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ABSTRACT

This paper presents an algorithmic framework for solving unconstrained stochastic optimization problems
using only stochastic function evaluations. We employ central finite-difference based gradient estimation
methods to approximate the gradients and dynamically control the accuracy of these approximations by
adjusting the sample sizes used in stochastic realizations. We analyze the theoretical properties of the
proposed framework on nonconvex functions. Our analysis yields sublinear convergence results to the
neighborhood of the solution, and establishes the optimal worst-case iteration complexity (O(ε−1)) and
sample complexity (O(ε−2)) for each gradient estimation method to achieve an ε-accurate solution. Finally,
we demonstrate the performance of the proposed framework and the quality of the gradient estimation
methods through numerical experiments on nonlinear least squares problems.

1 INTRODUCTION

We consider unconstrained stochastic optimization problems of the form

min
x∈Rd

F(x) = Eζ [ f (x,ζ )] , (1)

where F : Rd → R is a continuously differentiable function, ζ is a random variable with associated
probability space (Ξ,F ,P), f : Rd ×Ξ → R, and Eζ [·] denotes the expectation with respect to P. We
consider derivative-free optimization (DFO) settings where gradient information is unavailable, and only
stochastic realizations of the objective functions, obtained through a zeroth-order oracle, are available. Such
problem settings arise in different applications, including simulation optimization (Blanchet et al. 2019;
Pasupathy et al. 2018; Shashaani et al. 2018) and reinforcement learning (Bertsekas 2019).

Gradient estimation methods, which involve estimating gradients through function evaluations and
incorporating these estimators into optimization algorithms, are widely recognized within DFO settings.
Recently, Bollapragada et al. (2024) proposed a unified algorithmic framework that encompasses stochastic
gradient estimation methods for solving (1). This framework incorporates forward finite-difference methods
for gradient estimation and controls the accuracy of these estimators by utilizing common random number
(CRN) settings and adaptively choosing the number of stochastic realizations (sample sizes) employed in
these estimators.

In this paper, we extend this framework to include central finite-difference methods, which are an
alternative to forward finite-difference methods and have the potential to achieve superior performance
under specific settings, such as the standard finite-difference method employed within CRN settings (L’Ecuyer
and Yin 1998; Larson et al. 2019). Specifically, we propose iterative algorithms that incorporate gradient
estimators computed using subsampled functions defined as

FSk(x) :=
1
|Sk| ∑

ζi∈Sk

f (x,ζi) ∀x ∈ Rd , (2)

3205979-8-3315-3420-2/24/$31.00 ©2024



Bollapragada, Karamanli, and Wild

where Sk = {ζ1, . . . ,ζ|Sk|} is a set of random realizations at each iteration k. By utilizing a set of vectors
Tk, we derive the general central finite-difference based gradient estimators within CRN settings as follows

gSk,Tk(xk) := γk ∑
u j∈Tk

(
FSk(xk +νu j)−FSk(xk −νu j)

2ν

)
u j, (3)

where ν > 0 is the sampling radius, and γk > 0 is the scaling coefficient.
Within this framework, we consider central finite-difference variants of various methods, encompassing

standard finite-difference methods (cFD) (Blum 1954; Kiefer and Wolfowitz 1952), Gaussian smoothing
methods (cGS) (Nesterov and Spokoiny 2017), sphere smoothing methods (cSS) (Berahas et al. 2021),
randomized coordinate finite-difference methods (cRC) (Wright 2015), and randomized subspace finite-
difference methods (cRS) (Berahas et al. 2021; Kozak et al. 2021). These methods differ in their choices
of Tk and γk (Bollapragada et al. 2024, Table 2.1). The u j vectors are canonical vectors e j for cFD and
cRC, sampled from a multivariate standard normal distribution (N (0, I)) for cGS, drawn from a uniform
distribution over the surface of a unit sphere (U (S (0,1))) for cSS, and random orthonormal vectors for
cRS. The value of γk is 1 for cFD, 1/|Tk| for cGS, and d/|Tk| for cSS, cRC, and cRS.

