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ABSTRACT

Evaluating individual treatment effects (ITE) is challenging due to the lack of access to counterfactual out-
comes, particularly when working with biased data. Recent efforts have focused on leveraging the generative
capabilities of models like Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs)
for ITE estimation. However, few approaches effectively address the need for uncertainty quantification
in these estimates. In this work, we introduce GANCQR, a GAN-based conformal prediction method
that generates prediction intervals for ITE with reliable coverage. Numerical experiments on synthetic
and semi-synthetic datasets demonstrate GANCQR’s superiority in handling selection bias compared to
state-of-the-art methods.

1 INTRODUCTION

Counterfactual inference is a method focusing on estimating the outcomes of a system under different
conditions that were not actually experienced. It involves constructing a counterfactual or “what-if" scenario
to estimate what the outcome would have been if a different treatment or intervention had been assigned.
This method has received attention from a variety of fields, including political phenomena (Grimmer et al.
2017), clinical management and precision medicine (Prosperi et al. 2020; Foster et al. 2011; Ge et al.
2020), policy evaluation (Chernozhukov et al. 2021), and economics (Florens et al. 2008). In particular,
counterfactual inference can be used to assess the effect of a treatment in a medical study by comparing
the actual outcome with the estimated counterfactual outcome. Estimating treatment effects differs from
standard supervised learning problems because counterfactuals are hypothetical, making it impossible to
observe individual-level effects directly. Early studies concentrated on the average treatment effect (ATE) to
capture population-level difference (Cochran and Rubin 1973; Rubin 2005). However, ATE only provides
the central tendency of the treatment effect distribution, making it insufficient to validate a treatment’s
effectiveness, especially for non-randomized data. As a remedy, the average treatment effect on the treated
group (ATT) was introduced to estimate the impact on the treated group in non-randomized data (Heckman
and Robb 1985; Heckman, Ichimura, and Todd 1997). Since the early 2010s, machine learning models have
significantly influenced healthcare (Xiao et al. 2018). Hospitals and medical providers increasingly embrace
machine learning methods for clinical decision-making to maintain or improve an individual’s health. This
trend has spurred the proposal of individual treatment effects (ITE) to support individualized patient care.
Due to challenges in ITE estimation, most studies estimate conditional average treatment effects (CATE),
representing ITE expectations conditioned on covariate values. While CATE provides enhanced insight
over ATE, it still neglects the inherent variability in the response, often referred to as conditional variance
(Lei and Candès 2021). This variability might be crucial for decision-making, especially if the covariates
fail to explain most of the variation in ITE.

The major challenge in ITE estimation is the absence of counterfactual data, which represents the
unobserved outcomes of the compensate treatments (Hill 2011). Randomized Controlled Trials (RCTs)
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offer a solution by randomly assigning participants to treatment or control groups to compensate for missing
counterfactuals (Haynes et al. 2012). Despite being considered the golden standard for effective causal
inference methods, RCTs suffer from multiple issues, including high cost, relatively small size, ethical issues,
and short duration of followups that might miss out on long-term effects of medications (Ghosheh et al. 2024).
Moreover, treatment allocation is not randomized in observational datasets like electronic health records
(EHRs) encompassing covariates, treatment assignments, and corresponding outcomes. Consequently, this
non-random nature may result in biased control group selection. The generative capabilities of GANs offer
a promising option to address this issue for treatment effect estimation by generating missing counterfactual
outcomes, adjusting the distribution of observed data, or augmenting original sample size (Ghosheh et al.
2024). Compared to VAEs, which learn a balanced representation to estimate ITE, GANs do not have to
trade off between containing predictive information and reducing biased information (Yoon et al. 2018).

Point estimates can be risky for decision-making in contexts like drug development, where incorrect
actions can lead to significant losses. In such cases, a confidence interval becomes crucial. For instance,
the U.S. FDA requires an interval estimation or at least a p-value for drug approval to ensure sufficient
evidence and confidence in the drug. Despite the importance of uncertainty quantification, reliable methods
for constructing prediction intervals for ITE still need to be developed. Lei and Candès (2021) demonstrated
the unsatisfactory or unacceptable coverage of the confidence intervals for CATE and prediction intervals
for ITE generated by widely used methods, including Bayesian approaches, even in elementary models
with only ten covariates.

