Proceedings of the 2024 Winter Simulation Conference
H. Lam, E. Azar, D. Batur, S. Gao, W. Xie, S. R. Hunter, and M. D. Rossetti, eds.

MULTI-ATTRIBUTE OPTIMIZATION UNDER PREFERENCE UNCERTAINTY

Bhavik A. Shah!, Raul Astudillo?, Peter 1. Frazier®

1Google, Mountain View, CA, USA
*Department of Computing and Mathematical Sciences, Caltech, Pasadena, CA, USA
3School of Operations Research and Information Engineering, Cornell University, Ithaca, NY, USA

ABSTRACT

We introduce multi-attribute optimization under preference uncertainty, a novel approach for optimization-
based decision support when the decision-maker’s preferences are uncertain. Here, each feasible design
is associated with a vector of attributes, which is in turn assigned a utility by the decision-maker’s utility
function. This utility function has been incompletely estimated, and its remaining uncertainty is quantified
by a Bayesian probability distribution. We develop an optimization-based formulation to generate a menu
of diverse solutions, among which the decision-maker is expected to find a high-utility solution. The
resulting optimization problem is challenging to solve in general, but we show that it can be approximately
solved efficiently when the attributes and utility function are linear by reformulating it as a mixed-integer
linear program, and using sample average approximation and submodular maximization. We also propose a
posterior sampling approach that only requires optimizing individual samples of the user’s utility function,
supporting fast computation.

1 INTRODUCTION

As motivation, we consider the following example, which combines preference elicitation (Braziunas 2006;
Abbas 2018) with classical multi-objective mixed-integer linear programming.

Consider a project between a local hospital and an external operations research (OR) team. The OR
team’s goal is to help the hospital administration create a weekly schedule for assigning nurses to hospital
wards and shifts, which will be revised on an ongoing basis. The schedule should satisfy staffing levels
while also prioritizing other attributes: ensuring that nurses get sufficient rest between shifts; satisfying
soft constraints expressed by individual nurses on days when they are unavailable to work; and distributing
shifts on holidays and weekends fairly across the workforce. Moreover, the schedule should be able to
be updated by a software tool that takes new information about required staffing levels in each ward, a
changing set of nurses and their capabilities, and a changing set of requests from nurses for days off.

Suppose the hard constraints (minimum staffing levels in each ward; a nurse cannot work in two wards
at the same time; a nurse can only work in wards for which he or she has the experience and skills to work)
can be easily formulated as linear constraints, and each attribute can be formulated as a linear function of
the decision variables. Let C be a known matrix such that Cx is a vector of attributes corresponding to any
feasible solution x satisfying hard constraints Ax < b. Then, if we could find weights 6 quantifying the
hospital administration’s preferences over attributes, we could simply solve a mixed integer linear program
(MILP) to give an optimal schedule: max 6 " Cx subject to Ax < b. Unfortunately, 8 is unknown.

If the attributes are all quantities that we want to be either as large or as small as possible, one approach
is to use multi-objective linear programming: we solve max 8 ' Cx subject to Ax < b for all possible 6.
This produces a Pareto frontier, which the hospital can then examine to select the schedule that has the
attributes they most like. Unfortunately, if there are more than 2 or 3 attributes, then it becomes difficult to
visualize the Pareto frontier and select the best option from among it (Benson 1998). This is particularly
problematic if each of 100 nurses enters requests for days off, which makes the Pareto frontier more than

979-8-3315-3420-2/24/$31.00 ©2024 3241

Shah, Astudillo, and Frazier

100-dimensional. Also, when attributes are high-dimensional, we need to solve an exponentially large
number of MILPs, which becomes computationally prohibitive. While this might be feasible for a single
week’s schedule, if a new schedule must be recomputed each week based on new input, then exploring
the full Pareto frontier each week could be onerous.

Another approach is for the external OR team to engage in a sequence of meetings with the local
hospital where an optimal schedule is found for many different 6 and the hospital administration is asked to
select among them the schedule they like the best. The corresponding 6 that generated it can then be taken
as providing a point estimate of the objective function. This can then be held fixed and used by the hospital
in a software tool to generate schedules in future weeks. In this setting, we refer to U(Cx;0) = 6 Cx as

the decision-maker’s (DM’s) utility function and 8 our estimate of it.

Such an approach, however, ignores uncertainty in our estimate of 6. This uncertainty may arise due to
noise in the responses or because it is based on feedback over a finite number of schedules: there may have
been multiple 6 that imply a preference for the chosen schedule over the others offered. It may also arise
because preferences change over time: in one week we may choose not to fulfill an employee’s request for
taking a particular day off because that employee recently enjoyed a desirable schedule, but then later on
we may wish to prioritize requests from that employee more heavily. This approach also restricts choice,
in that it offers only a single schedule to the DM in subsequent weeks.

A better approach would be to offer a collection of options, designed for several different likely 6, and
allow the DM to choose. This would offer more value across a range of possible DM preferences. Suppose,
for example, we knew that the DM had a preference specified by one of finitely many weights, 6y, ..., 6;.
Then, we could solve the MILP for each such 6, and offer the set of solutions as a menu, allowing the DM
to choose. This, however, is computationally infeasible and also overwhelming for the DM for large L.