The general iterative update rule within this framework, employing the gradient estimators defined in
(3), is given as

xk+1 = xk −αkgSk,Tk(xk), (4)

where αk is the step size. The efficiency of this update rule depends on the accuracy of the gradient
estimators. Bollapragada et al. (2024) incorporated an adaptive sampling approach to control the gradient
estimation accuracy as the algorithm progresses by adjusting the sample sizes (|Sk|) at each iteration. The
key idea behind adaptive sampling approaches is that inaccurate gradient approximations are sufficient when
the current iterate is far away from the solution, and the accuracy in these approximations should increase
as the iterates approach the optimal solution. Such approaches retain the optimal theoretical convergence
properties of their deterministic counterparts while being efficient. In this work, we adapt these strategies
to the central finite-difference based methods and extend their analysis to nonconvex problem settings.

The paper is organized as follows. A literature review and a summary of our notation are presented in
the remainder of Section 1. Mathematical preliminaries, including assumptions and sampling conditions,
are discussed in Section 2. In Section 3, we provide theoretical convergence and complexity results, while
Section 4 presents the numerical results. Finally, in Section 5, we make some concluding remarks.

1.1 Literature Review

Several gradient estimation methods (Kiefer and Wolfowitz 1952; Nesterov and Spokoiny 2017; Flaxman
et al. 2005; Berahas et al. 2021) have been proposed for both deterministic and stochastic optimization,
as extensively reviewed in (Conn et al. 2009; Larson et al. 2019). Pasupathy et al. (2018) analyzed
the convergence properties of the fundamental gradient estimation method introduced by Kiefer and
Wolfowitz (1952) under different sampling rates. Ghadimi and Lan (2013) provided optimal worst-case
sample complexities for both convex and nonconvex functions, showing O(ε−2) complexity to achieve
an ε-accurate solution for stochastic approximation based gradient estimation methods, with different
accuracy definitions for convex and nonconvex problems. Gradient estimation methods have also been
integrated into quasi-Newton approaches (Berahas et al. 2019; Bollapragada and Wild 2023; Marrinan
et al. 2023). Additionally, adaptive sampling approaches, well-established in stochastic optimization (Byrd
et al. 2012; Bollapragada et al. 2018; Bollapragada et al. 2023; Berahas et al. 2022), have recently
been applied in DFO settings (Shashaani et al. 2018; Bollapragada and Wild 2023; Bollapragada et al.
2024). Bollapragada and Wild (2023) generalized the norm condition (Byrd et al. 2012) and the practical
inner-product condition (Bollapragada et al. 2018) to standard finite-difference based gradient estimation
methods, while Bollapragada et al. (2024) extended these conditions to other forward finite-difference
based gradient estimation methods.
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1.2 Notation

The set of nonnegative integers and positive integers is denoted by Z+ := {0,1,2, . . .} and Z++ := {1,2, . . .}
respectively. The set of real numbers (scalars) is denoted by R, the set of d-dimensional vectors is denoted
by Rd , and the set of m-by-d matrices is denoted by Rm×d . The transpose of a matrix A ∈Rm×d is denoted
by AT ∈ Rd×m. Throughout the paper, the ℓ2 vector norm or matrix norm is denoted by ∥ · ∥.

2 PRELIMINARIES

In this section, we outline the mathematical preliminaries, including the assumptions made throughout
the paper and the conditions used to determine the sample sizes in the stochastic approximations at each
iteration. We begin by stating the assumptions about the objective function.
Assumption A The objective function F : Rd → R is twice continuously differentiable function and is
bounded below. That is, there exists F∗ > −∞ such that F∗ := infx∈Rd F(x). Furthermore, the stochastic
function f (·,ζ ) : Rd →R is also twice continuously differentiable with Lipschitz continuous gradients and
Hessians with Lipschitz constants L f < ∞ and M f < ∞, respectively. That is, for every ζ ,

∥∇ f (x,ζ )−∇ f (y,ζ )∥ ≤ L f ∥x− y∥, and ∥∇
2 f (x,ζ )−∇

2 f (y,ζ )∥ ≤ M f ∥x− y∥ ∀x,y ∈ Rd .

