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ABSTRACT

This paper explores methods for forming equitable project groups in a class by minimizing the range in mean
cumulative quality point averages (CQPAs) across the groups. Using simulation, it forms representative
classes of various sizes from real-world CQPA data, and it compares the approximate solutions of seven
heuristic assignment methods to the globally optimal solutions found with mixed integer linear programming.
Finding a near optimal heuristic is useful as exact methods can be computationally expensive or require
specialized knowledge or software. Simulation results indicate that the Alternating Convergence heuristic
consistently outperforms the other six heuristics, generating near optimal solutions with low computational
cost. This suggests the Alternating Convergence heuristic is a practical method for building project groups
when equitability in scholastic achievement supports one’s pedagogical philosophy or objectives.

1 INTRODUCTION AND BACKGROUND

In today’s hyperconnected world, most professional settings involve groups of people working together to
solve the world’s most challenging problems. As these problems become increasingly complex and global
in scale, the ability to work and function in a group becomes more crucial (Hung 2013). Educational
institutions recognize this trend and shape their students for the realities of the modern workforce by actively
fostering a collaborative learning environment (Barkley et al. 2005).

Definitionally, groups may be described as a collection of people “linked together by some type of
relationship,” interacting to accomplish a specific objective (Forsyth 2014, p. 2). For example, common
reasons to form groups are to increase the cohesion within an organization and increase the exposure
to new ideas between different sectors of a company. Once the purpose of a group or a collection of
groups is established, they can be formed using a variety of algorithms, including random assignment,
self-selection, and criteria-based methods. Research indicates that self-selection is preferable to random
assignment for group dynamics (Chapman et al. 2006), while criteria-based approaches may be perceived
as fairer (Cutshall et al. 2007).

Beyond measuring the effectiveness of assignment methods with group performance, researchers have
developed metrics like the Jain’s index to measure and optimize the fairness of the groups (Jain, Chiu, and
Hawe 1984). Recently, Rezaeinia et al. (2022) continued to explore the notion of group equitability and
the applications of the Jain’s index when studying the allocation of graduate students to group projects.
Pedagogically, building equitable groups – subsets of students with acceptably similar compositions in
one or more dimensions of interest – is an important endeavor because it can enhance individual learning
opportunities. Equitable groups can help combat biases and stereotypes that specific group members may
have by introducing them to new ideas and experiences. They can also encourage group members to
develop important teamwork and conflict resolution skills that are required throughout one’s adult life.

This research paper focuses on a criterion-based method to form equitable groups. Specifically, we
attempt to assign students to groups such that the difference in the largest and smallest group means for
some desired metric (i.e., the range in means) is minimized. While one can use any situation-appropriate,
quantifiable metric to define group equity, this paper focuses on student academic achievement as expressed
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in the cumulative quality point average (CQPA). The CQPA, which is synonymous with the grade point
average (GPA), is a reasonable metric to use, as it is generally available, measured across a variety of
domains by numerous observers (i.e., multiple classes with different instructors), and reasonably correlated
with a student’s academic interest, motivation, and capability. That stated, the methods discussed in this
paper apply to any relevant measure.

For groups formed from populations of 25 or more people, finding the optimal solution becomes
computationally expensive. Moreover, even if finding the optimal solution is tractable, there are many
environments in which the knowledge or resources to do so is infeasible, such as for teachers who do not
specialize in optimization or soldiers who are deployed in combat environments. As such, the primary
purpose of this paper is to simulate and assess heuristics to identify methods that produce simple to
understand, computationally efficient, near-exact solutions. The paper’s remaining sections are organized
as follows: Section 2 describes the method of determining group sizes and introduces exact and heuristic
methods to assign students to groups; Section 3 assesses the assignment methods’ anticipated theoretical
performance using real-world CQPAs; Section 4 uses simulation to estimate their absolute and relative
performance; Section 5 offers key findings and insights; and Section 6 summarizes the main ideas of the
paper and proposes areas of future work.

2 BUILDING PROJECT GROUPS

2.1 Determining Group Size

Suppose we have a class of n students, and we want to build m equal-sized project groups. If n divides
evenly into m, we can build m groups of n/m students. Otherwise, n is not divisible by m, and our m
groups will have different sizes. For example, if we want to build five equal-sized project groups in a class
of 18 students, the best we can do is three groups of four and two groups of three.

To determine the number and size of the groups, we can apply the well-known division algorithm (Rosen
2000). Specifically, if mod represents the modulo operator such that (n mod m) returns the remainder of
n/m and ⌊⌋ indicates the floor function such that ⌊n/m⌋ returns the quotient, the distribution of groups is
given by Algorithm 1.