The literature on ITE estimation is still in development, with only a limited number of studies having
been conducted. In this paper, we focus solely on methods that leverage the generative capabilities of GANs,
although other methods exist that take advantage of Variational Autoencoders (VAEs). Yoon et al. (2018)
introduced GANITE, the first application of GANs for inferring ITE. GANITE treats counterfactuals as
missing labels and imputes the missing data adapted from GANIN proposed in their previous work (Yoon
et al. 2018). Additionally, McDermott et al. (2018) proposed a cycle Wasserstein regression GAN model
to generate time-series post-treatment outcomes for biomedical applications to predict a patient’s response
to a treatment. Inspired by GANITE, Ge et al. (2020) extended GANITE to MGANITE to estimate ITE for
all types of treatments including binary, categorical, and continuous treatments. Furthermore, Generative
Adversarial De-confounding (GAD) is proposed to deal with the continuous treatment by Kuang et al.
(2021). GAD generates a “calibration” distribution to eliminate the associations between covariates and
treatment variables. In this process, GANs are employed to learn a weight vector that transfers the
distribution of observed data to the “calibration” distribution.

The only research on constructing a prediction interval for ITE has been conducted by Lei and
Candès (2021). They calculated prediction intervals for ITE by targeting estimating prediction intervals
of the potential outcomes individually first. However, separately estimating the potential outcomes can be
inefficient and unreliable, especially when treatments are not assigned completely randomly (Curth, Peck,
McKinney, Weatherall, and van Der Schaar 2024). Various work has shown that it is more efficient to
estimate ATE and CATE directly (Van der Laan and Rose 2011; Künzel et al. 2019; Athey et al. 2019;
Nie and Wager 2021). GANs in this case can generate the counterfactual data directly, therefore allowing
direct estimation of ITE, analogous to the approaches in estimating ATE and CATE.

In this paper, we construct prediction intervals for ITE directly by leveraging the ability of GANs
and conformal prediction. In particular, we address two challenges: (i) constructing prediction intervals
for ITEs with reliable coverage without prior knowledge of the distributions of potential outcomes, and
(ii) constructing efficient prediction intervals for ITEs when the observed data exhibit selection bias. The
rest of the paper is organized as follows. Section 2 sets up the theoretical framework for ITE estimation.
Section 3 presents GANCQR in detail. Section 4 provides numerical experiments based on semi-synthetic
and synthetic datasets. Section 5 concludes the paper.
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2 PROBLEM FORMULATION

In this paper, we focus on the standard potential outcome setting (Rubin 2005) with binary treatment
to estimate the treatment effects. Let X ∈ X ⊂ Rs denote the observed s−dimensional feature vector,
T ∈ {0,1} denote the binary treatment indicator, and (Y (0),Y (1)) ∈ Y 2 represent the pair of potential
outcomes where Y is the set of possible outcomes. Suppose the joint distribution of (X ,T,Y (0),Y (1)) is µ;

the marginal distribution of X is denoted by µX , and the conditional marginal distribution of Y
a

= (Y (0),Y (1))
conditioning on X is denoted by µY(X). Assume that there are N i.i.d. observed samples (xi,Ti,Y obs

i ) for
i = 1,2, . . . ,N, where only one treatment t is assigned for each sample x, resulting in only one potential
outcome to be observed. The Y obs

i and ITE are defined under three commonly stipulated assumptions:
the overlap assumption, the unconfoundedness assumption, and the stable unit treatment value assumption
(SUTVA).
Assumption 1 (Overlap) For ∀x ∈ X , we have 0 < P(T = 1 | X = x)< 1.

The overlap assumption ensures the probability of receiving treatment is positive for every point in the
covariate space.
Assumption 2 (Unconfoundedness) Conditional on X , the potential outcomes (Y (0),Y (1)) are independent
of T , i.e. (Y (0),Y (1))⊥ T | X .