Assumption A implies that the objective function F has Lipschitz continuous gradients and Hessians
with Lipschitz constants LF ≤ L f and MF ≤ M f , respectively, which is a common assumption in central
finite-difference settings (Berahas et al. 2021). While it is possible to relax the assumption on the smoothness
of stochastic functions and require only F to be smooth (Bollapragada and Wild 2023), such assumptions
on the stochastic functions are useful in providing the complexity analysis (Bollapragada et al. 2024).
Moreover, under Assumption A, it follows from the second-order Taylor expansion that for every ν > 0,
ζ , and x,u ∈ Rd ,

f (x+νu,ζ )− f (x−νu,ζ )≤ 2νuT
∇ f (x,ζ )+

M f

3
ν

3∥u∥3, (5)

F(x+νu)−F(x−νu)≤ 2νuT
∇F(x)+

MF

3
ν

3∥u∥3. (6)

We also assume that the variance in the stochastic gradients is bounded, a standard assumption in stochastic
optimization literature (Bottou et al. 2018).
Assumption B There exist constants β1,β2 ≥ 0 such that

Eζi [∥∇ f (x,ζi)−∇F(x)∥2]≤ β1∥∇F(x)∥2 +β2, ∀x ∈ Rd .

The next assumption pertains to the independence of sets Sk and Tk sampled at each iteration k.
Assumption C At every iteration k, the sample set Sk consists of independent and identically distributed
(i.i.d.) samples of ζ . That is, for all x ∈ Rd and k ∈ Z+,

Eζi [ f (x,ζi)] = F(x), ∀ζi ∈ Sk.

Moreover, the vector set Tk comprises sampled vectors that are chosen independently of the sample set Sk.
We also define the conditional expectations with respect to these random subsets, which are the

only sources of randomness in the iterates generated by (4). That is, we define the filtrations Fk =
σ(x0,{T1,S1},{T2,S2}, · · · ,{Tk−1,Sk−1}) and Fk+1/2 = σ(x0,{T1,S1},{T2,S2}, · · · ,{Tk−1,Sk−1},Tk),

Ek[·] = ETk [·] := E[·|Fk], and ESk [·] := E
[
·
∣∣∣Fk+1/2

]
.
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Moreover, we define the following expected quantities

gTk(xk) := ESk [gSk,Tk(xk)], and g(xk) := ETk [gTk(xk)]. (7)

Using these definitions, we can decompose the error in the gradient estimator into three terms:

gSk,Tk(xk)−∇F(xk) = gSk,Tk(xk)−gTk(xk)︸ ︷︷ ︸
function sampling error

+ gTk(xk)−g(xk)︸ ︷︷ ︸
vector sampling error

+g(xk)−∇F(xk),︸ ︷︷ ︸
bias

where the function sampling error depends on the choice of Sk, vector sampling error depends on the
choice of Tk, and the bias term, arising from the absence of gradient information, depends on the choice
of ν . While we choose a constant |Tk| and ν throughout the iterations, |Sk| is adaptively chosen to control
the function sampling error, thereby controlling the gradient estimation error. Guided by this principle,
Bollapragada et al. (2024) proposed the following theoretical condition that generalizes the well-known
norm condition in the derivative-based methods (Byrd et al. 2012; Bollapragada et al. 2018).
Condition 1 (Theoretical Norm Condition) (Bollapragada et al. 2024, Condition 3)

ETk [Eζi [∥gζi,Tk
(xk)−gTk(xk)∥2]]

|Sk|
≤ θ

2ETk [∥gTk(xk)∥2], θ > 0. (8)

We choose the sample sizes |Sk| at each iteration such that this condition is satisfied. Evaluating this
condition requires computing population (expectation) quantities that may not be available in practice, and
we provide a practical test that employs sampled quantities to overcome this limitation in Section 4.

