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ABSTRACT

Mainstream reinforcement learning (RL) typically focuses on maximizing expected cumulative rewards. In
this paper, we explore a risk-sensitive RL setting where the objective is to optimize the distortion risk measure
(DRM), a criterion better reflecting human risk perception. We parameterize the action selection policy by
neural networks and propose a novel policy gradient algorithm, DRM-based Policy Optimization (DPO),
along with its accelerated variant, DRM-based Proximal Policy Optimization (DPPO), to address deep RL
tasks with DRM objectives. DPO integrates three coupled recursions operating at different timescales to
estimate gradient components and update parameters simultaneously. Our experiments provide numerical
results across diverse scenarios, demonstrating that our proposed algorithms outperform the existing baselines
under the DRM criterion.

1 INTRODUCTION

Reinforcement learning (RL) formulates sequential decision-making as Markov Decision Processes (MDPs)
and keeps improving the control policy by leveraging historical data collected when interacting with the
environment. Standard RL frameworks take the expectation of cumulative reward as their objective, which
tends to produce risk-neutral policies. Given the profound achievements deep RL has made in games
(Silver et al. 2016; Mnih et al. 2015), robotic control (Levine et al. 2016), and other fields, researchers are
motivated to enhance the learning capacities of these algorithms. Despite these advances, the real-world
deployment of RL has not scaled up commensurately, particularly in high-risk sectors, since overlooking
the risk from uncertainty can lead to serious consequences, as even a minor shortfall in the last 1% service
level may trigger widespread public events of a company.

Classical RL algorithms are trustworthy for reaching a well-behaved policy in tasks where the underlying
mechanism is almost deterministic, which is usually not the case when humans participate in the interaction.
To manage the impact of uncertainty, risk measures have been applied to emphasize various considerations
during training, which is referred to as risk-sensitive RL in the literature. For instance, value-at-risk (VaR)
and conditional value-at-risk (CVaR) are common choices to capture the tail behavior, while Cumulative
Prospect Theory (CPT) (Tversky and Kahneman 1992) assigns different credits to gains and losses. These
risk measures are integrated into mainstream RL as either objectives or constraints.

In this paper, we explore a risk-sensitive RL setting where the objective is to optimize the distortion risk
measure (DRM). As a weighted integral of the cumulative distribution function (CDF), DRM provides a
unified formulation for a wide range of risk measures by distorting the probability with different distortion
functions as shown in Figure 1. The specific definitions are provided in later sections. The weight coefficients
are associated with the derivatives of distortion functions. The derivative corresponding to CPT implies
that two-sided tail behavior is given increased consideration, while other listed risk measures pay attention
to one-sided tail. With careful configuration, DRM has a better capacity to reflect human risk perception.
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Figure 1: Visualization of example distortion functions and their derivatives.

We parameterize the action selection policy by deep neural networks which can consist of enormous
policy parameters. Due to the high dimensionality, gradient-based optimization turns out to be the only
reliable technical path. We transform the DRM into a weighted summation of quantiles, whose gradient can
be expressed as a function of multiple distribution-related terms. Nonetheless, the gradient estimation for
DRM is far beyond the likelihood ratio technique in classical RL algorithms, since the formulation involves
complicated ratios and has variable coupling issues. We propose a novel policy gradient algorithm, DRM-
based Policy Optimization (DPO), and its accelerated variant, DRM-based Proximal Policy Optimization
(DPPO), to address deep RL tasks with DRM objectives. DPO integrates three coupled recursions operating
at different timescales to estimate several components in the DRM gradient and update policy parameters
simultaneously. We conduct experiments for our proposed algorithms across diverse scenarios, including
inventory management examples. Our numerical results demonstrate that both algorithms outperform the
existing baselines under the DRM criterion. To the best of our knowledge, we are the first to propose
a three-timescale iterative algorithm under the DRM criterion in the deep RL context, addressing the
large-scale optimization when deep neural networks are applied to represent policies.

The rest of the paper is organized as follows: In Section 2, we review the related work in the fields
of deep RL and gradient estimation. In Section 3, we describe the MDP settings, the mean-based policy
gradient theorem, and the DRM criterion for RL. Section 4 introduces our new algorithm, DPO, and its
accelerated variant, DPPO. Theoretical results for DPO are listed in Section 5. Numerical results are
presented in Section 6. We conclude the paper and discuss future directions in Section 7.