Algorithm 1: The division algorithm
Data: n students, m project groups, n ≥ m
Result: distribution of project group size
if n mod m = 0 then

m groups of size n/m;
else

(n mod m) groups of size (⌊n/m⌋+1), and;
(m−n mod m) groups of size ⌊n/m⌋;

end

2.2 Assigning Group Members

With the distribution of group sizes established, the next task is to assign students to groups. If students
cannot be assigned to multiple groups and all students must be assigned, the assignment process generates
a partition – a mutually disjoint collection of groups (i.e., subsets) whose union equals the class (i.e., set).
For instance, if we want to assign five students {a,b,c,d,e} to two “equal-sized” groups, we can assign
them as {a,b,c} and {d,e}. Enumerating the possible assignments using the setparts function from R’s
partitions package, yields the 10 subsets seen in Table 1.
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Table 1: Possible partitions of five students into a group of three (Group 1) and a group of two (Group 2),
where the numbers in the table’s interior denote the group assignments.

Partition Number
Student 1 2 3 4 5 6 7 8 9 10

a 1 1 1 1 1 1 2 2 2 2
b 1 1 1 2 2 2 1 1 1 2
c 1 2 2 1 1 2 2 1 1 1
d 2 1 2 1 2 1 1 2 1 1
e 2 2 1 2 1 1 1 1 2 1

To calculate the number of possible partitions p(n,m) directly, we can apply Theorem 13.2 from
Andrews (1976) as seen in Equation (1) below:

p(n,m) =


n!

((n/m)!)m m!
if r = 0,

n!
((q+1)!)r (q!)m−r r!(m− r)!

otherwise,
(1)

where r = n mod m and q = ⌊n/m⌋. Generally speaking, as n or m increases, the number of possible
partitions increases, and the growth can be dramatic. For example, if we want to build five equal-sized
groups in a class of 20 students, there are over 2.5 billion possible partitions. If we add a 21st student to
the class, one of the groups would have to increase its membership from four to five. This seemingly minor
growth increases the number of possible partitions to approximately 53 billion. Moreover, if we want to
limit our groups to less than five students, we would have to add a sixth group, increasing the number of
possible partitions to roughly 475 billion.

2.2.1 Exact Assignment Method - Mixed Integer Linear Programming

As discussed in Section 1, this paper aims to build equitable groups that minimize the range in mean
CQPAs. Mathematically, this can be modeled by the following binary program.

Index and set use: Let N = {1, . . . ,n} denote the set of students, and M = {1, . . . ,m} denote the set of
groups.

Data: Let ci denote the CQPA of student i, and s j denote the size of group j, as determined by the
division algorithm.

Decision variables: Let xi, j be binary, where xi, j = 1 implies student i is assigned to group j; otherwise,
xi, j = 0.

Formulation:

min
(

max
j∈M

{
1
s j

n

∑
i=1

cixi, j

}
−min

j∈M

{
1
s j

n

∑
i=1

cixi, j

})
(2a)

s.t.
m

∑
j=1

xi, j = 1 ∀ i ∈ N (2b)

n

∑
i=1

xi, j = s j ∀ j ∈ M (2c)

xi, j ∈ {0,1} ∀ i ∈ N, j ∈ M (2d)

Discussion: In the objective function (2a), 1
s j

∑
n
i=1 cixi, j is the mean CQPA of the students assigned

to group j. The maximum and minimum of the m group means are given by max j∈M
{ 1

s j
∑

n
i=1 cixi, j

}
and
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min j∈M
{ 1

s j
∑

n
i=1 cixi, j

}
, respectively, and their difference represents the range. Constraint set (2b) ensures

each student is assigned to one group, and constraint set (2c) requires each group to have the requisite
number of students.

As written, the above binary program is non-linear due to the max j∈M {·} and min j∈M {·} terms in
(2a). In general, equivalent linear formulations of non-linear mathematical programs are faster to solve,
and their solutions are guaranteed to be globally optimal. To this end, we can linearize the maximum and
minimum operators in (2a) by: (a) replacing the max j∈M {·} and min j∈M {·} terms with the continuous
variables y and z, respectfully (see (3a)); (b) introducing m additional binary variables b j (see (3i)); and
(c) adding appropriate constraint sets on the new variables (see (3d) through (3g)) (Asghari et al. 2022).
These adjustments transform the original binary non-linear program into the equivalent mixed integer linear
program (MILP) seen below, where B represents a suitably “big” number (e.g., 1000).