3 THEORETICAL RESULTS

In this section, we provide theoretical convergence guarantees and worst-case complexity results for the
iterates generated by (4) with sample sizes |Sk| satisfying Condition 1.

3.1 Convergence Results

We first establish a descent lemma that provides an upper bound on the expected decrease in the function
value per iteration.
Lemma 1 For any x0 ∈Rd , let {xk : k ∈ Z++} be generated by iteration (4) with |Sk| satisfying Condition
1 for a given constant θ > 0. Suppose that Assumptions A, B, and C hold. Then, for any k ∈ Z+, if αk
satisfies

0 < αk ≤ ᾱk, (9)

we have
Ek[F(xk+1)]≤ F(xk)−

αk

4
∥∇F(xk)∥2 +αkχk ∀k ∈ Z+, (10)

where ᾱk,χk > 0 are given in Table 1.

Proof. Using the result of Bollapragada et al. (2024), Lemma 3.2, it follows that

Ek[F(xk+1)]≤ F(xk)+
αk

2
∥δk∥2 − αk

2
∥∇F(xk)∥2

+LFα
2
k (1+θ

2)

(
∥δk∥2 +∥∇F(xk)∥2 +

1
2
(ETk [∥gTk(xk)−g(xk)∥2])

)
,

where δk := g(xk)−∇F(xk). The rest of the proof follows by utilizing upper bounds δ̄ on δk given in
Table 1 and analyzing the variance terms (ETk [∥gTk(xk)− g(xk)∥2]) for each method individually. The δ̄

values corresponding to cFD, cGS, and cSS methods, as well as the upper bounds for the variances of cGS
and cSS, are provided in Berahas et al. (2021). For the remaining methods, these values could be obtained
by following a similar procedure outlined in Bollapragada et al. (2024), Lemma 3.3.
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Lemma 1 demonstrates that the function values are expected to decrease at any iteration k, provided
the gradient (∥∇F(xk)∥2) is sufficiently large. However, the term χk hinders the progress. In fact, when a
fixed step size (αk = ᾱ) and a fixed number of directions (|Tk|= N) are employed, the χk term becomes
constant, and the iterates converge to a neighborhood of the solution. The following theorem establishes
the convergence rate and the size of the neighborhood for nonconvex functions.
Theorem 1 (Sublinear Convergence). Suppose the conditions for Lemma 1 hold. Let ᾱ and χ̄ be the
values obtained by choosing |Tk|= N in Table 1. If αk = ᾱ , for all k ∈ Z+, then the sequence {xk : k ∈ Z+}
converges sublinearly to a neighborhood of the solution. That is,

min
0≤k≤K−1

E[∥∇F(xk)∥2]≤ 4(F(x0)−F∗)

Kᾱ
+4χ̄. (11)

Moreover, for any p ∈ (0,1], we have with probability at least 1− p that

min
0≤k≤K−1

∥∇F(xk)∥2 ≤ 4(F(x0)−F∗)

Kᾱ p
+

4χ̄

p
. (12)

Proof. Rearranging (10) yields

∥∇F(xk)∥2 ≤ 4(F(xk)−Ek[F(xk+1)])

ᾱ
+4χ̄.

