimensional standard Brownian motion (i.e., dWWW (τ)). It speeds up the
MCMC convergence through drifting the search with the gradient of the target log-posterior distribution (i.e.,
log p(ηηη |DM)), which drives the random walk towards the parameter region with high posterior probability.

To numerically solve Equation (21) and generate posterior samples from p(ηηη |DM), the Euler-Maruyama
approximation (Kloeden and Platen 1992) is used to obtain the discretized Langevin diffusion with a step
size ∆τ > 0,

ηηη(τ +1) :=ηηη(τ)+∇ηηη log p(ηηη |DM) |ηηη=ηηη(τ)∆τ +
√

2∆WWW (τ), (22)

where each ∆WWW (τ) ∈ RL is a Gaussian random vector with mean zero and covariance diag{∆τ} ∈ RL×L.
The gradient of the log-posterior

∇ηηη log p(ηηη |DM) =

({
∂ log p(θθθ ,σσσ |DM)

∂θn
,n ∈ [N]

}
,

{
∂ log p(θθθ ,σσσ |DM)

∂σ j j
, j ∈ JJJy

})⊤

is tractable from Equation (20). In particular, we provide a recursive procedure in Algorithm 1 to compute
p(ηηη |DM) and ∇ηηη log p(ηηη |DM).

Algorithm 1: Computing p(ηηη |DM) and ∇ηηη log p(ηηη |DM).

Input: The priors p(θθθ) and p(σσσ), observations DM = {yyyh(th)}H
h=0, ODE initial values s̄ss(t0), ϕϕϕ(t0)

and ΨΨΨ(t0), constant matrices GGGh, and appropriate positive integers Ih for h = 0,1, . . . ,H −1.
Output: p(ηηη |DM) and ∇ηηη log p(ηηη |DM).
1. Calculate ααα(t0) and βββ (t0) by applying Equations (10) and (11);
2. Calculate ∂ααα(t0)/∂θn, ∂βββ (t0)/∂θn for n ∈ [N], and ∂ααα(t0)/∂σ j j, ∂βββ (t0)/∂σ j j for j ∈ JJJy;
for h = 0,1, . . . ,H −1 do

for i = 0,1, . . . , Ih −1 do
3. Calculate s̄ss(th +(i+1)∆zh) and ΨΨΨ(th +(i+1)∆zh) by applying Equations (14) and (15);
4. Calculate ∂ s̄ss(th +(i+1)∆zh)/∂θn, ∂ΨΨΨ(th +(i+1)∆zh)/∂θn for n ∈ [N], and
∂ s̄ss(th +(i+1)∆zh)/∂σ j j, ∂ΨΨΨ(th +(i+1)∆zh)/∂σ j j for j ∈ JJJy;

5. Calculate ααα(th+1) and βββ (th+1) by applying Equations (18) and (19);
6. Calculate ∂ααα(th+1)/∂θn, ∂βββ (th+1)/∂θn for n ∈ [N], and ∂ααα(th+1)/∂σ j j, ∂βββ (th+1)/∂σ j j

for j ∈ JJJy;
7. Return p(ηηη |DM) by applying Equation (20), and ∇ηηη log p(ηηη |DM) by calculating
∂ log p(ηηη |DM)/∂θn for n ∈ [N] and ∂ log p(ηηη |DM)/∂σ j j for j ∈ JJJy.

To correct the bias in the stationary distribution induced by the discretization used in the update rule
(22), a Metropolis-Hastings step is incorporated for simulating the Langevin diffusion (21). Specifically,
we consider the update rule (22) and define a proposal distribution to generate a new MCMC posterior
sample η̃ηη(τ +1),

η̃ηη(τ +1) :=ηηη(τ)+∇ηηη log p(ηηη |DM) |ηηη=ηηη(τ)∆τ +
√

2∆WWW (τ). (23)
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Thus, the MCMC conditional sampling distribution η̃ηη(τ + 1)|ηηη(τ) is Gaussian distributed with mean
ηηη(τ)+∇ηηη log p(ηηη |DM) |ηηη=ηηη(τ)∆τ and covariance diag{2∆τ} ∈RL×L. Then, the candidate sample η̃ηη(τ +1)
generated from this proposal is accepted with the ratio,

γacc := min

1,
p(η̃ηη(τ +1)|DM)qtrans

(
ηηη(τ)