To address the above challenges, we introduce a novel approach that acknowledges uncertainty on
the DM’s preferences but retains computational tractability. This approach uses a similar sequence of
conversations with the DM described above for calculating a point estimate 6 and instead estimates a
Bayesian posterior probability distribution over 8. Then, we solve a higher-level optimization problem that
chooses a menu of solutions (schedules, in the example above) to the DM, who selects her most preferred
solution. She can either implement this solution, or we can incorporate this choice into our probability
distribution over 6 to generate a new menu. In this way, we can quickly drive toward finding the DM’s
most preferred design with much less computation while also requiring much less effort from the human
DM. Offering a menu dramatically outperforms optimizing based on a point estimate of the DM’s utility
function. Moreover, by leveraging probabilistic information about the DM’s preferences, our method is
more efficient than standard multi-objective linear programming.

Within this framework, we propose two approaches for solving this higher-level optimization problem
using techniques from simulation. We focus on the practically important settings where the original known-
preference problem is a mixed integer linear program (MILP). The first approach begins by defining an
optimal menu given a constraint on menu size. Within this approach, we develop two tools for approximately
computing the optimal menu, sample average approximation and submodular maximization, and provide
performance guarantees on the expected reward they produce relative to the optimal menu. The second
approach uses Thompson sampling to create a menu of options by repeatedly sampling from the posterior
distribution on 6 and appending the solution that would be preferred under preferences described by 6. We
provide a performance guarantee on the gap between the reward achieved by this menu and that achieved
by an infinitely large menu containing all solutions.

2 RELATED WORK

Our work is closely related to multi-objective MILP (Zionts 1979; Climaco et al. 1997; Alves and Climaco
2007). Multi-objective LPs have convex feasible regions, allowing points on the Pareto frontier to be
recovered by minimizing a linear function of the objectives (Isermann 1974). Enumerating the Pareto
frontier for multi-objective MILPs is more complex because their feasible regions are non-convex (Alves

3242

Shah, Astudillo, and Frazier

and Climaco 2007). Methods for efficiently generating all or parts of a multi-objective MILP’s Pareto
frontiers are considered in Zionts (1979), Alves and Climaco (2007), and De Loera et al. (2009).

Among the broad literature on multi-objective MILP, our work is most closely related to interactive
decision support for multi-objective LPs and MILPs, surveyed in Teghem and Kunsch (1986) and Alves
and Climaco (2007). In this literature, our work is especially close to implicit utility function methods.
These methods assume, like ours, that the DM has an implicit utility function. Like the interactive version
of our method, these methods learn from pairwise comparisons successively smaller sets of implicit utility
functions consistent with the DM’s responses, while also identifying successively smaller portions of the
Pareto frontier that are optimal for implicit utility functions in this class. Our method is fundamentally
different from these past methods through the fact that it builds a Bayesian probabilistic model over the
implicit utility function and leverages this to build a menu with high expected utility. This allows our
method to offer several key improvements over past methods in this space.

Also related is utility elicitation (Abbas 2018), which queries the DM to estimate her utility function.
This estimate can be then used for decision-making (Keeney 1977). In practice, however, elicitation typically
demands substantial time and cognitive effort from the DM, preventing complete estimation of the utility
function. Our approach overcomes this challenge by acknowledging uncertainty in the DM’s preferences.

More recently, due to the increasing interest in having artificial intelligence support decision-making,
preference elicitation has also been studied within computer science (Chajewska et al. 1998; Chajewska
et al. 2000; Boutilier 2002; Boutilier et al. 2006). Unlike our work, this literature focuses on finding a
single solution as opposed to a menu of high-quality solutions.

Our work is also related to dueling bandits (Yue et al. 2012) and preferential Bayesian optimization
(Astudillo et al. 2023), both of which optimize based on preference feedback. These approaches query the
DM to efficiently identify the utility function’s maximizer. However, unlike our work, their focus is on
finding a single optimal solution. In the dynamic setting described below, our strategy based on the optimal
menu parallels the gEUBO sampling strategy for preference-based Bayesian optimization (Astudillo et al.
2023), whereas our Thompson sampling-inspired strategy parallels the dueling Thompson sampling strategy
(Astudillo et al. 2023; Astudillo et al. 2024).

Finally, our work builds on previous research by the authors, which has introduced similar problem
formulations in the contexts of multi-attribute ranking and selection (Frazier and Kazachov 2011) and
multi-attribute Bayesian optimization (Astudillo and Frazier 2020).

3 PROBLEM SETTING

We assume that the space of designs is represented by a set X C R¢, and attributes are given by a function
f: X — R*. We also assume that there is a DM whose preference over designs is characterized by a design’s
attributes, y, through a utility function, U(- ;0) : RF 5 R, where 6 € @ is a parameter vector characterizing
the DM’s preferences. Thus, of all the designs, the DM most prefers one in the set argmax,.x U(f(x);).
If 6 were known to us, we could apply single-objective optimization to maximize U (f(x);0). Instead, we
assume that 0 is unknown, and that we have access only to a probability distribution over 6, denoted by
p, which may be obtained by a brief and incomplete utility elicitation exercise with the DM, and/or from
choices made by this or other similar DMs in the past in problem contexts with the same attributes.