min y− z (3a)

s.t.
m

∑
j=1

xi, j = 1 ∀ i ∈ N (3b)

n

∑
i=1

xi, j = s j ∀ j ∈ M (3c)

y ≥ 1
s j

m

∑
j=1

cixi, j ∀ j ∈ M (3d)

z ≥ 1
s j

m

∑
j=1

cixi, j −Bb j ∀ j ∈ M (3e)

z ≤ 1
s j

m

∑
j=1

cixi, j ∀ j ∈ M (3f)

m

∑
j=1

b j ≤ m−1 ∀ j ∈ M (3g)

xi, j ∈ {0,1} ∀ i ∈ N, j ∈ M (3h)

b j ∈ {0,1} ∀ j ∈ M (3i)

The MILP defined by equations (3a) through (3i) can be solved exactly using implicit enumeration
methods such as the branch and cut method (Bertsimas and Tsitsiklis 1997), as implemented in modern
solvers such as the International Business Machines’ Complex Linear Programming Expert (CPLEX) (IBM
Corporation 2019).

2.2.2 Heuristic Assignment Methods

Heuristics are often used to solve problems when optimal methods are either unknown or resource prohibitive.
In the case of assigning students to equitable project groups, we assess five deterministic (Linear Draft,
Snake Draft, Feed the Poor, Tax the Rich, and Alternating Convergence) and two stochastic (Random and
Stratified Random) heuristics. Of these, the Linear Draft, Snake Draft, Random, and Stratified Random are
existing heuristics as cited below. The authors developed the Feed the Poor, Tax the Rich, and Alternating
Convergence heuristics. While other alternatives abound, these seven heuristics represent a reasonable set
of well-known or intuitive ways to methodically build project groups.

Linear Draft The Linear Draft heuristic sorts n students in descending order by CQPA and subse-
quently assigns them to m groups in ⌈n/m⌉ draft rounds using the same draft order in each round. For
example, if there are seven students to be assigned to three groups, the sorted students (labeled a though g)
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would be assigned to groups (designated 1 to 3) as follows: Round 1 | a → 1, b → 2, c → 3; Round 2 | d →
1, e → 2, f → 3; Round 3 | g → 1.

This is approximately similar to how the American National Football League (NFL) allocates players
during the draft to each of 32 teams (NFL 2024), although the actual NFL draft allows for nuances such
as trades. This also assumes that every team ranks all players in the same order. Regardless, the Linear
Draft is a highly common and easily applied heuristic.

Snake Draft The Snake Draft heuristic is identical to the Linear Draft except for the draft order
of the project groups, which flips at the beginning of each draft round. Continuing with the example
from above, if there are seven students to be assigned to three teams, they would be assigned as follows:
Round 1 | a → 1, b → 2, c → 3; Round 2 | d → 3, e → 2, f → 1; Round 3 | g → 1. This heuristic is often
employed in fantasy sports leagues to assign players to teams (Lee and Liu 2022).

Feed the Poor The Feed the Poor heuristic initially assigns each group one of the m highest ranked
students by CQPA. It then assigns the remaining student with the next highest CQPA to the partially filled
group with the lowest mean CQPA. This process repeats itself until all students are assigned.

Tax the Rich The Tax the Rich heuristic is identical to Feed the Poor, except it assigns the remaining
student with the lowest CQPA to the partially filled group with the highest mean CQPA. Notably, this
approach always assigns the students with the highest and lowest CQPAs to the same team.

Alternating Convergence The Alternating Convergence heuristic combines the Feed the Poor and
Tax the Rich heuristics. As before, it initially assigns each group one of the m highest ranked students by
CQPA. It then alternates between “taxing the rich” and “feeding the poor” on every assignment until all
students are assigned.

Random In random assignment, students are assigned to the m groups using any standard random
number generator. This is effectively a standard random sample from all possible permutations of group
formation (Lohr 2010).

Stratified Random In stratified random assignment, students are sorted in descending order by
CQPA and divided into strata of size m or m−1, similar to a stratified sample (Lohr 2010). Within each
strata, students are randomly assigned to one of the m teams. For strata of size m−1 (and without loss of
generality), students are only assigned to the first m−1 teams.