∣∣∣∣η̃ηη(τ +1)
)

p(ηηη(τ)|DM)qtrans

(
η̃ηη(τ +1)

∣∣∣∣ηηη(τ)

)
 , (24)

where the proposal distribution qtrans(ηηη
′|ηηη) ∝ exp

{
− 1

4∆τ

∣∣∣∣∣∣∣∣ηηη ′−ηηη −∇ηηη log p(ηηη |DM)∆τ

∣∣∣∣∣∣∣∣2
}

(|| · || denotes

the Euclidean norm) is the transition density from ηηη to ηηη ′ obtained from Equation (23).
In sum, we provide the MALA procedure in Algorithm 2 to generate posterior samples for the enzymatic

SRN mechanistic model parameters θθθ and the measurement error level σσσ together. Within each τ-th iteration
of MALA joint posterior sampler, given the previous sample ηηη(τ), we compute and generate one proposal
sample η̃ηη(τ +1) from the discretized Langevin diffusion (23), and accept it with the Metropolis-Hastings
ratio (24). By repeating this procedure, θθθ and σσσ are updated together with a joint gradient at each iteration,
and we thus get samples ηηη(τ) =

(
θθθ⊤(τ),σσσ⊤(τ)

)⊤ with τ = 1,2, . . . ,T0+(B−1)δ . To reduce the initial bias
and correlations between consecutive samples, we discard an appropriate burn-in period for convergence
(i.e., the first T0 samples) and then keep one for every δ samples. Consequently, we obtain the posterior
samples ηηη(b) ∼ p(ηηη |DM) with b = 1,2, . . . ,B.

Algorithm 2: MALA joint posterior sampler for SRN.
Input: The priors p(θθθ) and p(σσσ), step size ∆τ , posterior sample size B, initial warm-up length

T0, and an appropriate integer δ to reduce sample correlation.
Output: Posterior samples ηηη(b) ∼ p(ηηη |DM) with b = 1,2, . . . ,B.
1. Set the initial values ηηη(0) :=

(
θθθ⊤(0),σσσ⊤(0)

)⊤ by sampling from the priors;
for τ = 0,1, . . . ,T0 +(B−1)δ do

2. Calculate p(ηηη(τ)|DM) and ∇ηηη log p(ηηη |DM) |ηηη=ηηη(τ) by calling Algorithm 1;
3. Generate a proposal η̃ηη(τ +1) by applying Equation (23);
4. Calculate the acceptance ratio γacc by applying Equation (24);
5. Draw u from the continuous uniform distribution U(0,1);
if u ≤ γacc then

6. The proposal η̃ηη(τ +1) is accepted, and set ηηη(τ +1) := η̃ηη(τ +1);
else if u > γacc then

7. The proposal η̃ηη(τ +1) is rejected, and set ηηη(τ +1) :=ηηη(τ);
8. Return posterior samples ηηη(b) :=ηηη(T0 +(b−1)δ +1) for b = 1,2, . . . ,B.

Remark 1 From Equation (23), the support of the posterior samples ηηη(b) generated by Algorithm 2 is the
entire L-dimensional real space RL. But in most real-word cases including SRN, the feasible space of ηηη is
restricted, meaning it can be a subset of RL. For instance, some biological parameters such as rates should
be ensured positivity, while some parameters such as probabilities or bioavailability should be between
0 and 1 (Prague et al. 2013). Reparametrization of the system allows us to take these constraints into
account. Specifically, we can introduce one-to-one functions fl(·) for l = 1,2, . . . ,L, and define transformed
parameters η trans

l = fl(ηl). For instance, fl(·) can be logarithmic functions to transform the support from the
positive space to the real space, or inverse Logistic functions to transform the support from the interval [0,1]
to the real space. Then we can perform Algorithm 2 on the transformed ηηη trans = (η trans

1 ,η trans
2 , . . . ,η trans

L )
⊤.
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5 EMPIRICAL STUDY

In this section, we use a representative example of SRN, i.e., Michaelis-Menten enzyme kinetics (Rao and
Arkin 2003), to assess the empirical performance of the proposed Bayesian inference approach. In specific,
we consider the Michaelis-Menten enzyme kinetic model involving four biochemical species, i.e., Enzyme,
Substrate, Complex, and Product. It describes the catalytic conversion of a substrate into a product via an
enzymatic reaction involving enzyme, represented by the following three chemical reactions,

Reaction 1 : Enzyme+Substrate −→ Complex,
Reaction 2 : Complex −→ Enzyme+Substrate,
Reaction 3 : Complex −→ Enzyme+Product,

with CCC =


−1 1 1
−1 1 0
1 −1 −1
0 0 1

 .