An algorithm provides the DM with a menu of designs and receives as its reward the expected value
of the utility obtained when she selects the best design in this menu according to her underlying utility
function. Formally, the reward received from offering designs xp,...,xy is

E| max U(f(xn);0)], (1

m=1,...M

where the expectation is over 6.
In principle, our framework is applicable as long as (1) can be maximized efficiently. However, this
is challenging in general. In this work, we focus on a specific subclass of problems that allows us to

3243

Shah, Astudillo, and Frazier

maximize (1) in a computationally tractable way. Specifically, unless otherwise stated, we assume that
X = {x € R' : Ax < b}, possibly intersected with Z' x R/, where A € RK*! and b € R, f(x) = Cx,
where C € R/, and U(y;0) =0y for all § € ® C R¥.

In our experiments, we consider two settings: a static setting and a dynamic setting. In the static setting,
we compute a menu and provide it to the DM. In the dynamic setting, this process is repeated multiple
times. Each time we provide a menu to the DM, she selects her preferred option, and this information is
used to update the (posterior) distribution over 6. In practice, we repeat this process as many times as
necessary until the DM is satisfied with the menu options.

We derive performance guarantees in the static setting for algorithms relative to two benchmarks. The first
is the maximum expected utility possible under a fixed menu size, maxy, .y, E[max,—i yU(f(xn);0)].
The second benchmark is the maximum utility possible if the DM selected from an infinite menu containing
all items, max,cx U (f(x);0). Since max,ex U(f(x);0) > maxy,—1,. mU(f(xn);0) for any xi,...,x,, the
expected value of the second benchmark dominates the first benchmark.

The following two sections develop two approaches. First, Section 4 develops an approach motivated
by the optimal menu of a fixed size M, i.e., the collection of items xi,...,x) that maximize (1). This
approach relies on two computational tools: sample average approximation and submodular maximization.
We provide guarantees on the gap between the expected reward (1) and the expected reward of the optimal
menu (the first benchmark) under both tools. Then, Section 5 develops a Thompson-sampling-based
approach that directly increases the reward by adding items to the menu. We show that the probability of
a large gap between the reward obtained and the second benchmark converges exponentially fast to 0.

4 APPROXIMATE COMPUTATION OF THE OPTIMAL MENU

Our first approach is based on direct (approximate) computation of the optimal menu, i.e., the menu that
maximizes the objective in Equation (1). Formally, this menu is the solution to

E U ;0)| . 2
xl,.lir.],?;;(ex mg,aX,M <f(xm)’) ()
Solving this problem is challenging due to the stochastic nature of the problem induced by the expectation
over 0 and the combinatorial structure of the problem resulting from maximizing xi,...,xy over X.
To develop tools addressing these challenges, we begin by observing that, if the support of 0 is finite,
Problem (2) is equivalent to the mixed integer linear program

max Z p(6) z_:] Wo m

wW.X,Z 0cO

M
subject to Z Zgm=1:0€0
m=1 (3)

2om€{0,1}:0€0, m=1,....M
wom < (ug—1Ilg)zom:0€0, m=1,....M
W@,mSGTCXm—19:6€®, m=1,....M,

where lg and ug are any constants satisfying lg < U(f(x);0) < ug for all x € X. To see this equivalence,
note that the first three constraints imply that, for each 6 € ®, at most one wg ,, is nonzero. Therefore,
for any given xi,...,x), and for each 6 € ®, the maximum achievable value of the sum Zf,{zl wo m 18
max,—1,.. .M 0'Cx,—1lg , ie., maxy—1,.. mU(f(x,);0) —1lp. Thus, if xi,...,x are optimal for Problem
3, then they are also optimal for Problem 2.

If 0 has large or infinite support, or the menu size M is large, solving (3) may not be computationlly
tractable. We thus offer two tools for addressing this challenge: sample average approximation (4.1) and

3244

Shah, Astudillo, and Frazier

submodular maximization (4.2). They can be applied separately or jointly. Sample average approximation
is appropriate when 6 has large or infinite support. Submodular maximization is appropriate when the
menu size is large. They can also be applied jointly by using sample average approximation to solve the
subproblem considered by submodular maximization, as discussed in Section 4.2.

4.1 Sample Average Approximation

The above reformulation (3) is only possible when 6 has finite support. However, 6 often has infinite
support in practice. Moreover, even if 8 has finite support, Problem (3)’s dimensionality grows linearly
with the support of 0, and thus it is desirable to consider approximations that are more computationally
tractable in large-support regimes. To this end, we consider the following approach to solve this problem
approximately. Instead of using the full support of 8, this approach draws L i.i.d. samples from p, denoted
by 6y,...,0., and replaces Problem (2) by

M

1
7 10p). 4
MI?}ECI;GXLZ:Z’lmEII?.)iMU(f(xm),) @)

This approach is known in the literature as sample average approximation (Kim et al. 2015). Despite its
simplicity, it possesses appealing theoretical guarantees, as formalized by Theorem 1. The proof of this
result can be found in Appendix A.