2 RELATED WORK

2.1 Mean-Based RL

Deep RL with expectation criterion has been the standard framework for years, which can be roughly divided
into two categories. The first category parameterizes the control policy as certain end-to-end forms with
current observation as input. As a pioneer, REINFORCE (Williams 1992) establishes the policy gradient
theorem to adopt stochastic gradient ascent for policy optimization. Trust Region Policy Optimization
(TRPO) (Schulman et al. 2015) leverages the importance sampling technique under complicated constraints
to achieve better data utilization efficiency. Its simplified version, Proximal Policy Optimization (PPO)
(Schulman et al. 2015) reduces the constraint to a clipped surrogate objective and has become one of
the state-of-art baseline algorithms among mainstream RL algorithms. The second category estimates the
action values given the state, with policies induced by selecting actions of the best value (Mnih et al. 2015;
Hessel et al. 2018). Recently, it has been extended to estimate the value distribution (Bellemare et al.
2017). Others also make attempts to integrate both ideas (Lillicrap et al. 2015; Haarnoja et al. 2018).

2.2 Gradient Estimation of Risk Measures

Unlike mean-based objectives, even basic risk measures may impose huge difficulties in estimating their
gradients, which motivates researchers to develop various techniques, such as kernel estimation (Liu and
Hong 2009; Hong and Liu 2009), infinite perturbation analysis (Hong 2009; Jiang and Fu 2015), and
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measure-valued differentiation (Heidergott and Volk-Makarewicz 2016). Glynn et al. (2021) further utilize
the generalized likelihood ratio method to derive DRM estimators, which is the most relevant to our
work. Unfortunately, previous methods only work when having perfect knowledge of underlying dynamics
in the MDP, which violates the general settings in RL. Black-box gradient estimation approaches like
simultaneous perturbation stochastic approximation (SPSA) (Spall 1992) and evolution strategy (Salimans
et al. 2017) also used to be considered as alternatives but suffer from a significant performance decline
with high-dimensional parameter spaces when neural networks are deployed.

2.3 Risk-Sensitive RL

Risk measures are introduced into the RL framework for producing safe and robust decision-making. Early
work includes studies on the expected exponential utility (Borkar 2001) and CVaR (Petrik and Subramanian
2012; Tamar et al. 2014) as objectives. Prashanth and Ghavamzadeh (2013) and Prashanth et al. (2016)
utilize SPSA to optimize variance-related risk measures and CPT. Jiang et al. (2022) develop a two-timescale
iterative algorithm to optimize the VaR objective. Bertsekas (1997) employs a Lagrangian approach to solve
risk-constrained RL. VaR and CVaR are also considered as risk constraints in Borkar and Jain (2014), Chow
et al. (2018). Recently, Prashanth and Fu (2022) investigate the challenges involved in risk-sensitive RL
using policy gradient methods. Moreover, there are value-based algorithms for managing the uncertainty
in deep RL, where value distribution approximation and risk-sensitive greedy selection are combined to
increase the decision robustness (Bellemare et al. 2017; Dabney et al. 2018).

3 PROBLEM FORMULATION & PRELIMINARIES

An MDP consists of the state space S and action space A , as well as the transition kernel p(s′|s,a),
reward function r(s,a,s′), and reward discount factor η ∈ (0,1). We consider the stochastic decision policy
parameterized by a vector θ , which is a conditional density π(·|s;θ) over A for every s ∈S . A trajectory
τ = {s0,a0,s1, · · · ,sT} is generated from the interaction between the MDP dynamics and parametric policy,
where st+1 ∼ p(·|st ,at), at ∼ π(·|st ;θ), s0 follows some initializing density p(·), and T is the time horizon.
The discounted cumulative reward is written as R(τ) = ∑

T−1
t=0 η tr(st ,at ,st+1), which can be viewed as a

function of τ and follows a distribution denoted by F(·;θ).
In the context of classical deep RL, the objective is to solve the optimal policy that maximizes

the expected cumulative reward, i.e., maxθ∈ΘER(τ)∼F(·;θ)[R(τ)], where Θ is the parameter space. The
corresponding deep RL algorithms rely on gradient descent recursions, where the likelihood ratio method is
frequently used to derive unbiased gradient estimators without any knowledge of the underlying dynamics.
Let Π(τ;θ) = p(s0)∏

T−1
t=0 π(at |st ;θ)p(st+1|st ,at). With mild integrability conditions (L’Ecuyer et al. 1992),

the gradient of the expectation objective can be rewritten as

∇θE[R(τ)] =
∫

Ωτ

R(τ)∇θ logΠ(τ;θ)Π(τ;θ)dτ = E
[

R(τ)
T−1

∑
t=0

∇θ logπ(at |st ;θ)

]
. (1)

Advanced variants (Schulman et al. 2015; Schulman et al. 2017) may leverage the structural characteristics
of MDPs and simulation-based techniques to obtain further acceleration.