3 ANTICIPATED THEORETICAL PERFORMANCE BY ASSIGNMENT METHOD

3.1 Real-world CQPA Data

We can assess the anticipated performance of the assignment methods in Section 2 using real-world CQPAs.
Among the data sources available, the High School Longitudinal Study of 2009 (HSLS09) is an attractive
choice for its relevance, curation, and size. Specifically, in 2009 the National Center for Education Statistics
(NCES) began following a representative sample of over 23,000 high school freshmen from nearly 950
schools (National Center for Education Statistics 2020a). Between 2017 and 2018 NCES augmented
HSLS09 by collecting postsecondary academic transcripts from the study’s participants (National Center
for Education Statistics 2020b), and the merged public use dataset includes the participants’ cumulative
college GPAs normalized to a 4-point scale (i.e., CQPAs). Given our focus on building project groups
for upper division courses, we restricted our attention to HSLS09 participants with at least 24 months
of undergraduate enrollment who were currently enrolled in a 4-year program or had already attained a
bachelor’s degree. Applying these filters yielded a subsample of 6,130 CQPAs.

3.2 Distribution Fitting

Mathematically, CQPA is the weighted average of the quality points a student has earned in their courses,
where the weights are the courses’ corresponding number of credit hours. For example, imagine a student
took two courses in their first semester of college – AB123 and CD456. If AB123 was 3 credit hours and the
student earned an A (4.0 quality points) and CD456 was 3.5 credit hours and the student earned an A- (3.7
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quality points), the student’s CQPA would be (4(3)+3.7(3.5))/(3+3.5) = 3.8385. This simple illustration
highlights two points. First, although CQPA is a function of a finite number of discrete variables that
can assume small subsets of similar values, it can safely be treated as a continuous variable for analytical
purposes. Second, CQPA is bounded below and above by the quality points of the lowest and highest
grades a student has earned, respectively, which are contained in the closed interval [0,4]. In short, CQPA
is bounded and continuous.

Interestingly, although NCES acknowledges the HSLS09 variable for CQPA (denoted X5GPAALL) is
continuous, it limits X5GPAALL to one decimal place (Duprey et al. 2020), which restricts CQPA to 41
possible values (i.e., from 0.0 to 4.0 in increments of 0.1) and essentially makes it discrete. Beyond sacrificing
fidelity, this discretization is problematic for assessing the performance of Section 2’s assignment methods.
Specifically, if we want to build representative classes of n students and we fit a discrete distribution
to X5GPAALL or resample it with replacement, the likelihood of obtaining duplicate CQPAs will be
dramatically higher than reality. Accordingly, we fit a four-parameter Beta distribution (Vose 2008) to our
subsample of CQPAs using the eBeta_ab function from R’s ExtDist package (Wu et al. 2023).

Figure 1: Goodness-of-fit plots for the CQPAs of the HSLS09 subsample described in Section 3.1. The left
panel displays the best-fitting four-parameter Beta distribution (blue line) superimposed on the histogram
(gray bars) and kernel density estimate (pink line) of HSLS09’s X5GPAALL variable. The right panel is
the Q-Q plot of the quantiles for the best-fitting four-parameter Beta distribution and the subsample of
CQPAs, where a small amount of random noise (ε ∼ Uniform(0,0.05)) has been added to the CQPAs to
fill in the distributional gaps caused by discretization.

As seen in the left panel of Figure 1, the best-fitting four-parameter Beta distribution (Beta(α =
5.61, β = 1.76, l = 0.13, u = 4.04)) generally follows the histogram and kernel density estimate of the
CQPA subsample, especially over the interval [1.0, 3.3]. The Q-Q plot in the right panel reinforces this
and confirms the adequacy of the fit, as all but 9 of the 6,130 points closely mirror the line of equality.

3.3 Order Statistics

Armed with a suitable distribution for CQPA, we can estimate the expected CQPAs in a class of n students using
order statistics, where E[C(i)] represents the expected CQPA of the ith ranked student. To calculate E[C(i)],
we first transform the best-fitting four-parameter Beta random variable C into the standard two-parameter
Beta random variable C′ ∼ Beta(α = 5.61, β = 1.76, l = 0, u = 1) using the relation C′ = (C− l)/(u− l)
(Johnson et al. 1994-1995). Next, we use the beta.dist function from R’s binGroup package (Zhang
et al. 2018) to calculate the expected values of the order statistics for a sample of size n drawn from
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the standard two-parameter Beta distribution (E[C′
(i)]). Finally, we invert the previous transformation to

recover E[C(i)] as follows: E[C(i)] = (u− l)E[C′
(i)]+ l (Johnson et al. 1994-1995). For illustrative purposes,

if we have a class of 20 students, their expected CQPAs can be calculated using the R command: (4.04
- 0.13) * beta.dist(alpha = 5.61, beta = 1.76, grp.sz = 20) + 0.13, which yields the
E[C(i)] seen in Table 2

Table 2: Expected CQPAs in a class of 20 students.