Theorem 1 Suppose that X is compact, and let v* and v*(L) be the optimal values of Problems 2 and 4,
respectively. Also let X* = argmax,, . cxE[max,—1 __mU(f(xn);0)] be the set of optimal solutions of
Problem 2 and x*(L) = (x7(L),...,x;;(L)) be any optimal solution of Problem 4. Then, v*(L) — v* and
dist(x*(L),X*) — 0 almost surely as L — co.

4.2 Submodular Maximization

To address computational challenges arising from large menu sizes, we make the key observation that the
function V : 2X — R defined by V(X) = E[sup,cy U(f(x);0)] is a monotone submodular set function. As
we shall see later, this implies that a simple greedy algorithm has an appealing approximation guarantee
to the optimal solution. Before describing this algorithm in detail, we formally define what a monotone
submodular function is.

Definition 1 A set-valued function V : 2© — R is said to be monotone if A C B C Q implies V(A) < V(B);
and V is said to be submodular if V(A)+V(B) > V(AUB)+V(ANB) for all A,B C Q.

We consider the approach that builds the menu to be shown to the DM iteratively as follows. For each
N =1,...,M and having chosen the first (N — 1)-th items of the menu, the N-th item of the menu, xy, is
chosen as an optimal solution of

maxs [max | max | U(F(03,:0).U(7():0) } . B

XNEX —1,..4./N—1

i.e., we choose the best possible item given the items that we have chosen so far. The approximation
guarantee of this approach is formalized in Theorem 2 below, whose proof follows directly from the classical
result in Nemhauser et al. (1978). For this result, we assume that U(f(x);0) >0 for all x € X and 6 € O,
which can be done without loss of generality in most cases by subtracting an appropriate constant.

Theorem 2 Suppose that xj,...,x), are chosen as described above. Then,

E| max U(f(x,’;);e)] >(1—l>x1’max E[mmax U(f(on):0)] -

m=1,..M =1,...M

Problem 5 can be formulated as a MILP analogous to (3). By leveraging the the fact that it is enough to
distinguish whether the new item to be included menu is better than previous ones, this MILP reformulation

3245

Shah, Astudillo, and Frazier

can be simplified to
max Zp (1 —zo)Uy_1(0) +wpg)

subject to wg < (ug —1lg)zg: 0 € @ (6)
we SU(f(x:);0)—1lg:0 €O
20,€{0,1}:0€0

where Uy_,(0) = max,,—1,. n—1U(f(xn);0) and, as before, lg and ug are any constants satisfying ly <
U(f(x);0) < ug for all x € X. As before, we can use sample average approximation to approximately
solve the above problem when the support of 0 is large.

5 A THOMPSON-SAMPLING-INSPIRED APPROACH

Our second approach for ensuring a large value for the reward (1) is inspired by Thompson sampling,
an algorithm for optimization-based sequential decision-making under uncertainty (Russo et al. 2018).
While our setting is not necessarily sequential, we take inspiration from this algorithm and consider the
following strategy to build the menu of designs to be shown to the DM. Notably, this approach only
requires maximizing individual samples from the utility function, making it straightforward to implement
in scenarios where software for optimizing point estimates of the utility function is available. Specifically,
this approach draws M i.i.d. samples from p, denoted by 6y,..., 0y, and builds the menu as xJ,...,x},,
where x, € argmax,.x U(f(x);0), m=1,....M

By drawing an analogy to the balance of exploitation and exploration provided by Thompson sampling
in sequential settings, a menu constructed using our approach is likely to include designs that are both
individually high-quality and collectively diverse. Our experiments demonstrate that this straightforward
algorithm performs effectively in practice. Furthermore, we show that a menu built following this approach
achieves an optimal performance exponentially fast as the size of the menu grows. This result is formalized
in Theorem 3, whose proof can be found in Appendix A.

Theorem 3 Suppose thatboth X and ® are compact, andlet 6, 01, . .., Oy iwd P, X" (6,,) € argmax, x U(f(x); 0n),

m=1,...,M. Further suppose that the following two conditions hold

1. Theset® ={r€®:P(||0—t|]» < &) >0 for all § >0} has probability 1 under p.
2. For any & >0, inf,ce P(||0 —t]2 < 8) > 0.

Then, for any € > 0, P (max,cx U (f(x); 6p) — max,—;
tially fast as M — oo,

,,,,, MU(f(x*(6n));60) > €) converges to 0 exponen-

We note that while conditions 1 and 2 in Theorem 3 seem technical, they hold in two standard settings:
when the distribution over ® has finite support and when it admits a strictly positive density over ©.

6 NUMERICAL EXPERIMENTS

We conduct numerical experiments demonstrating the practical application of our framework. We compare the
performance of the optimal menu, computed approximately via sample average approximation as described
in Section 4.1 (Optimal Menu), the variant of this approach that leverages submodular maximization
from Section 4.2 (Submodular), and the Thompson sampling approach described in Section 5 (Thompson
Sampling). We also compare against a point-estimate approach (Point Estimate) that provides a single
solution to the DM by optimizing U (f(x); 9) using a single a point estimate 6. This point estimate is the
expected value of 0 under the prior. Finally, we report the performance of an idealized algorithm that
knows the DM’s true utility (Perfect Information).