We propose incorporating human risk perception into the learned policy by optimizing the DRM of
cumulative rewards instead of maximizing expectations, which can be supported by CPT to serve as an
alternative to basing decisions on expected utility theory (Tversky and Kahneman 1992). For a given
distortion risk function w(·) with w(0) = 0 and w(1) = 1, the vanilla representation of DRM (Denuit et al.
2006) is written as

J(θ) =
∫ +∞

0
w(1−F(r;θ))dr+

∫ 0

−∞

(w(1−F(r;θ))−1)dr, (2)

where the massively studied measures, e.g., VaR and CVaR, admit the formula when w(y) = 1{y > 1−α}
and w(y) = min{ y

1−α
,1}, respectively. Our generalized risk-sensitive deep RL aims at maximizing the
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DRM on a compact convex set Θ, i.e.,

max
θ∈Θ

J(θ). (3)

The convexity of w(·) can lead to a risk-averse preference and vice versa. The direct gradient of the
objective (2) can be given by ∇θ J(θ)=

∫ +∞

−∞
−w′(1−F(x;θ))∇θ F(x;θ)dx. Due to the numerical integration,

algorithms can not avoid compromising to truncate the integral region, which requires problem-specific
knowledge of rewards and results in huge computation wastes.

Glynn et al. (2021) provide an alternative gradient formulation with a finite integration region. If w(·)
is non-decreasing and left-continuous, then the equality (2) can be transformed into a Lebesgue-Stieltjes
integral over a bounded interval (Dhaene et al. 2012), i.e.,

J(θ) =
∫ 1

0
F−1(1− y;θ)dw(y). (4)

Its gradient is given by the weighted integral of VaR gradients, also known as quantile gradients, which
can be obtained by applying the implicit function theorem (Fu et al. 2009), i.e.,

∇θ J(θ) =−
∫ 1

0
∇θ F−1(y;θ)dw̃(y) =−

∫ 1

0
−∇θ F(q;θ)

f (q;θ)

∣∣∣∣
q=F−1(y;θ)

dw̃(y), (5)

where w̃(y) = w(1−y) and f (·;θ) is the density of the cumulative reward. There are three major difficulties
in deriving an estimator for the gradient (5):

• The DRM gradient (5) is in the integral form that is hard to calculate analytically.
• The density function f (·;θ) usually does not have an explicit form in the deep RL context.
• While the quantile function F−1(·;θ) is involved in the right-hand-side of the DRM gradient (5),

its formula remains unknown and the value changes as the underlying θ varies.

4 DRM-BASED POLICY OPTIMIZATION

4.1 On-Policy Deep RL for Optimizing DRM

We first partition the integration interval [0,1] into N uniform segments [ i−1
N , i

N ] for i= 1, · · · ,N, and consider
the algorithm framework that the policy optimization follows the numerical integration for computing the
DRM gradient (5), which is given by

∇̂θ J(θ) =−
N

∑
i=1

di(θ)(w̃(
i
N
)− w̃(

i−1
N

)). (6)

where di(θ) = −∇θ F(q;θ)
f (q;θ) |q=F−1( 2i−1

2N ;θ) is the true gradient of the 2i−1
2N -quantile. This essentially leads the

algorithm to solve the approximated problem, i.e.,

max
θ∈Θ

Ĵ(θ) = max
θ∈Θ

−
N

∑
i=1

F−1(
2i−1

2N
;θ)(w̃(

i
N
)− w̃(

i−1
N

)), (7)

and ∇̂θ J(θ) =∇θ Ĵ(θ). The difference between J(θ) and Ĵ(θ) diminishes with N increasing. The numerical
integration substitute enables us to focus on tracing a series of quantiles and their gradients. Though Hu
et al. (2022) propose coupled double recursions to track a single quantile and its gradient, this approach
can be difficult to apply in deep RL since the density f (·;θ) relies on the explicit forms of the transition
probability and reward function that are typically unavailable.
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Instead of using a large batch of samples for plug-in estimation each time, we propose a method to
estimate different components of the DRM gradient and update the policy parameters simultaneously. This
approach involves three recursions running on multiple timescales. The first two recursions trace a set
of quantiles that occurred in the equality (7) and their gradients, while the last one updates the policy
parameter θ . Given the current policy parameter θ , the quantile estimates can be found using the following
recursive procedure:

qk+1,i = qk,i + γ
q
k (

2i−1
2N

−1{R(τk)≤ qk,i}), for i = 1, · · · ,N, (8)

where γ
q
k is the step-size, τk is the trajectory simulated by following the policy π(·|·;θ), and qk,i is an

estimate of F−1(2i−1
2N ;θ) at the k-th iteration. Note that F(r;θ) = E[1{R(τ) ≤ r}], the recursion (8) is a

stochastic approximation (SA) iteration for solving F(q;θ) = 2i−1
2N .

Since the quantile gradient di(θ) takes a complicated ratio form, it has no analytical formula to estimate
as a whole and faces the ratio bias issue when the numerator and denominator are estimated separately
with finite samples. Note that the definition of di(θ) can be transformed into −∇θ F(q;θ)|q=F−1( 2i−1

2N ;θ)−
di(θ) f (F−1(2i−1

2N ;θ);θ) = 0. We construct the following recursions to track the quantile gradients when
θ and {qi}N

i=1 are fixed, i.e.,

Dk+1,i = Dk,i + γ
D
k (G1(τk;θ ,qi)−G2(τk;θ ,qi)Dk,i), for i = 1, · · · ,N, (9)

where γD
k is the step-size, G1(τ;θ ,qi) and G2(τ;θ ,qi) are estimators of −∇θ F(q;θ)|q=qi and f (qi;θ),

respectively, and Dk,i is an estimate of di(θ) at the k-th iteration. With the likelihood ratio technique similar
to that in the equality (1), we can rewrite the CDF gradient as follows:

∇θ F(q;θ) = ∇θE[1{R(τ)≤ q}] = ∇θ

∫
Ωτ

1{R(τ)≤ q}Π(τ;θ)dτ

= E[1{R(τ)≤ q}∇θ logΠ(τ;θ)] = E
[

1{R(τ)≤ q}
T−1

∑
t=0

∇θ logπ(at |st ;θ)

]
,

which yields G1(τ;θ ,q) = −1{R(τ) ≤ q}∑
T−1
t=0 ∇θ logπ(at |st ;θ). However, only if we have an explicit

and differentiable density function f (·;θ), can we employ the generalized likelihood ratio method (Lei
et al. 2018) to derive an unbiased estimator. Because this is usually not the case for the deep RL
settings, we use the kernel-based method (Wand and Jones 1994) to estimate the density value, i.e.,
G2(τ;θ ,q,h) = 1

h K(R(τ)−q
h ), where the additional parameter h is the bandwidth, K(·) denotes a kernel

function satisfying
∫
R K(x)dx = 1,

∫
R xK(x)dx = 0 and

∫
R x2K(x)dx < ∞, e.g., the density function of a

standard normal distribution K(x) = 1√
2π

exp{− x2

2 }. To control the estimation variance, we also require the

kernel function to be square integrable, i.e.,
∫
R K2(x)dx < ∞, which is a common setting in kernel-based

methods. Although G2(τ;θ ,q,h) is not an unbiased estimator of f (q;θ), E[G2(τ;θ ,q,h)]− f (q;θ) can be
controlled by varying h.

In the last recursion, we use estimated quantile gradients instead of di(θk) to compute the numerical
integral (6) and perform the gradient ascent method for solving the problem (7). This leads to our proposed
DRM-based Policy Optimization (DPO) algorithm as follows:

Dk+1,i = Dk,i + γ
D
k (G1(τk;θk,qk,i)−G2(τk;θk,qk,i,hk)Dk,i), for i = 1, · · · ,N, (10)

qk+1,i = qk,i + γ
q
k (

2i−1
2N

−1{R(τk)≤ qk,i}), for i = 1, · · · ,N, (11)

θk+1 = ϕΘ

(
θk + γ

θ
k

N

∑
i=1
−Dk,i(w̃(

i
N
)− w̃(

i−1
N

))
)
, (12)
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where γθ
k is the gradient search step-size, ϕΘ(·) represents a projection operation that brings an iterate θk+1

back to the parameter space Θ whenever it becomes infeasible, and hk is a decreasing bandwidth of kernel
smoothing. The recursion (12) is equivalent to