Taking the total expectation and averaging the terms from k = 0 to k = K −1 yields

1
K

K−1

∑
k=0

E[∥∇F(xk)∥2]≤ 1
K

K−1

∑
k=0

[
4E[F(xk)−F(xk+1)]

ᾱ
+4χ̄

]
=

4E[F(x0)−F(xK)]

Kᾱ
+4χ̄. (13)

Using the above inequality, along with the fact that min0≤k≤K−1E[∥∇F(xk)∥2]≤ 1
K ∑

K−1
k=0 E[∥∇F(xk)∥2], and

F(xK)≥ F∗ due to Assumption A, we obtain (11). Moreover, using the fact that min0≤k≤K−1 ∥∇F(xk)∥2 ≤
1
K ∑

K−1
k=0 ∥∇F(xk)∥2, we get

P
(

min
0≤k≤K−1

∥∇F(xk)∥2 >
4(F(x0)−F∗)

Kᾱ p
+

4χ̄

p

)
≤ P

(
1
K

K−1

∑
k=0

∥∇F(xk)∥2 >
4(F(x0)−F∗)

Kᾱ p
+

4χ̄

p

)
≤

E[ 1
K ∑

K−1
k=0 ∥∇F(xk)∥2]

4(F(x0)−F∗)
Kᾱ p + 4χ̄

p

≤
4E[F(x0)−F(xK)]

Kᾱ
+4χ̄

4(F(x0)−F∗)
Kᾱ p + 4χ̄

p

≤ p.

where the second inequality is due to Markov’s inequality, the third inequality is due to (13), and the last
inequality is due to the fact that F(xK)≥ F∗, which completes the proof.

Theorem 1 provides convergence results both in expectation and in probability. The difference between
different gradient estimation methods in terms of convergence behavior is reflected in the step size ᾱ and
neighborhood χ̄ parameters (see Table 1). We note that similar observations to those made in forward finite-
difference methods (Bollapragada et al. 2024) are found here. cRC and cRS methods have convergence
rates d

N times worse compared to cFD. Similarly, convergence rates of cGS and cSS methods are N+4.5d
N

times worse than that of cFD. Regarding the size of convergence neighborhoods, we observe that cFD,
cRC, and cRS methods have the same neighborhood size. Furthermore, assuming that N is small and d is
large, cSS has a neighborhood size similar to cFD, whereas cGS has a neighborhood size that is d2 times
larger compared to cFD.
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Table 1: Properties and convergence results for different gradient estimation methods. δ̄ serves as an upper
bound on ∥δk∥, where δk := g(xk)−∇F(xk). ᾱk and χk values summarize the results of Lemma 1. The
ν = ν̂ values ensure that the convergence neighborhood 4χ̄ (as stated in Theorem 1) equals ε p

2 . Here,

Ω1 := 1
4(1+θ 2)LF

, Ω2 := dM2
F ν4

48 , and Ω3 := 4
√

6ε p
M2

F d .

Method δ̄ ᾱk χk ν̂

cFD
√

dMF ν2

6 Ω1 Ω2 Ω3

cGS dMFν2 |Tk|
(|Tk|+4.5d)Ω1

72|Tk|d+216d2+(d+2)(d+4)(d+6)
2(|Tk|+4.5d) Ω2

4
√

2(N+4.5d)
72Nd+216d2+(d+2)(d+4)(d+6)Ω3

cSS MFν2 |Tk|
(|Tk|+4.5d)Ω1

72|Tk|+216d+d2

2d(|Tk|+4.5d) Ω2
4
√

2d(N+4.5d)
72N+216d+d2 Ω3

cRC
√

dMF ν2

6
|Tk|
d Ω1 Ω2 Ω3

cRS
√

dMF ν2

6
|Tk|
d Ω1 Ω2 Ω3

3.2 Complexity Results

We now present the iteration and sample complexity results for the central finite-difference based gradient
estimation methods, providing bounds on the total number of iterations and stochastic function evaluations
required to achieve an ε-accurate solution, respectively. The accuracy measure is defined as follows.
Definition 1 A random iterate xk is said to be an ε-accurate solution if it satisfies ∥∇F(xk)∥2 ≤ ε with
probability at least 1− p, where p ∈ [0,1).