3246

Shah, Astudillo, and Frazier

6.1 Experimental Settings

We consider two different experimental settings. The first is static, and the second one is dynamic, in the
sense that preference information is gathered from the DM to update the distribution on 6.

Static setting The first setting uses a prior on 6 whose support is small enough to be fully included
in the scenario sets for the Optimal Menu and Submodular approaches. To evaluate an algorithm for a
given menu size in this setting, we do the following:

1. We draw a small number of preference scenarios 61, ..., 8 uniformly at random from the probability
simplex. Then we set the prior distribution on 6 as uniform over ® = {6,...,6.}.

2. We provide the Point Estimate, Submodular, and Optimal Menu algorithms for the entire set of
preference scenarios, ®. Thompson Sampling samples independently (with replacement) from ©.

3. For each preference scenario 6 € ©, we calculate the utility of the best item in the offered menu,
and then take the average across all preference scenarios in ®. This provides the expected utility
of the offered menu under the prior.

4. We then average this expected utility across many replications of this process to get an unbiased
estimate of an algorithm’s quality. This averages over uncertainty about both the preferences of
the DM and also the scenario set used.

Dynamic setting In the second setting,we hold the menu size fixed at 3, varying the number of
interactions with the DM. In each replication, we follow these steps:

1. Sample a 8 from the prior, which is uniform over the probability simplex, and hold it out, not
showing it to the algorithms.

2. Use the algorithm to generate a menu.

3. Simulate showing the menu to the DM, who selects the best item in the offered menu according
to the held out 8. The algorithm observes the selected item.

4. Update the prior distribution on 6 to get a posterior distribution given the preference information
expressed by the DM, i.e., that the selected item is better than all others in the menu.

5. Use the algorithm to generate another menu, using the current posterior, and repeat the above steps.
The value generated from the algorithm after m menus shown is the value of the best item shown
among the first m menus, according to the held out 6.

Using many replications of the above process, we report the average value of the best item in the first n
menus vs. n, along with the standard error.

For algorithms that require a small set of preference scenarios (Optimal Menu ane Submodular), we
sample a fixed number of scenarios independently from the current posterior each time the algorithm is
asked to generate a menu. To sample from the posterior, we use acceptance-rejection sampling: we sample
from the prior, check whether it satisfies all of the constraints given by past selections from the DM, accept
it if it does and reject it if it does not. We repeat this until we get the required number of samples.

6.2 Problem Descriptions

Doctor Scheduling This experiment considers a fictional doctor wishing to schedule appointments. There
are A patients and B time-slots in which each patient can be scheduled. Patient a assigns a desirability
score ¢, to time-slot b. These scores are drawn independently across patients and time-slots from a
uniform([0, 1]) distribution and fixed throughout the experiment. We partition the patients into J =35
disjoint subsets P, ..., P; uniformly at random and fix this partition throughout the experiment. Patients in
P; have priority j. A binary decision variable, x, , indicates whether patient a was scheduled in time-slot
b. Attribute j is the cumulative score fj(x) =Y ,c P Zle CapXqap Of patients with priority j.

3247

Shah, Astudillo, and Frazier

Intensity-Modulated Radiation Therapy Based on Chu et al. (2005), we consider a cancer patient
undergoing intensity-modulated radiation therapy (IMRT). This therapy passes beams of radiation through
the patient’s body from a variety of angles. IMRT aims to modulate the intensity of each beam (or each
portion of each beam, called a “beamlet”) so that the tumor receives enough radiation to initiate remission
while the surrounding non-cancerous tissues receive a small enough dose to avoid significant side effects.

We divide the cross-sectional area of the patient’s body irradiated by IMRT into N voxels. We let
wy, > 0 be the radiation dosage at voxel v and x;, > 0 be the intensity of beamlet b.

The radiation dosage at voxel v is modeled as a linear function of the beamlet intensities, w, =Y, D, X,
where the D,,, > 0 are known. We partition the voxels into J sets, S; : # = 1...J, where each set represents a
different type of tissue within the body: the tumor; healthy organs; and other surrounding tissues. Our goal
is to support a physician’s choice of x; to control w, within each tissue to best achieve medical outcomes.

Attributes here are given by the average dose of radiation given to a tissue type (or its negation), where,
under the assumption that j = 1 denotes the tumor, fj(x) = |SIT| Yes, Wy, and fj(x) = _ﬁ Yoes, Wy, Vj# L.
This is a linear function of the w,, and thus also the x;. We also constrain the maximum dose in each tissue
type and the minimum dose in the tumor. Although we do not do so here, our framework allows including
the maxima and minima as additional attributes over which the DM can have uncertain preferences.

6.3 Results

Figures 1 and 2 below show results for the static and dynamic settings with the doctor scheduling problem
in the top row and IMRT in the bottom row. The left column shows the expected quality of the best item
found, and the right column shows the computational time used, including the time to sample preference
scenarios. Computational time is reported for a 2.5 GHz Quad-Core Intel Core i7 with 16 GB of RAM.