θk+1 = θk + γ
θ
k

N

∑
i=1
−Dk,i(w̃(

i
N
)− w̃(

i−1
N

))+ γ
θ
k Pk, (13)

where γθ
k Pk := θk+1−θk +γθ

k ∑
N
i=1 Dk,i(w̃( i

N )− w̃( i−1
N )) is the real vector with the smallest L2-norm needed

to keep {θk} in Θ, i.e., Pk ∈ −C(θk+1), where C(θ) is the normal cone to Θ at θ . The iterative update
only requires at least one sample to perform the estimation and enables us to utilize the historical samples
during the past steps. The pseudo-code of DPO is presented in Algorithm 1.

Algorithm 1 DRM-based Policy Optimization (DPO)
1: Input: Policy network π(·|·;θ), distortion funcion w(·).
2: Initialize: Policy parameter θ0 ∈ Θ ⊂ Rd , quantile estimates {q0,i}N

i=1 ∈ R and quantile gradient
estimates {D0,i}N

i=1 ∈ Rd .
3: for k = 0, · · · ,K−1 do
4: Generate one episode τk = {sk

0,a
k
0,s

k
1, · · · ,ak

T−1,s
k
T} following policy π(·|·;θk);

5: for i = 1, · · · ,N do Dk+1,i← Dk,i + γD
k (G1(τk;θk,qk,i)−G2(τk;θk,qk,i,hk)Dk,i) end for;

6: for i = 1, · · · ,N do qk+1,i← qk,i + γ
q
k (

2i−1
2N −1{R(τk)≤ qk,i}) end for;

7: θk+1← ϕΘ

(
θk + γθ

k ∑
N
i=1−Dk,i(w̃( i

N )− w̃( i−1
N ))

)
.

8: end for
9: Output: Trained policy network π(·|·;θK).

4.2 Off-Policy Deep RL for Optimizing DRM

For the state-of-art mean-based deep RL algorithms such as the one in Schulman et al. (2017), the policy
parameters can be updated multiple times before generating new simulated data. In contrast, DPO updates
parameters only once per episode and drops the data when parameters change, potentially leading to
inefficiency in leveraging simulation samples. Define [k] = K⌊ k

K ⌋, where K > 0 is an integer. By applying
the importance sampling technique, we can obtain an accelerated variant of DPO, namely DRM-based
Proximal Policy Optimization (DPPO), which uses the trajectory generated at the [k]-th iteration to update
the parameters for the next K iterations. The recursions (10) and (11) are transformed into

Dk+1,i = Dk,i + γ
D
k ρk(G1(τ[k];θk,qk,i)−G2(τ[k];θk,qk,i,hk)Dk,i), for i = 1, · · · ,N, (14)

qk+1,i = qk,i + γ
q
k (

2i−1
2N

−ρk1{R(τ[k])≤ qk,i}), for i = 1, · · · ,N, (15)

where ρk =
Π(τ[k];θk)

Π(τ[k];θ[k])
= ∏

T−1
t=0

π(a[k],t |s[k],t ;θk)

π(a[k],t |s[k],t ;θ[k]) is the importance sampling ratio. Recursions (10) and (11) are
equivalent to recursions (14) and (15) in a probability sense (Glynn and Iglehart 1989).

However, the importance sampling technique can cause increasing estimation variance when θk differs
from θ[k] too much, which may lead to an explosion. Mean-based TRPO (Schulman et al. 2015) manages
to control the difference by imposing an additional constraint DKL(Π(·,θk)∥Π(·,θ[k]))≤ δ , where DKL(·∥·)
denotes the Kullback–Leibler (KL) divergence, but PPO reduces it to an unconstrained optimization of the
surrogate objective with clipping and achieves reliable outcome without heavy computation consumption
(Schulman et al. 2017). With the inspiration of clipping the importance sampling ratio in PPO, a similar
option can be provided to DPPO to exclude the samples where the ratio deviates significantly from 1. It
can be implemented by using ρ̃k = ρk1{1− ε ≤ ρ ≤ 1+ ε} instead of the original ρk in recursions (14)
and (15), where ε is the tolerance.
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5 CONVERGENCE ANALYSIS