Unconfoundedness, also known as strong ignorability, allows covariates in X directly affect the values of
Y (1) and Y (0) , but the treatment status is unrelated to these values. It rules out any sources of unmeasured
confounders, ensuring that individuals who receive the treatment are not fundamentally different from those
who do not. This assumption enables us to study what Y (0) would have been for those individuals with
T = 1 by looking at the effect of those with T = 0.
Assumption 3 (SUTVA) SUTVA consists of two elements: no interference and no hidden variations of
a treatment (Imbens and Rubin 2015). No interference means that one observation’s potential outcome is
not affected by the treatment assignments of other observations. No hidden variations refer to the fact that,
for each observation, there are no different forms or versions of each treatment level that would lead to
different potential outcomes.

Then the observed outcome Y obs
i represents the factual outcome, denoted as y f , which refers to the

component of the potential outcomes that corresponds to the assigned treatment Y obs
i = Ti ·Yi(1)+(1−Ti) ·

Yi(0). The unobserved potential outcomes corresponding to the opposite treatment assignment are defined
as counterfactual outcomes or counterfactual in short denoted as yc f . The joint distribution of observed
sample (X ,T,y f ) is denoted by µ f . The individual treatment effect τ is defined as

τ = Y (1)−Y (0) . (1)

We want to conduct a prediction interval for τ , denoted by ĈITE(X), which satisfies the coverage criterion
P(X ,τ)(τ ∈ ĈITE(x))≥ 1−α for a pre-specified level α ∈ (0,1).

3 GANCQR

This section begins by introducing GANITE and conformalized quantile regression (CQR). We then delve
into GANCQR which combines GRANITE and CQR to construct a covariate-dependent prediction interval
for ITE.

3.1 GANITE Model

GANITE is the first algorithm that uses GANs for ITE inference (Yoon et al. 2018). It utilizes a pair of
conditional GANs (Mirza and Osindero 2014): one for the counterfactual imputation (via the counterfactual
block with a counterfactual generator G and a discriminator DG), and another for ITE estimation (via the
ITE block with an ITE generator I and a discriminator DI). GANs take a random vector z as input and
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use deep learning methods to generate new samples in a given domain. Conditional GANs extend GANs
by conditioning both the generator and the discriminator on additional information.

The counterfactual block focuses on generating samples from the distribution of potential outcomes
µY(x) for any given x ∈ X . However, the absence of counterfactuals makes it impossible to learn µY(x)
directly. Therefore, the counterfactual generator G estimates ỹ= (ỹ f , ỹc f ) from the conditional distribution of

(y f ,yc f )
△
= Yc f given X = x,T = t and Y obs = y f . This conditional distribution is denoted by µYc f (x, t,y f ).

The counterfactual generator G(x, t,y f ) is defined as G(x, t,y f ) = g(x, t,y f ,zG), where g is a function
g : X ×{0,1}×Y × [−1,1]→ Y 2 and zG ∼ Uniform(−1,1). One needs to find a suitable g such that
G(x, t,y f ) approximates the target distribution µY(x, t,y f ). Let ȳ = (y f , ỹc f ) be the vector obtained by
replacing ỹη with y f , which means the η th component of ỹ is y f . The corresponding discriminator DG
intends to identify which component of ỹ represents the factual outcome. Let DG(x, ỹ) ∈ [0,1] representing
the probability of correctly identifying the factual outcome. In the counterfactual block, we train DG to
maximize the probability of correctly identifying η and train G to minimize the probability of DG correctly
identifying η by solving the following minimax problem:

min
G

max
DG

E(x,t,y f )∼µ f

(
EzG∼U (−1,1) [t logDG(x, ỹ)+(1− t) log(1−DG(x, ỹ))]

)
.