The three proposed algorithms significantly outperform the status quo Point Estimate method. The
results show the clear trade-off between an algorithm’s utility and its computational cost. While the Optimal
Menu algorithm tends to offer the best solution quality, it does so at a greater computational cost, growing
much faster in its time to solve with the menu size and the number of preference scenarios used. The
Submodular algorithm tends to offer a solution quality that is almost as good, trailing just underneath
the Optimal Menu algorithm in nearly all instances. It is able to do this with much better computational
scalability. Then, we have Thompson Sampling, which offers a different tradeoff between performance and
speed, being much faster than Submodular and Optimal Menu, and offering much better performance than
the Point Estimate method. Thus, we offer 3 choices with different trade-offs between solution quality and
computational cost from which a user can select based on their circumstances.

In the static setting (Figure 1), the standard errors tend to be small. Standard errors also tend to decline
with menu size and are smaller for methods with better overall expected solution set quality. We believe
that this is because methods with good expected solution set quality tend to contain near-optimal solutions
for each 0 in their offered set regardless of randomness introduced by sampling over the thetas used to
construct the menu. This reduces the variance of a single evaluation of solution quality, thus reducing
overall standard errors. An interesting point where IMRT differs from Doctor Scheduling is that when we
have a menu size of five, the optimal menu algorithm performs exactly as well as when we have perfect
information. This is due to us generating a menu size of five when there are only five ground truth values,
and all are being given to the algorithm.

In the dynamic setting (Figure 2), the algorithms perform well at their task of learning the DM’s
preferences. After a few iterations of presenting menus to the DM, we can see that the utility of the menus
provided performs close to optimal against the true preferences of the DM. Moreover, we note that even a
cheap algorithm such as Thompson Sampling, can perform close to optimal after a few interactions with the
DM, as it can learn the preferences well enough. Thus, we can see that in the case that the DM can spare
enough bandwidth to interact with the user, it might be fine to use an inexpensive algorithm. However,
in the case that the DM can afford few interactions, it is better to use a more computationally expensive
algorithm, which would be better at finding a menu with higher utility.

3248

Shah, Astudillo, and Frazier

.. .
.. -
2.34
10° u
i LA .
2.2 ; °
e
> i } 2 —— Perfect Information
=1 } o u —#- Optimal Menu
= i 0 107! ° &~ Submodular
e } o —&— Thompson Sampling
-] + ~&- Point Estimate
2.04 (]
t £
1.9 = o ¢
1072 .
L
1.8 } } } } * * * *
2 3 4 5‘) 2 3 5
Menu size Menu size

~13.6
....................................... - -
{ T 10" -
-13.8 1 —
2 n
"""""""""""""""""""" B o °
> ~1401 2 ® — Perfect Information
= o —@- Optimal Menu
= v ° 8- submodular
pras] o —&- Thompson Sampling
D 142 +— ~&- Point Estimate
(]
E u . [
~14.4 1 [== o . * *
’ ¢
100 4
~14.6 3
2 3 2 5 2 3 a 5
Menu Size Menu Size

Figure 1: Static setting: Doctor scheduling (top row) uses 8 distinct preference scenarios and 100
replications, while IMRT (bottom row) uses 5 scenarios and 2500 replications.

7 CONCLUSION

We introduced a novel approach to support multi-attribute optimization-based decision-making when the
DM’s preferences over the attributes are uncertain. By acknowledging uncertainty in the DM’s preferences,
our approach is more flexible than the point estimate approach, which provides a single suggested solution.
By leveraging preference information, our approach provides solutions better tailored to the DM’s preferences
than generating the whole Pareto front. Finally, by constructing the menu using a decision-theoretic analysis
and a Bayesian prior distribution over utility functions, our approach is significantly more flexible than
existing interactive multi-objective optimization methods.

We proposed a scheme to approximately compute the optimal menu in the mixed-integer linear setting
and a Thompson-sampling-inspired approach that only requires maximizing multiple samples from the
utility function, making it practical in situations where optimization routines to maximize point estimates
of the utility function are available. Our numerical experiments show that these algorithms significantly
outperform the traditional point-estimate approach.

A PROOFS OF THEORETICAL RESULTS

Proof. (Proof of Theorem 1) This theorem is a direct consequence of Proposition 2.2 in (Homem-de
Mello 2008). It suffices to verify that the two conditions below are satisfied.

1. For any xi,...,xy € X, %Zlemaxm:h_,/w U(f(xm);6k) = E[maxy—1, pmU(f(xn,);0)] almost
surely as K — oo,

3249

Shah, Astudillo, and Frazier

....................................... -
i i g
2.2 i i " n |]
§ L —
0 ° ° °
[] -]
2.1 0>J
> | 3 T o
= " —§- Submodular
S0l o . —§~ Thompson Sampling
-] +~ —&- Point Estimate
(0]
S .
1.94 |:
1072 o L]
1 ? 3
181 & @ E 2 * * * * *
0 1 2 3 4 0 1 2 3 4
Interactions with decision-maker Interactions with decision-maker

- I | |
13.8 - i - - - -
-14.01 # E
g
la, —-14.21 6 [] _: ZZ::;I:;ZLTEUW
E (7] ° —&- Submodular
] o] °] —&- Thompson Sampling
D 1444 + ~&- Point Estimate
(0]
-14.6 4 -
} } } })
* . .
-14.8+ * * * * *
0 1 2 3 4 0 1 2 3 4
Interactions with decision-maker Interactions with decision-maker

Figure 2: Dynamic setting (with a menu of size 3): We modulate the number of interactions with the DM
and update the prior on preference scenarios after each interaction. We use 1000 replications in Doctor
Scheduling and 25000 in IMRT.