Let (Ω,F ,P) be a probability space. We simplify the notations {qk,i}N
i=1 and {Dk,i}N

i=1 as qk and Dk,
respectively, and define Fk = σ{θ0,q0,D0, · · · ,θk,qk,Dk} as the filtration generated by our algorithm for
k = 0,1, · · · . Though only one simulation sample per iteration is acceptable in practice with careful choices
of hyperparameters, we consider the following recursions instead of recursions (10) and (11) in convergence
analysis for a more flexible trade-off between the bias and variance of estimation in kernel smoothing:

Dk+1,i = Dk,i + γ
D
k (

1
Bk

Bk

∑
n=1

(G1(τk,n;θk,qk,i)−G2(τk,n;θk,qk,i,hk)Dk,i)), for i = 1, · · · ,N, (16)

qk+1,i = qk,i + γ
q
k (

2i−1
2N

− 1
Bk

Bk

∑
n=1

1{R(τk,n)≤ qk,i}), for i = 1, · · · ,N, (17)

where Bk and τk,n denote the batch size and the n-th trajectory at the k-th iteration, respectively. Here, we
introduce some assumptions before the analysis.
Assumption 1 For i = 1, · · · ,N, F−1(2i−1

2N ;θ) ∈C1(Θ).

Assumption 2 The step-size sequences {γD
k }, {γ

q
k }, {γθ

k }, batch size sequence {Bk}, and bandwidth
sequence {hk} satisfy

(a) γD
k > 0, ∑

∞
k=0 γD

k = ∞, ∑
∞
k=0(γ

D
k )

2 < ∞; (b) γ
q
k > 0, ∑

∞
k=0 γ

q
k = ∞, ∑

∞
k=0(γ

q
k )

2 < ∞;
(c) γθ

k > 0, ∑
∞
k=0 γθ

k = ∞, ∑
∞
k=0(γ

θ
k )

2 < ∞; (d) γθ
k = o(γq

k ), γ
q
k = o(γD

k );
(e) Bk > 0, hk > 0, h2

k +B−1
k h−1

k = o(1).
Assumption 3 The log gradient of neural network outputs w.r.t. θ is bounded, i.e., there exists a constant
Cπ > 0, for any state-action pair (s,a) ∈S ×A and parameter θ ∈Θ, supa,s,θ ∥∇θ logπ(a|s;θ)∥<Cπ .

Assumption 4 There exist constants ε f ∈ (0,1) and C f > 0 such that for i = 1, · · · ,N, w.p.1,
(a) infk f (qk,i;θk)> ε f and supk f (qk,i;θk)<C f ; (b) supk | f ′′(qk,i;θk)|< ∞.
Assumption 1 is a common setting in continuous optimization and implies the smoothness of DRM

objectives. Assumption 2 is standard in multi-timescale SA analysis. Assumption 3 is naturally made to
avoid computational overflow. Assumption 4 includes necessary conditions to control the bias and variance
in kernel estimation and to ensure that the quantile gradients are well-defined. We expect the recursions
(16), (17), and (12) or (13) to track three coupled ordinary differential equations (ODEs):

Ḋi(t) =−∇θ F(q;θ(t))
∣∣
q=qi(t)

− f (qi(t);θ(t))Di(t), for i = 1, · · · ,N,

q̇i(t) =
2i−1

2N
−F(qi(t);θ(t)), for i = 1, · · · ,N,

θ̇(t) =−
N

∑
i=1

Di(t)(w̃(
i
N
)− w̃(

i−1
N

))+ p(t),

(18)

where p(t) ∈ −C(θ(t)) is the vector with the smallest norm needed to keep θ(t) in Θ. Due to the
relationships of three step-sizes in Assumption 2, the later ODE(s) can be viewed as static for analyzing
the dynamic of the former one(s). Recursion (12) can be regarded as tracking the ODE

θ̇(t) =−
N

∑
i=1

di(θ(t))(w̃(
i
N
)− w̃(

i−1
N

))+ p(t), (19)

whereas other variables are always close to converging. If θ ∗ = argmaxθ∈Θ Ĵ(θ) is the unique global
asymptotically stable equilibrium of (19), then strong convergence of DPO to the optimum can be established.
Therefore, we first prepare the following analysis on asymptotic behaviors of decoupled ODEs as shown
in Lemmas 1-3.
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Lemma 1 For all θ̄ ∈Θ and i= 1, · · · ,N, F−1(2i−1
2N ; θ̄) is the unique global asymptotically stable equilibrium

of the ODE q̇i(t) = 2i−1
2N −F(qi(t); θ̄).