In particular, let sss(t) = (s1(t),s2(t),s3(t),s4(t))
⊤ denote the system state vector at any time t, where s1(t),

s2(t), s3(t), and s4(t) are the respective concentration of Enzyme, Substrate, Complex, and Product. The
stoichiometry matrix CCC associated with the system can be obtained from the above three reaction equations,
and the associated reaction rate vector is vvv(sss(t);θθθ) = (θ1s1(t)s2(t),θ2s3(t),θ3s3(t))

⊤. Our goal is to perform
Bayesian inference for the vector of the unknown kinetic rate parameters θθθ = (θ1,θ2,θ3)

⊤.
We simulate a synthetic dataset for 80 seconds (i.e., on the time interval [0,80] seconds) using the Gillespie

algorithm (Gillespie 1977) to ensure exact simulation with the true parameters θθθ true = (0.001,0.005,0.01)⊤,
and the initial states sss(0) = (45,39,55,6)⊤. These initial values are obtained after running the process
for a short time from some arbitrarily chosen population levels. And we create a challenging data-poor
scenario for model inference by assuming incomplete and noisy observations. Specifically, we consider
one batch size (i.e., M = 1), and discard observations on the Enzyme, Substrate, and Product levels, and
only the Complex level is observed every ∆t seconds from t0 = 0 to tH = 80 (H + 1 observation time
points in total), so that JJJh = {3} and GGGh = (0,0,1,0) for any h = 0,1, . . . ,H. And we assume that there is
homogeneous additive Gaussian measurement error, i.e., ε(th)∼ N (0,σ) where σ = 4; that is, the error
standard deviation is two Complex molecules. The inferred parameter vector is ηηη ≡ (θθθ⊤,σ)⊤.

We assess the performance of the proposed joint posterior sampler under model uncertainty induced
with the different data sizes, i.e., H = 4,8,16 (∆t = 20,10,5 seconds correspondingly). To study the effect
of additional gradient information and Bayesian updating step, the MALA with Bayesian updating LNA
is compared to other candidate approaches, including (1) classic Metropolis-Hastings algorithm (M-H)
with Bayesian updating LNA, and (2) MALA with original LNA (without Bayesian update), in terms of
convergence behavior of posterior sampling. Since the support of the parameters is the positive space,
we first need to use the logarithmic function to transform it to the real space. That is, we set log(ηηη) =

(log(θ1), log(θ2), log(θ3), log(σ))⊤ and apply three algorithms to log(ηηη). For both LNA metamodels,
we set s̄ss(t0)+ϕϕϕ(t0) = (50,40,60,10)⊤, ΨΨΨ(t0) as a 4-by-4 identity matrix, and Ih = 2000,1000,500 for
∆t = 20,10,5 respectively to make a small ∆zh = 0.01 for any h = 0,1, . . . ,H. The priors of the parameters
are set as θk ∼ U(0,1) for k = 1,2,3, and σ ∼ U(0,25), to consider a difficult situation without strong
prior information. The results are estimated based on 10 macro-replications.

First, we compare the convergence speed of three algorithms. For MALA with Bayesian updating LNA
and with original LNA (without Bayesian update), we set the step size ∆τ = 0.001. Correspondingly, to
show that MALA improves the mixing of MCMC, for M-H with Bayesian updating LNA, we set its proposal
distribution to be Gaussian distributed with the current sample as mean and diag{2∆τ}= diag{0.002} as
covariance. Figure 2 shows the mean convergence trends of the three algorithms for the three log-kinetic
rate parameters (with 95% confidence intervals (CIs) across 10 macro-replications) under the data size
H = 16 (∆t = 5). The black line represents the true log-parameters. By comparing the widths of the CIs as
iterations progress, we observe that MALA shows a significant improvement in the convergence speed of the
log-kinetic rate parameters inference over M-H, while the Bayesian updating step reduces the approximation
error accumulation over time of original LNA, providing a more accurate likelihood approximation. It
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demonstrates that by sufficiently leveraging on the likelihood and its gradient information provided by a
moderate size of observations, MALA posterior sampling based on the likelihood approximated by the
Bayesian updating LNA metamodel converges quickly towards the true log-parameters.