i 1 2 3 4 5 6 7 8 9 10
E[C(i)] 1.8588 2.1985 2.4081 2.5658 2.6953 2.8069 2.9062 2.9966 3.0804 3.1590

i 11 12 13 14 15 16 17 18 19 20
E[C(i)] 3.2337 3.3055 3.3752 3.4436 3.5114 3.5796 3.6492 3.7220 3.8013 3.8947

3.4 Expected Range of Group CQPAs

The approach described in Section 3.3 provides a convenient way to assess the anticipated performance of
the deterministic assignment methods in Section 2. Specifically, suppose we have a class of N = {1, . . . ,n}
students, and we want to assign them to M = {1, . . . ,m} project groups. The expected CQPA of project
group j (denoted g j) is E[ 1

s j
∑i∈g j Ci], where s j is the number of students assigned to project group j. By

the linearity of expectations, the expectation of a sum of random variables is equal to the sum of their
expectations (Lehman et al. 2015), implying E[ 1

s j
∑i∈g j Ci] =

1
s j

∑i∈g j E[Ci]. Order statistics are random
variables in their own right. Accordingly, once n is known, the expected values of the students’ ordered
CQPAs (i.e., E[C(i)]) can be calculated, the students can be assigned to project groups via the deterministic
assignment methods in Section 2, and the expected CQPAs of the project groups can be estimated using
1
s j

∑(i)∈g j E[C(i)] ∀ j ∈ M. Applying this approach to the class of 20 students seen in Table 2 yields the
anticipated performance in Figure 2 on the next page.

As seen in Figure 2, the anticipated performance of the deterministic assignment methods varies
substantially, as the worst performing heuristic’s range (Feed the Poor at 0.887) is nearly 14 times wider
than the best performing heuristic’s range (Alternating Convergence at 0.065), and the best performing
heuristic’s range is nearly 22 times wider than the globally optimal solution (MILP at 0.003). Notably, these
differences were realized despite the consistent assignment of the top four students to different groups,
and with the exception of the Linear Draft heuristic, the assignment of the highest and lowest performing
students to the same group. In short, when it comes to the anticipated performance of the deterministic
assignment methods, the action appears to be in the interior of the ordering. Nonetheless, in a relative,
expected sense, Alternating Convergence appears to be the best heuristic, followed by Snake Draft, Tax
the Rich, Linear Draft, and Feed the Poor, in that order. The degree to which this relationship holds in
general is explored in Section 4.

4 OBSERVED SIMULATED PERFORMANCE BY ASSIGNMENT METHOD

To test the anticipated theoretical performance of the deterministic heuristics in Section 3.4 against the
MILP-generated optimal solutions, as well as assess the performance of the two stochastic approaches, we
performed a simulation of each assignment method across 1,000 hypothetical classes for class sizes of 10,
15, 20, and 25 students each (a total of 4,000 simulation replicates). First, we created the hypothetical
classes by drawing the appropriate number of student CQPAs from the distribution fit to actual student data,
as described in Section 3.2. Next, we found each class’s smallest possible difference between the average
CQPAs of the highest and lowest performing groups after assignment by solving the MILP described in
Section 2.2.1 with CPLEX. Last, we estimated the performance of the heuristics by generating the heuristic
group assignments for each class, calculating the ranges of the project groups’ mean CQPAs, and subtracting
the respective MILP-generated globally optimal solutions from these values.
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Figure 2: Anticipated performance of Section 2’s deterministic assignment methods applied to a class of
n = 20 students divided into m = 5 equal-sized project groups, where circles represent students, locations
on the horizontal axis reflect expected CQPAs, and colors denote project groups. For each assignment
method, the minimum and maximum expected project group CQPAs are to the left and right of the range
bar immediately above the students, and the range of project group CQPAs is given in bold.

Figure 3: Boxplots of the differences between the CQPA ranges of heuristically assigned project groups
and their respective MILP-generated globally optimal solutions.
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Figure 3 confirms the theoretical expectation that the Alternating Convergence method is the most
performant heuristic method. On average, this method resulted in a CQPA gap between the best and worst
groups of only 0.064 points. The Tax the Rich, Snake Draft, Stratified Random, and Linear Draft methods
were the next best and were similarly performant on average. Random allocation performed worse than
this group, and the overall worst assignment method was the Feed the Poor heuristic.