2. There exists a function £ : ® — R such that |max,,—1__y U (f(xn);0) —max,—;_ mU(f(x),);0)| <
000) ||(x1,. . sxm) — (x,...,x)) ||, and E[£(0)] < eo.

Condition 1 follows from the law of large numbers. Thus, it only remains to verify condition 2. Let
n. € argmax,,_; _ p U(f(xn);0) and), € argmax,,_; 4, U(f(x,);0). Note that

m

nax U(f(in):0) = max U(f(x,):0)| = max{U(f(x.):0) = U(f(x,):0),U(f(xy;):6) ~U(f(xs.): 0)}
< max{U(f(x,);0) —U(f(x;,):0),U(f(x};):0) = U(f(xx): 0)}
=max{6'Cx,, —0'Cx, ,6"'Cx;, —6 Cx,,}
< [181l2[ICll2 max{[|xn, — x5, [I; [|x2, — x5 I}
<N1812lICl2 || Gty xm0) = (K-, || -

Therefore, it suffices to take ¢(0) = ||C||2||6]|2- O

Proof. (Proof of Theorem 3) Note that max,cx U (f(x);¢) = max,ex ¢ ' Cxis simply the value of the support
function of X at C'¢. Since X is convex and compact, its support function is continuous. Therefore, given
€ > 0, there exists 0’ > 0 such that if ||z — o> < ', then |max,ex U(f(x);7) — max,ex U(f(x);t0)] < €/2.

3250

Shah, Astudillo, and Frazier

Moreover, if ||t —fy|| < €/2 (max,ex ||Cx||2+ 1), then we have

U(f(x"(1)):t) = U (f(x*(2))st0)| = [t Cx*(£) — 19 Cx* (1)
< It —toll|Cx* (1) |2
< €
2 (max,ex [|Cx|[2+ 1)
<g/2.

1Cx*(0)]2

It follows that, if ||t —fp|| < 6 := min{d’,€/2 (max,ex [|Cx||2+ 1)}, then

max U (f (x);10) = U (f(x"(2));10) = |max U (f(x);10) —maxU (f(x);1) + U(f(x"(1));1) = U (f(x"(¢)):10)

xeX xeX xeX
< |max U (f(x):) =maxU(f(x)ito) | +|U (f (" (0)):) =U(f(x"(1))s00)]
<E.

Hence, {max,ex U (f(x);t0) —U(f(x*(0));t0) > €} C {||6 —19|| > 8}, and thus

xeX

P (maxU(swi) - U (0))i0) > €) < B(10 -l 2 8) = 1~ (]9 ~10] < 3).

Finally,

xeX m=1,...M

{maxU(f(x);to)— max U(f(x*(em));to)ze}:

and thus

P (maxU (i) - max, V(G @)in) > ¢) <F (ﬂ {maxvtr@0) - U 00 > e})

< (1=P(J6—1] < 5).

Now observe that, since ® is compact, the support function of X is not only continuous but uniformly
continuous over C' @, and thus 8’ above can be chosen independently of #,, which in turn implies that &
can also be chosen independently of #y. Therefore, given € > 0, there exists 6 > 0 such that, for all t € @,

M

P (maxU(f(x);t) — max U(f(x"(6n));t) > 8> <(1-P(]|6—1| < 5))M < (1 — infP(||6—1] < 5)> .
xeX m=1,...M te®’

Since © has probability 1 under p, it follows that

E [}P’ <maxU(f(x);90) — max U(f(x"(0n));60) > €| 90>] < (1 —tien(af/P(HG—tH < 5)>M,

xeX m=1,...M

where the expectation is over 0; i.e.,

M
P(maxU(f(x);Qo)— max U(f(x"(6n));60) > 8) < <l—li€ng/}P’(H9—t] < 5)))

xeX m=1,...M

which finishes the proof since inf,ce P (]|0 —¢|| < §) > 0. O

3251

Shah, Astudillo, and Frazier

REFERENCES

Abbas, A. E. 2018. Foundations of multiattribute utility. Cambridge: Cambridge University Press.

Alves, M. J. and J. Climaco. 2007. “A review of interactive methods for multiobjective integer and mixed-integer programming”.
European Journal of Operational Research 180(1):99-115.

Astudillo, R. and P. Frazier. 2020. “Multi-attribute Bayesian optimization with interactive preference learning”. In International
Conference on Artificial Intelligence and Statistics, 4496—4507. Online: PMLR.

Astudillo, R., K. Li, M. Tucker, C. X. Cheng, A. D. Ames and Y. Yue. 2024. “Preferential multi-objective Bayesian optimization”.
arXiv preprint arXiv:2406.14699.