Next, we observe that by employing ν̂ values in δ̄ in Table 1, we can ensure that

∥δk∥= ∥g(xk)−∇F(xk)∥ ≤
√

ε p
2

≤
√

ε

2
,

for each gradient estimation method. Suppose that xk satisfies ∥g(xk)∥2 ≤ ε ′ with ε ′ := ε/4. Then, by
using the above inequality, we can guarantee that

∥∇F(xk)∥ ≤ ∥g(xk)∥+∥δk∥ ≤
√

ε,

where the first inequality is by the triangle inequality (i.e. ∥a+b∥≤ ∥a∥+∥b∥, for any a,b∈Rn). Therefore,
for any iteration k, if ∥g(xk)∥2 ≤ ε ′ is satisfied, then xk is an ε-accurate solution. This observation provides a
means to upper bound the sample sizes employed at each iteration before achieving an ε-accurate solution,
as stated in the following lemma.
Lemma 2 Suppose the conditions of Theorem 1 hold. For all iterations k ∈ Z+ such that ∥g(xk)∥2 > ε ′,
we have

|Sk| ≤ b1 +
b2

ε ′ = b1 +
4b2

ε
, (14)

where b1,b2 ∈ R are constants that depend on the gradient estimation method. Table 2 summarizes the
order results for b1 and b2 values.
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Proof. Without loss of generality and choosing the minimum sample size that satisfies Condition 1 at
each iteration k ∈ Z+, we have

|Sk|=

⌈
ETk [Eζi [∥gζi,Tk

(xk)−gTk(xk)∥2]]

θ 2ETk [∥gTk(xk)∥2]

⌉
≤ 1+

ETk [Eζi [∥gζi,Tk
(xk)−gTk(xk)∥2]]

θ 2ETk [∥gTk(xk)∥2]

≤ 1+
ETk [Eζi [∥gζi,Tk

(xk)−gTk(xk)∥2]]

θ 2∥ETk [gTk(xk)]∥2 ≤ 1+
ETk [Eζi [∥gζi,Tk

(xk)−gTk(xk)∥2]]

θ 2ε ′

where the second inequality is by Jensen’s inequality and the last inequality is due to ∥ETk [gTk(xk)]∥2 =
∥g(xk)∥2 > ε ′. Following a similar procedure in analyzing the variance terms for each gradient estimation
method provided in Bollapragada et al. (2024), Lemma 3.9 and adapting them to central finite-differences,
and using ε ′ = ε

4 completes the proof.

Now, we present the complexity results based on these sample size bounds.
Theorem 2 (Complexity Results). Suppose the conditions for Theorem 1 hold. Then, the number of
iterations (iteration complexity) and the total number of stochastic function evaluations (sample complexity)
required to obtain an ε-accurate solution are given as follows.

Kε =
8(F(x0)−F∗)

ε pᾱ
= O(ε−1), and Wε :=

Kε

∑
k=0

2|Tk||Sk| ≤ 2NKε

(
b1 +

4b2

ε

)
= O(ε−2). (15)

The results are detailed in Table 2 for each gradient estimation method.

Proof. Substituting the values for ν = ν̂ given in Table 1 leads to 4χ̄

p = ε

2 . From (12), it follows that

for any K ≥ Kε =
8(F(x0)−F∗)

ε pᾱ
,

min
0≤k≤K−1

∥∇F(xk)∥2 ≤ 4(F(x0)−F∗)

Kᾱ p
+

4χ̄

p
≤ ε

2
+

ε

2
= ε.

Plugging in the values for ᾱ from Table 1 and for b1 and b2 from Table 2 completes the proof.

Theorem 2 establishes that the iteration complexities of the methods are O(ε−1), and the sample
complexities are O(ε−2), matching the optimal worst-case complexity results for nonconvex problem
settings (Bottou et al. 2018; Ghadimi and Lan 2013). Similar observations to those made in forward
finite-differences methods (Bollapragada et al. 2024) are found here. The results in Table 2 highlight
that the cFD method exhibits the best iteration complexity compared to other methods concerning the
dependency on problem dimension d. Moreover, the complexities of cGS and cSS methods are N+d

N times
worse than that of cFD, while the complexities of cRC and cRS methods are d

N times worse than cFD. In
terms of sample complexities, cFD, cRC, and cRS methods match the optimal complexity, also in terms
of the dependency on d (Ghadimi and Lan 2013). Assuming ε−2 is the dominating term and N is small,
cGS and cSS methods exhibit complexities that are d times worse than the cFD method.