Looking beyond the overall performance in Figure 3, it is even more clear that the Alternating
Convergence method is the best of the heuristics. The left panel of Figure 4 shows that most of the methods
performed worse when forced to create groups with small numbers of students and that increasing the
group size decreased the distance from the MILP-generated globally optimal solutions (i.e., 0). This finding
is intuitive, as increasing the number of students in the groups creates more opportunities to balance the
groups’ mean CQPAs. In all cases, the Alternating Convergence method is the preferred heuristic. In the
right panel of Figure 4, we can see the performance advantage from using the Alternating Convergence
method is constant across class sizes. Interestingly, the Feed the Poor, Tax the Rich, and both random
methods performed worse as class size increased, while the other methods remained constant. Tax the
Rich, however, was the second-best method given the class sizes tested in this study.

Figure 5 shows that the class size and number of group combinations that allowed for even groupings
(e.g., a class size of 20 with groups of 4) generally resulted in heuristic performance closer to the MILP-
generated globally optimal solutions. For the Alternating Convergence method, there was a statistically
significant (but practically insignificant) difference of 0.003 CQPA points when using even versus uneven
groups. Interestingly, the relationship is reversed for the Linear Draft, which performed closer to the MILP
optimal values when the groups were uneven. This performance, however, is still much worse than the
Alternating Convergence method for uneven groups.

In addition to performance, the runtime of each algorithm is also important to consider. Figure 6 shows
the mean runtime of each algorithm over the different class sizes. All experiments were run in R on an
Apple M1 Pro processor with 32 GB of RAM. The left panel demonstrates that the MILP runtime increases
exponentially as class size increases, while the right panel indicates that the Alternating Convergence, Tax
the Rich, and Feed the Poor methods scale linearly. The remaining methods exhibited constant runtimes
over the class sizes tested. While the heuristic methods’ runtime scaling differs, the differences in the
actual runtimes are practically insignificant, as they are measured in hundredths of a second.

The exponential increase in runtime for the MILP suggests that it may be impractical to run for larger
class sizes. Moreover, while the average MILP runtime for 25-student classes was 3 seconds, 5 samples
out of 1,000 took longer than 10 minutes to solve. For comparison, the maximum runtime for Alternating
Convergence was 0.29 seconds. Additionally, when attempting experiments with class sizes of 50, we
encountered hours-long MILP runtimes.

5 DISCUSSION

Forming groups of students that minimize the maximal difference in group means of CQPAs can be solved
exactly using the MILP as described in Section 2.2.1. There are at least seven heuristics that can approximate
the exact solution as described in Section 2.2.2. The team assessed the performance of these methods by
simulating 1,000 hypothetical cases of classes of size 10, 15, 20, and 25 based on a real-world distribution
of CQPAs from the HSLS09 dataset. From this work, there are two key findings: resource constraints and
heuristic performance.

For relatively small classes (e.g., 25 or fewer), it is feasible to solve the assignment problem exactly.
Depending on precise computing resources, however, this becomes challenging when the class size increases,
as the number of possible groups that can be formed from a class of size n split into m groups grows
combinatorially. For example, there are approximately 1.4×1037 ways to form 10 groups of five from 50
students. This growth, and the additional computation required, inhibit finding the exact solution in an
acceptable amount of time for most common cases. Heuristic solutions can resolve this resource constraint,
assuming they are sufficiently close to optimal.
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Figure 4: Mean differences between the CQPA ranges of heuristically assigned project groups and their
respective MILP-generated globally optimal solutions by the number of students in each group (left panel)
and class size (right panel).

Figure 5: Differences between the CQPA ranges of heuristically assigned project groups and their respective
MILP-generated globally optimal solutions for classes with even and uneven group sizes.

Figure 6: Mean runtime (in seconds) of heuristically assigned project groups and MILP-generated globally
optimal solutions by class size for all methods (left panel) and heuristics only (right panel). Notably, the
maximum y-axis limits of the plots differ by two orders of magnitude.
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The heuristic solutions are resource efficient with most of the computation devoted to ordering the
students according to CQPA. The natural question, then, is which one to choose. Simulation reveals that
Alternating Convergence is not only the most performant heuristic explored in this paper, but it is also
reasonably accurate relative to the exact solution. In the context of forming equitable groups, the mean
difference between the CQPA ranges of groups assigned with the Alternating Convergence heuristic and
their respective MILP-generated globally optimal solutions is only 0.064 on a 4.0 scale, which represents an
average error of 1.60%. It is unlikely that students or instructors could truly discern such a fine difference
across groups. The performance of the Alternating Convergence heuristic is also consistent, as the standard
deviation of its error was the least across all studied at 0.051 on a 4.0 scale (1.27%) – less than half the
next closest heuristic’s standard deviation. This means a teacher forming groups can be highly confident
that using the Alternating Convergence heuristic will lead to a near-exact solution.