Lemma 2 For all θ̄ ∈ Θ, i = 1, · · · ,N, and q̄i ∈ R, ∇θ F−1(2i−1
2N ; θ̄) is the unique global asymptotically

stable equilibrium of the ODE Ḋi(t) =−∇θ F(q; θ̄)
∣∣
q=F−1( 2i−1

2N ;θ̄)− f (F−1(2i−1
2N ; θ̄); θ̄)Di(t).

Lemma 3 If Ĵ(θ) is strictly concave on Θ, then θ ∗ is the unique global asymptotically stable equilibrium
of the ODE (19).

To prove that recursions (16), (17) and (12) track coupled ODEs (18), we can iteratively apply the
following convergence theorem for single-timescale SA with bias term, which is slightly modified from
Theorem 2.3 in Chapter 5 of Kushner and Yin (1997).
Theorem 1 Consider a recursion xk+1 = xk + γk(h(xk)+mk + bk), where h(·) is bounded; {γk} satisfies
γk > 0, ∑k γk = ∞, ∑k γ2

k < ∞; {mk} is a square-integrable martingale difference sequence, i.e., there exists a
constant K > 0 such that E[mk+1|Fk] = 0 and E[∥mk+1∥2|Fk]≤K a.s., for k≥ 0, with sigma fields denoted
as Fk = σ{x0, · · · ,xk}; and {bk} is o(1). If the sequence {xk} is bounded and the ODE ẋ(t) = h(x(t)) is
well-posed, then {xk} converges a.s. to some limit set of the ODE or the unique global asymptotically
stable equilibrium, if one exists; otherwise, if a projection onto some compact set is applied to {xk}, then
it converges a.s. to the counterpart of the corresponding projected ODE.

The main difficulty of applying the result of Theorem 1 lies in showing the boundedness of the sequences
generated by DPO. This is established in Lemma 4 and Theorem 2.
Lemma 4 If Assumptions 1 and 2(b) hold, then the sequence {qk} generated by recursion (11) is bounded
w.p.1, i.e., for i = 1, · · · ,N, supk |qk,i|< ∞ w.p.1.
Theorem 2 If Assumptions 2(a), (e), 3, and 4 hold, then the sequence {Dk} generated by recursion (10)
is bounded w.p.1, i.e., for i = 1, · · · ,N, supk ∥Dk,i∥< ∞ w.p.1.

Now we have the following main convergence result for DPO.
Theorem 3 If Assumptions 1-4 hold and Ĵ(θ) is strictly concave on Θ, then the sequences {Dk}
{qk} and {θk} generated by recursions (16), (17) and (12) converge to the unique optimal solution
{{di(θ

∗)},{F−1(2i−1
2N ;θ ∗)},θ ∗} of problem (7) w.p.1.

The concavity assumption is to guarantee convergence to the global optimum; otherwise, it can be
relaxed, and the algorithm will then converge to a stationary point of the ODE (19). The detailed proofs
of the lemmas and theorems mentioned above will be presented in the full journal version.

6 EXPERIMENTS

In this section, we conduct simulation experiments on different RL tasks to evaluate our DPO and DPPO
against baseline algorithms within the same framework, specifically REINFORCE and PPO. Since black-box
algorithms exhibit a rather low efficiency in optimizing policies parameterized by deep neural networks
and the issue is exacerbated by the costly DRM evaluation, they are not included in the formal comparison.

6.1 Fair Lottery

We conduct experiments for our algorithms on an actuarially fair lottery game. The state st =(s1
t , · · · ,sN

t )∈RN

is a random vector generated by shuffling the components of s0 and represents the current risk levels of each
lottery. The agent makes purchasing decisions among all alternatives at each time step, i.e., at ∈ {1, · · · ,N}.
The step reward is then sampled from Uniform(−sat

t ,s
at
t ), where the support of reward distribution is

determined by the selected state entry. Since the expectation of cumulative rewards is fixed at zero, the
risk-neutral algorithms are expected to fail in this environment, while others can still learn some strategies
according to their risk preferences.
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We test REINFORCE, PPO, DPO, and DPPO in a unified environment setting, where the agent is
offered two options each time and makes decisions in 10 time steps. The purchasing policy is parameterized
as a neural network consisting of two hidden layers with each containing 16 neurons. We configure the
DRM with different distortion functions to explore various risk preferences. In addition to VaR and CVaR,
we implement the CPT and DRM proposed in Wang (2000) with distortion functions w(p) = pα