4 NUMERICAL EXPERIMENTS

In this section, we evaluate the empirical performance of the proposed methods on nonlinear least squares
(NLLS) problems obtained by introducing stochastic Gaussian noise of the form ζ ∼ N (0,σ2Ip) with
σ = 10−3 to the nonlinear functions φ : Rd → Rp from the CUTEr (Gould et al. 2003) collection of
optimization problems. We consider two different nonlinear functions φ : Bdqrtic (d = 50, p = 92) and
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Table 2: Complexity results for various gradient estimation methods. Here, β1 and β2 are constants defined
in Assumption B. The order results specify only dependencies on d, LF , M f , N, ν , p, β1, and β2. For Kε

and Wε , dependencies on β1 and β2 are removed.

Method b1 b2 Kε Wε

cFD O(β1) O(β1M2
f ν4d +β2) O(LF

ε p ) O(LF d
ε2 p )

cGS O(β1d) O((β1 +d)M2
f ν4d3 +β2d) O(LF

ε p
N+d

N ) O(LF d(N+d)
ε2 p + LF (N+d)2d2

ε(N+d2)
)

cSS O(β1d) O((β1 +d)M2
f ν4d +β2d) O(LF

ε p
N+d

N ) O(LF d(N+d)
ε2 p + LF (N+d)2d2

ε(N+d2)
)

cRC O(β1) O(β1M2
f ν4d +β2) O(LF

ε p
d
N ) O(LF d

ε2 p )

cRS O(β1) O(β1M2
f ν4d +β2) O(LF

ε p
d
N ) O(LF d

ε2 p )

Cube (d = 20, p = 30), with two different error terms: absolute error and relative error. The resulting
stochastic objective functions are defined as follows

fabs(x,ζ ) :=
p

∑
j=1

(φ j(x)+ζ j)
2 −σ

2, and frel(x,ζ ) :=
1

1+σ2

p

∑
j=1

φ
2
j (x)(1+ζ j)

2.

We employ the following practical test to approximately satisfy the theoretical Condition 1 by approx-
imating the population (expectation) quantities with sampled quantities in our implementation.
Test 1 (Practical Norm Test) (Bollapragada et al. 2024, Test 1)

Varζi∈Sv
k

(
gζi,Tk

(xk)
)

|Sk|
≤ θ

2∥gSk,Tk(xk)∥2, θ > 0, (16)

where Sv
k ⊆ Sk is any subset of Sk, and Varζi∈Sv

k

(
gζi,Tk

(xk)
)
= 1

|Sv
k|−1 ∑ζi∈Sv

k
∥gζi,Tk

(xk)−gSk,Tk(xk)∥2.

We evaluate this test at each iteration, and if the test fails, we append the set Sk with additional samples
such that Sk satisfies

|Sk|=

⌈
Varζi∈Sv

k

(
gζi,Tk

(xk)
)

θ 2∥gSk,Tk(xk)∥2

⌉
.

Although this approach involves approximations, the accuracy of these approximations improves with
increasing sample sizes |Sk|. Moreover, this approach is more efficient than selecting a fixed, yet large,
number of samples throughout the algorithm.

In our implementation, we set θ = 0.9, initial sample size |S0|= 2, and treat the number of sampled
directions N, the sampling radius ν , and the step size α as tunable hyperparameters. We consider the
worst-case performance of each combination of N, ν , and α values for each method, across three random
runs. Finally, we select the best combination yielding the smallest optimality gap (F(xk)−F∗) after the
methods have utilized a fixed budget of function evaluations. We conduct an additional 17 random runs for
the best combinations. The legends of the figures in this section indicate the method and hyperparameters
in “(method,N,ν ,α)” format. We exclude the cRS method in reporting the results as its corresponding
results are similar to those of the cRC method. For more detailed information about the implementation,
refer to Bollapragada et al. (2024).