Astudillo, R., Z. J. Lin, E. Bakshy, and P. Frazier. 2023. “qEUBO: A decision-theoretic acquisition function for preferential
Bayesian optimization”. In International Conference on Artificial Intelligence and Statistics, 1093—1114. Online: PMLR.

Benson, H. P. 1998. “An outer approximation algorithm for generating all efficient extreme points in the outcome set of a
multiple objective linear programming problem”. Journal of Global Optimization 13(1):1-24.

Boutilier, C. 2002. “A POMDP formulation of preference elicitation problems”. In Proceedings of the AAAI Conference on
Artificial Intelligence, 239-246. Austin: AAAI Press.

Boutilier, C., R. Patrascu, P. Poupart, and D. Schuurmans. 2006. “Constraint-based optimization and utility elicitation using
the minimax decision criterion”. Artificial Intelligence 170(8-9):686-713.

Braziunas, D. 2006. “Computational approaches to preference elicitation”. Technical report, Department of Computer Science,
University of Toronto.

Chajewska, U., L. Getoor, J. Norman, and Y. Shahar. 1998. “Utility elicitation as a classification problem”. In Conference on
Uncertainty in Artificial Intelligence, 79-88. San Francisco: Morgan Kaufmann Publishers Inc.

Chajewska, U., D. Koller, and R. Parr. 2000. “Making rational decisions using adaptive utility elicitation”. In Proceedings of
the AAAI Conference on Artificial Intelligence, 363-369. Austin: AAAI Press.

Chu, M., Y. Zinchenko, S. G. Henderson, and M. B. Sharpe. 2005. “Robust optimization for intensity modulated radiation
therapy treatment planning under uncertainty”. Physics in Medicine Biology 50(23):5463.

Climaco, J., C. Ferreira, and M. E. Captivo. 1997. “Multicriteria integer programming: An overview of the different algorithmic
approaches”. In Multicriteria Analysis, 248-258. Springer.

De Loera, J. A., R. Hemmecke, and M. Koppe. 2009. “Pareto optima of multicriteria integer linear programs”. INFORMS
Journal on Computing 21(1):39-48.

Frazier, P. I. and A. M. Kazachov. 2011. “Guessing preferences: A new approach to multi-attribute ranking and aelection”. In
Winter Simulation Conference (WSC), 4311-4323 https://doi.org/10.1109/WSC.2011.6148119.

Homem-de Mello, T. 2008. “On rates of convergence for stochastic optimization problems under non-independent and and
identically distributed sampling”. SIAM Journal on Optimization 19(2):524-551.

Isermann, H. 1974. “Proper efficiency and the linear vector maximum problem”. Operations Research 22(1):189-191.

Keeney, R. L. 1977. “The art of assessing multiattribute utility functions”. Organizational behavior and human perfor-
mance 19(2):267-310.

Kim, S., R. Pasupathy, and S. G. Henderson. 2015. “A guide to sample average approximation”. In Handbook of Simulation
Optimization, 207-243. Springer.

Nembhauser, G. L., L. A. Wolsey, and M. L. Fisher. 1978. “An analysis of approximations for maximizing submodular set
functions—I”. Mathematical programming 14(1):265-294.

Russo, D. J., B. Van Roy, A. Kazerouni, I. Osband, Z. Wen et al. 2018. “A tutorial on Thompson sampling”. Foundations and
Trends® in Machine Learning 11(1):1-96.

Teghem, J. and P. Kunsch. 1986. “Interactive methods for multi-objective integer linear programming”. In Large-scale modelling
and interactive decision analysis, 75-87. Springer.

Yue, Y., J. Broder, R. Kleinberg, and T. Joachims. 2012. “The k-armed dueling bandits problem”. Journal of Computer and
System Sciences 78(5):1538-1556.

Zionts, S. 1979. “A survey of multiple criteria integer programming methods”. In Annals of Discrete Mathematics, Volume 5,
389-398. Elsevier.

AUTHOR BIOGRAPHIES
BHAVIK A. SHAH is a software engineer at Google. His e-mail address is shah.bhavik627 @ gmail.com.

RAUL ASTUDILLO is a Postdoctoral Scholar at Caltech. His research focuses on efficient sequential information acquisition.
His e-mail address is rastudil@caltech.edu. His website is https://raulastudillo.netlify.app/.

PETER I. FRAZIER is the Eleanor & Howard Morgan Professor of Operations Research & Information Engineering at Cornell
and a Staff Data Scientist at Uber. His email address is pf98 @cornell.edu. His website is https://people.orie.cornell.edu/pfrazier/.

3252

https://doi.org/10.1109/WSC.2011.6148119
mailto://shah.bhavik627@gmail.com
mailto://rastudil@caltech.edu
https://raulastudillo.netlify.app/
mailto://pf98@cornell.edu
https://people.orie.cornell.edu/pfrazier/

	INTRODUCTION
	RELATED WORK
	PROBLEM SETTING
	Approximate Computation of the Optimal Menu
	Sample Average Approximation
	Submodular Maximization

	A Thompson-Sampling-Inspired Approach
	NUMERICAL EXPERIMENTS
	Experimental Settings
	Problem Descriptions
	Results

	CONCLUSION
	Proofs of Theoretical Results