While this paper focused on creating student project groups with equitable potential for academic
achievement, its methods have broad applicability, especially in situations when its heuristics must be
implemented manually. For example, in the military forming equitable teams of soldiers is often desirable.
Moreover, when operating in a field environment, a military unit’s access to computers or software may be
limited. Illustratively, imagine a forward deployed military unit wants to balance the mean weight of its
personnel and cargo across helicopters for an upcoming air assault operation. The Alternating Convergence
heuristic could be applied by-hand to obtain a good, likely excellent solution.

6 CONCLUSION AND FUTURE WORK

This paper explored different methods for forming equitable project groups based on students’ CQPAs. We
compared the performance of seven easy-to-implement heuristic assignment methods to MILP, an exact
method based on mathematical programming. While the MILP solutions are globally optimal, solving the
optimization problems became resource prohibitive as the number of students being assigned became large.
In such circumstances, heuristics provide relief, but there is a trade-off between the heuristics’ resource
efficiency and the closeness of their solutions to the global optima. Of the heuristics examined in this
paper, Alternating Convergence yielded the group assignments that most closely matched the performance
of the exact solutions across different class sizes and numbers of groups.

Overall, this research provides a simple, intuitive way for instructors to build equitable project groups
with nearly equal average CQPAs. Future work may include additional testing to examine our hypothesis
that the Alternating Convergence heuristic’s performance remains superior and constant as class sizes
increase. Additionally, we can assess the heuristics in more detail to determine if different distributions of
student CQPA impact the performance of the heuristics. Finally, we intend to develop an easily accessible
application that quickly and effectively assigns students to project groups via exact or heuristic methods.

ACKNOWLEDGMENTS

The views expressed herein are those of the authors and do not reflect the official policy or position of the
United States Military Academy, the Department of the Army, or the Department of Defense.

REFERENCES
Andrews, G. E. 1976. “The Theory of Partitions”. In Encyclopedia of Mathematics and Its Applications, edited by G.-C. Rota,

Volume 2. Reading, Massachusetts: Addison-Wesley.
Asghari, M., A. M. Fathollahi-Fard, S. Mirzapour Al-E-Hashem, and M. A. Dulebenets. 2022. “Transformation and Linearization

Techniques in Optimization: A State-of-the-Art Survey”. Mathematics 10(283):1–26.
Barkley, E. F., C. H. Major, and K. P. Cross. 2005. Collaborative Learning Techniques: A Handbook for College Faculty. 1st

ed. San Francisco, California: John Wiley & Sons.
Bertsimas, D. and J. N. Tsitsiklis. 1997. Introduction to Linear Optimization. Belmont, Massachusetts: Athena Scientific.
Chapman, K. J., M. Meuter, D. Toy, and L. Wright. 2006. “Can’t We Pick Our Own Groups? The Influence of Group Selection

Method on Group Dynamics and Outcomes”. Journal of Management Education 30(4):557–569.

2140



Dabkowski, Gillespie, Kloo, Compeau, and Tran

Cutshall, R., S. Gavirneni, and K. Schultz. 2007. “Indiana University’s Kelley School of Business Uses Integer Programming
to Form Equitable, Cohesive Student Teams”. Interfaces 37(3):265–276.

Duprey, M. A., D. J. Pratt, D. H. Wilson, D. M. Jewell, D. S. Brown, L. R. Caves et al. 2020. “High School Longitudinal
Study of 2009 (HSLS:09) Postsecondary Education Transcript Study and Student Financial Aid Records Collection - Data
File Documentation - Appendices. NCES 2020-004”. Technical report, National Center for Education Statistics.

Forsyth, D. R. 2014. Group Dynamics. 6th ed. Belmont, California: Wadsworth Cengage Learning.
Hung, W. 2013. “Team-Based Complex Problem Solving: A Collective Cognition Perspective”. Educational Technology Research

and Development 61:365–384.
IBM Corporation 2019. “Solving Mixed Integer Programming Problems (MIP)”. https://www.ibm.com/docs/en/icos/12.10.0?

topic=optimization-solving-mixed-integer-programming-problems-mip, accessed 27th February.
Jain, R. K., D.-M. W. Chiu, and W. R. Hawe. 1984. “A Quantitative Measure of Fairness and Discrimination”. Technical report,

Eastern Research Laboratory, Digital Equipment Corporation, Hudson, Massachusetts.
Johnson, N. L., S. Kotz, and N. Balakrishnan. 1994-1995. Continuous Univariate Distributions. 2nd ed, Volume 1-2. John

Wiley & Sons.
Lee, M. D. and S. Liu. 2022. “Drafting Strategies in Fantasy Football: A Study of Competitive Sequential Human Decision