GANITE adopts minibatches to avoid mode collapse by discriminating between kG minibatches of samples,
rather than between individual samples. To enforce the estimated factual outcome ỹ f identified by DG equals
the factual outcome y f , a supervised loss, denoted by LG

S , is added as a constraint. For a given sample,
LG

S (y f , ỹη) = (y f − ỹη)
2 ∈R, where y f ∈R and ỹη ∈R is the η th component in ỹ that is identified by DG

as the factual outcome. The empirical objective function of the minimax problem in the counterfactual
block is defined by VCF(x, t, ỹ) = t log(DG(x, ỹ))+(1− t) log(1−DG(x, ỹ)) ∈R, where x ∈Rs, t ∈R, and
ỹ ∈ R2. With the above two objective functions and given the number of minibatches kG, we iteratively
optimize G and DG as follows:

min
DG

−
kG

∑
n=1

VCF(x, t, ỹ) (2)

min
G

kG

∑
n=1

[
VCF(x, t, ỹ)+αGLG

S (y f , ỹη)
]
,

where αG ≥ 0 is a pre-determined hyper-parameter. After training the counterfactual generator, the estimated
factual outcome ỹ f is replaced with the original factual outcome to form a complete dataset D̃i = {xi, ti, ȳi}.
Then we pass on the complete dataset D̃ =

{
D̃i
}

to the ITE block.
In the ITE block, the ITE generator I uses the covariates x to estimate the potential outcomes denoted

by ŷ. Here the function h should best approximate the marginal distribution of potential outcomes µY(x),
where h is a function h : X × [−1,1]→ Y 2 and zI ∼ Uniform(−1,1), I(x) is defined as I(x) = h(x,zI)..
Then we can compute the ITE using the estimated ŷ according to (1). The ITE discriminator DI adapts the
conditional GANs discriminator which distinguishes between the synthetic data ŷ and the data y∗ from the
complete data D̃ obtained by the counterfactual block. The minimax problem that formulates this procedure
is given by

min
I

max
DI

Ex∼µX

(
Ey∗∼µY(x) [logDI(x,y∗)]+Ey∗∼I(x) [log(1−DI(x,y∗))]

)
,

where DI(x,y∗) ∈ [0,1] is the probability of y∗ coming from D̃. To obtain a smaller mean square error for
the estimated ITE, a supervised loss LI

S(y
∗, ŷ) = ((y∗1 −y∗0)− (ŷ1 − ŷ0))

2 ∈ R is added for the ITE block,
where y∗1 ∈ R is the potential outcome with t = 1 obtained from the complete data D̃ (y∗0 is the potential
outcome with t = 0 respectively) and ŷ1 ∈ R is the potential outcome with t = 1 generated by I (ŷ0 is the
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potential outcome with t = 0 respectively). The empirical objective function of the minimax problem in the
ITE block is defined by VIT E(x,y∗, ŷ) = log(DI(x,y∗))+ log(1−DI(x, ŷ)) ∈R, where x ∈Rs, y∗ ∈R2, and
ŷ ∈R2. With the above two objective functions, given the number of minibatch kI , I and DI are iteratively
optimized as follows:

min
DI

−
kI

∑
n=1

VIT E(x, ỹ, ŷ) (3)

min
I

kI

∑
n=1

[
VIT E(x, ỹ, ŷ)+βILI

S(ỹ, ŷ)
]
,

where βI ≥ 0 is a pre-determined hyper-parameter. The stochastic gradient descent method is used to solve
the optimization problems (2) and (3).

3.2 Conformalized Quantile Regression (CQR)

Conformal prediction (CP) (Vovk et al. 2005; Shafer and Vovk 2008) is a framework for distribution-free
uncertainty quantification for regression and classification problems. CP takes an arbitrary prediction model
as the input and produces a prediction interval with guaranteed coverage. Given an arbitrary method for
making a prediction ŷ of a label y and a significance level (or target miscoverage level) α ∈ (0,1), CP
produces a prediction set Ĉ containing both ŷ and y with probability at least 1−α , where ŷ denotes the
point prediction, and Ĉ is referred to as the region prediction. The only assumption stipulated by CP
is exchangeability. Given a measurable space Z and variables {zi = (xi,yi)}N

i=1 ∈ ZN , the definition of
exchangeability is given as follows.
Definition 1 If for any permutation π of integers 1,2, ...,N, the variables w1, ...,wN have the same joint
probability distribution as z1, ...,zN where wi = zπ(i), then the variables z1, ...,zN are exchangeable.