(a) log(θ1) (b) log(θ2) (c) log(θ3)

Figure 2: The convergence trends of (1) MALA with original LNA, (2) MALA with Bayesian updating
LNA, and (3) M-H with Bayesian updating LNA (with 95% CIs) when the data size H = 16 (∆t = 5).

Then, we study the root mean square error (RMSE) of model parameter estimation to assess the
convergence results of three algorithms under three different data sizes. Basically, the RMSE measures the
differences between the true and the estimated log-parameters based on B posterior samples, i.e., RMSE

=
√

1
B ∑

B
b=1 | log(η true

l )−{log(ηl)}(b)|2 for l = 1,2,3,4. We set the initial warm-up length T0 = 10000 to
reduce the initial bias, the posterior sample size B = 100, and an appropriate integer δ = 10 to reduce sample
correlation for three algorithms. We summarize the 95% CIs obtained by using 10 macro-replications of
the RMSEs for the four log-parameters inferred by the three algorithms in Table 1. As it shows, for the
four log-parameters except log(θ3) inferred under the data size H = 8,16, the RMSEs of MALA with
Bayesian updating LNA decrease more significantly than those of MALA with original LNA as the data
size increases, demonstrating the major benefit induced by the Bayesian updating LNA metamodel. That
means it refines the approximation of the likelihood as more observations available to update the original
LNA model. The exception of log(θ3) is due to that, θ3 is the kinetic rate parameter associated with the
Reaction 3, whose reactant (i.e., Complex) is the only observable component of this system, the data size
of H = 16 is thus sufficient to provide relatively accurate likelihood information based on the original
LNA metamodel, while the Bayesian updating step improves accuracy of likelihood approximation when
the data size H = 8. With the help of MALA, log(θ3) converges close to the true value when H = 8,16.
Additionally, for log(θ1) and log(θ2) under all data sizes, based on the likelihood approximated by the
Bayesian updating LNA metamodel, MALA performs better than M-H in terms of both RMSEs and their
confidence half-widths, meaning that MALA converges faster than M-H; while for log(θ3) and log(σ), the
performance of the two algorithms is similar. This is because both two algorithms have converged before
T0 = 10000.

Table 1: The RMSEs between the estimated and the true log-parameters (with 95% CIs).

MALA with Bayesian updating LNA M-H with Bayesian updating LNA MALA with original LNA

Data H = 4 H = 8 H = 16 H = 4 H = 8 H = 16 H = 4 H = 8 H = 16
size (∆t = 20) (∆t = 10) (∆t = 5) (∆t = 20) (∆t = 10) (∆t = 5) (∆t = 20) (∆t = 10) (∆t = 5)

log(θ1) 1.79±0.73 1.27±0.92 0.48±0.08 2.56±1.09 1.80±1.07 1.48±1.37 1.82±0.74 1.72±0.81 1.41±0.94

log(θ2) 2.76±1.37 2.12±1.31 1.32±0.58 3.29±1.82 2.87±1.49 2.50±1.61 2.80±1.38 2.73±1.36 2.63±1.19

log(θ3) 1.73±2.02 0.25±0.03 0.28±0.03 1.66±2.12 1.15±2.02 0.24±0.03 1.71±2.02 0.69±0.83 0.17±0.04

log(σ) 1.81±0.93 1.02±0.56 0.92±0.59 1.59±0.70 0.98±0.43 0.80±0.29 1.76±0.93 1.30±0.62 1.05±0.73
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6 CONCLUSION

Bayesian inference on partially observed SRN plays a critical role for multi-scale bioprocess mechanism
learning. To tackle the critical challenges of biomanufacturing processes, including high complexity, high
inherent stochasticity, and very limited and sparse observations on partially observed state with measurement
errors, we propose an interpretable Bayesian updating LNA metamodel to approximate the likelihood of
heterogeneous online and offline measures, accounting for the structure information of the enzymatic SRN
mechanistic model. Then, we develop a MALA sampling algorithm that utilizes the information from
the derived likelihood and more efficiently generates posterior samples. The empirical study shows that
our proposed LNA assisted Bayesian inference approach has a promising performance, demonstrating its
potential to benefit bioprocess mechanisms online learning and digital twin development.
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