Making”. Judgment and Decision Making 17(4):691–719.
Lehman, E., F. T. Leighton, and A. R. Meyer. 2015. Mathematics for Computer Science. Cambridge, Massachusetts: Massachusetts

Institute of Technology OpenCourseWare.
Lohr, S. L. 2010. Sampling: Design and Analysis. 2nd ed. Boston, Massachusetts: Brooks/Cole.
National Center for Education Statistics 2020a. “High School Longitudinal Study of 2009”. https://nces.ed.gov/surveys/hsls09/,

accessed 27th February.
National Center for Education Statistics 2020b. “Postsecondary Education Transcript Studies”. https://nces.ed.gov/surveys/pets/,

accessed 27th February.
NFL 2024. “The Rules of the NFL Draft”. https://operations.nfl.com/journey-to-the-nfl/the-nfl-draft/the-rules-of-the-draft/,

accessed 27th April.
Rezaeinia, N., J. C. Góez, and M. Guajardo. 2022. “Efficiency and Fairness Criteria in the Assignment of Students to Projects”.

Annals of Operations Research 319(2):1717–1735.
Rosen, K. H. 2000. Elementary Number Theory and Its Applications. 4th ed. Reading, Massachusetts: Addison-Wesley.
Vose, D. 2008. Risk Analysis: A Quantitative Guide. 3rd ed. Chichester, England: John Wiley & Sons.
Wu, H., A. J. R. Godfrey, K. Govindaraju, and S. Pirikahu. 2023. ExtDist: Extending the Range of Functions for Probability

Distributions. R package version 0.7-2.
Zhang, B., C. Bilder, B. Biggerstaff, F. Schaarschmidt and B. Hitt. 2018. binGroup: Evaluation and Experimental Design for

Binomial Group Testing. R package version 2.2-1.

AUTHOR BIOGRAPHIES
MATTHEW DABKOWSKI is an Associate Professor in USMA’s DSE, currently serving as the Deputy Department Head.
He holds a BS in Operations Research from USMA, an MS in Systems Engineering from the University of Arizona (UA), and
a PhD in Systems and Industrial Engineering from the UA. His email address is matthew.dabkowski@westpoint.edu.

STEPHEN GILLESPIE is an Assistant Professor in USMA’s DSE, currently serving as the System Engineering Program
Director. He holds a BA and an MA in Mathematics from Boston University and a PhD in Systems Engineering from the
Naval Postgraduate School. His email address is stephen.gillespie@westpoint.edu.

IAN KLOO is an Assistant Professor in USMA’s DSE and a PhD student in Carnegie Mellon University’s (CMU’s) Societal
Computing Program. He earned a Master in Policy Analytics from CMU and a Bachelor of Business Administration from The
College of William and Mary. His email address is ian.kloo@westpoint.edu.

DEVON COMPEAU is an Instructor in USMA’s DSE, currently teaching deterministic and stochastic modeling. He holds a
BS in Systems Engineering from USMA and an MS in Industrial and Operations Engineering from the University of Michigan.
His email address is devon.compeau@westpoint.edu.

MAI TRAN is an Assistant Professor in USMA’s DSE, currently teaching decision analysis and directing the EXCEL Scholars
Program. She holds a BS in Mathematics from Binghamton University and a PhD in Mathematics from the University of
Albany. Her email address is mai.tran@westpoint.edu.

2141

https://www.ibm.com/docs/en/icos/12.10.0?topic=optimization-solving-mixed-integer-programming-problems-mip
https://www.ibm.com/docs/en/icos/12.10.0?topic=optimization-solving-mixed-integer-programming-problems-mip
https://nces.ed.gov/surveys/hsls09/
https://nces.ed.gov/surveys/pets/
https://operations.nfl.com/journey-to-the-nfl/the-nfl-draft/the-rules-of-the-draft/
mailto://matthew.dabkowski@westpoint.edu
mailto://stephen.gillespie@westpoint.edu
mailto://ian.kloo@westpoint.edu
mailto://devon.compeau@westpoint.edu
mailto://mai.tran@westpoint.edu

	INTRODUCTION AND Background
	BUILDING PROJECT GROUPS
	Determining Group Size
	Assigning Group Members
	  Exact Assignment Method - Mixed Integer Linear Programming
	  Heuristic Assignment Methods


	Anticipated Theoretical Performance by Assignment Method
	Real-world CQPA Data
	Distribution Fitting
	Order Statistics
	Expected Range of Group CQPAs

	Observed Simulated Performance by Assignment Method
	Discussion
	Conclusion and Future Work