(pα+(1−p)α )1/α

and w(p) = Φ(Φ−1(p)+α), respectively. The learning curves based on 10 independent experiments are
presented in Figure 2. The DRM value is estimated by rewards in the past 100 episodes and smoothed via
averaging with window sizes of 100 for better visibility. The shaded areas represent the 95% confidence
bands. It can be observed that both DPO and DPPO significantly improve the agent’s DRM performance
across all risk configurations, while mean-based REINFORCE and PPO continue to oscillate around the
initial level. Moreover, DPPO demonstrates a remarkable advantage in data utilization efficiency and
converges to a high level at an early stage. We test trained agents with 100 replications and present the
KDE plots of rewards as shown in Figure 3. The concentration of rewards reflects the risk preferences
of agents, and all outcomes of DPO and DPPO are consistent with the properties of corresponding risk
measures, where distributions are concentrated under risk-averse criteria and vice versa.
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Figure 2: DRM learning curves of REINFORCE, PPO, DPO, and DPPO under different distortion function
configurations in Fair Lottery examples.
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Figure 3: KDE plots for rewards of REINFORCE, PPO, DPO, and DPPO under different distortion function
configurations in Fair Lottery examples.

6.2 Inventory Management

We consider the inventory management problem within an N-echelon supply chain during T periods, where
the two ends represent the customer and manufacturer. We use Si

t , U i
t and Ii

t to denote the products shipped
by echelon i, the lost sales and on-hand inventory of echelon i at the end of period t. The reordering
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Figure 4: Comparison of REINFORCE, PPO, DPO, and DPPO in the multi-echelon Inventory Management
example.

quantity of echelon i is denoted as qi
t , with q0

t as the randomly generated exogenous demand. In each period
t, the agent has to select the best replenishment quantities qt = {qi

t}N
i=1 for intermediate echelons. The

shipped quantities are given by Si
t = qi−1

t − [qi−1
t − Ii

t−1−Si+1
t−Li ]

+, for i = 1, · · · ,N, where [x]+ = max{0,x},
Li denotes the transit duration of echelon i, and the manufacturer is assumed to satisfy all demands from the
last echelon, i.e., SN+1

t = qN
t . Then the lost sales and on-hand inventory are computed by U i

t = [qi−1
t −Si

t ]
+

and Ii
t = [Ii

t−1 +Si+1
t−Li−Si

t ]
+. The profit of each echelon is calculated by Pi

t = piSi
t− pi+1Si+1

t −hiIi
t − liU i

t ,
where pi, hi and li are the unit price, unit holding cost and unit penalty for lost sales, respectively. The
RL states cover the inventories, lost sales, shipped and ordering quantities in past L = maxi Li periods, and
the step rewards are determined by current overall profits, i.e., ∑

N
i=1 Pi

t .
We test REINFORCE, PPO, DPO, and DPPO with the multi-echelon inventory management problem

in which customer demands are generated by using a periodical stochastic model with a saw-wave trend.
We choose DRM in Wang (2000) with α =−0.5 as the DRM criterion. The agent policy is represented by
a neural network consisting of two temporal convolutional layers and three parallel fully connected blocks
to control each echelon. The agent makes replenishment decisions in 100 time steps. The learning curves
obtained through 5 independent experiments and testing KDE plotted based on 100 replications are shown in
Figure 4, where the shaded areas in the first two subfigures represent the 95% confidence bands. DRM-based
algorithms outperform the corresponding baselines with the same architectures under both criteria, which
suggests that it may be more desirable to address multi-echelon inventory management problems from a
risk-sensitive perspective. The KDEs of rewards obtained by DPO and DPPO are more concentrated than
those obtained by REINFORCE and PPO, indicating that the policies trained by DRM-based algorithms are
more risk-averse. Furthermore, both off-policy algorithms, PPO and DPPO, have significant improvements
in training efficiency compared to the other two algorithms.

7 CONCLUSION

In this paper, we propose a DPO algorithm and its accelerated variant DPPO to address deep RL tasks
under DRM criteria from the perspective of policy optimization. Both algorithms utilize the multi-timescale
SA technique, enabling simultaneous updates of partial estimates within the gradient function and policy
parameters with a few simulation runs. Numerical experiments demonstrate that our algorithms effectively
optimize the DRM objectives across various distortion function configurations. In future work, the algorithms
have the potential for further enhancement by leveraging more structural features of MDPs.
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