Figures 1 and 2 present results for the Bdqrtic and Cube functions. The solid lines represent the median
performances, while the bands around the lines indicate the 35th and 65th quantiles across 20 random
runs. The hyperparameters (N,ν ,α) are independently tuned for each method. The tuned cRC and cFD
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performed similarly since the optimal N was equal to d. In Figs. 1a, 1c, 2a, and 2c, we report the optimality
gap (F(xk)−F∗) with respect to the number of stochastic function evaluations. We observe that the optimal
tuned number of directions (N) is smaller for smoothing methods (cGS and cSS) compared to the cRC
method. Furthermore, while the smoothing methods initially exhibit superior performance, the standard
finite-difference method (cFD) ultimately matches their performance as the number of function evaluations
increases due to their superior accuracy in gradient estimation. In Figs. 1b, 1d, 2b, and 2b, we report the
batch size or sample size (|Sk|) with respect to iterations. Here, the smoothing methods tend to increase
the sample sizes at a faster rate than the cRC and cFD methods. We conjecture that this behavior is due
to the high variance in the smoothing methods with smaller N values, necessitating larger sample sizes.

We also analyze the effect of the number of directions (N) on the empirical performance of cGS,
cSS, and cRC methods in Fig. 3, which reports the optimality gap with respect to the number of function
evaluations. The hyperparameters ν and α are tuned for each N and method combination. The solid lines
represent the mean performance, while the bands depict the minimum and maximum values across three
random runs. We observe that the behavior across different N values is problem-specific. Typically, smaller
values of N lead to high variance in gradient estimation, while larger values result in high per-iteration
function evaluations, rendering both inefficient. An optimal N exists that achieves the best performance
for the smoothing methods.

(a) Optimality Gap (b) Batch Size

(c) Optimality Gap (d) Batch Size

Figure 1: Performance of different gradient estimation methods using the tuned hyperparameters on the
Bdqrtic function with σ = 10−3. Top row: absolute error, bottom row: relative error.
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(a) Optimality Gap (b) Batch Size

(c) Optimality Gap (d) Batch Size

Figure 2: Performance of different gradient estimation methods using the tuned hyperparameters on the
Cube function with σ = 10−3. Top row: absolute error, bottom row: relative error.

5 FINAL REMARKS

Gradient estimation methods that utilize stochastic function evaluations to estimate gradients and incorporate
these estimators into standard optimization methods offer scalability to large-dimensional problems and are
of interest from both theoretical and practical perspectives. We introduce a unified algorithmic framework for
solving stochastic optimization problems using central finite-difference based gradient estimation methods.
The variance in these estimators is controlled by adaptively selecting the sample sizes employed in the
stochastic approximations. We establish sublinear convergence to a neighborhood for nonconvex functions
and demonstrate that this framework achieves optimal worst-case iteration and sample complexities of
O(ε−1) and O(ε−2), respectively. Our numerical results on nonlinear least squares problems illustrate the
effectiveness of this approach. Furthermore, this framework can be extended to explore other potentially
new or hybrid variants of existing central finite-difference methods to further enhance efficiency. It can also
be seamlessly integrated into more sophisticated algorithms such as quasi-Newton or accelerated methods.
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(a) Performance of cGS (b) Performance of cSS (c) Performance of cRC

(d) Performance of cGS (e) Performance of cSS (f) Performance of cRC

Figure 3: The effect of number of directions N on the performance of different randomized gradient
estimation methods on the Bdqrtic function with σ = 10−3. Sampling radius ν and step size α are tuned
for each method and N combination to achieve the best performance. Top row: absolute error, bottom row:
relative error.
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