We use the term bag, denoted by B = Hz1, ...,zNI ∈ ZN , to represent the collection of elements obtained
from a list z1, ...,zN by removing information about the ordering. Starting from a point prediction method γ ,
we can define a real-valued function A(B,z) : ZN ×Z →R, referred to as the nonconformity measure, which
quantifies how unusual an example z ∈ R looks compared to the examples in the bag B. Given a metric
that measures the distance d(z,z′) between two elements, A is defined by A(B,z) = d(γ(B),z). Given a
nonconformity measure A, the nonconformity score is defined as E =A(B,z). The prediction interval given by
CP is the collection of all z such that {z ∈ Z : pz > α}where pz = |{i = 1,2, . . . ,N +1 : Ei ≥ EN+1}|/(N+1),
and Ei = A(Hz1, ...,zN ,zI\ HziI,zi) for i = 1,2, . . . ,N, EN+1 = A(Hz1, . . . ,zNI,z).

Split conformal prediction splits the original data into two disjoint subsets: a proper training set
{zi = (xi,yi) : i ∈ I1} and a calibration set {zi = (xi,yi) : i ∈ I2}. This division ensures that the nonconfor-
mity scores are constructed symmetrically, thereby guaranteeing the exchangeability of these scores. Split
CQR is a combination of split conformal prediction and quantile regression, which provides finite sample
coverage guarantees. (Romano et al. 2019). To compute the nonconformity score, we split the N given data
into two subsets: one is the training set indexed by I1, which is used to obtain two conditional quantile
estimators q̂αlo , and q̂αhi and the other is the calibration set indexed by I2, which is used to evaluate the
conformity scores E as follows

Ei = max{q̂αlo(Xi)−Yi,Yi − q̂αhi(Xi)} for i ∈ I2 . (4)

Then the prediction interval for a given new covariate XN+1 is given by

C(XN+1) = [q̂αlo(XN+1)−Q1−α(E,I2), q̂αhi(XN+1)+Q1−α(E,I2)] , (5)

where Q1−α(E,I2) is the (1−α)(1+ |I2|−1) empirical quantile of {Ei : i ∈ I2}. The prediction interval
C(XN+1) obtained by CQR satisfies the marginal, distribution-free coverage guarantee.
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Theorem 4 If (Xi,yi), i = 1,2, . . . ,N+1 are exchangeable, then the prediction interval C(XN+1) constructed
by the split CQR algorithm satisfies P{YN+1 ∈C(XN+1)} ≥ 1−α .

The proof of Theorem 4 can be found in Romano et al. (2019). Notice that Theorem 4 holds uniformly
over all conditional distributions PY |X and all algorithms used to fit conditional quantiles, making CQR a
reliable method for counterfactual inference conditioning on covariates.

3.3 GANCQR

We now describe our method GANCQR to construct a prediction interval for ITE τ , as illustrated in Figure
1. Given a dataset

{
(xi, ti,y fi)

}N
i=1, we first estimate the ITE τi conditioning on each xi by GANITE. Unlike

Lei and Candès (2021) who constructed the prediction intervals for potential outcomes Y (0) and Y (1)
separately, GANCQR estimates τ =Y (1)−Y (0) directly. This helps eliminate the influence of substantial
prognostic information, as much of the complexity is mitigated when we directly consider τ . This is
especially true given that the potential outcomes Y (0) and Y (1) are complex functions of covariates X ,
while the treatment effect τ is not. Examples of prognostic information include risk factors that influence
outcomes similarly, regardless of treatment status, as well as relatively limited predictive information (Curth
et al. 2024). Here we choose GANITE due to its ability to deal with the discrete treatment assignment
with the added advantage of being applicable not only to binary treatment but also to multiple treatments,
rendering a flexible extension of our algorithm to estimate multiple treatment effects. The generated ITE
is denoted by τ̂ .

To further conduct prediction interval for ITE τ(X) conditioning on factors X , we apply CQR to the
data {(xi, τ̂i)} obtained by GANITE. We claim that {(xi, τ̂i)} are exchangeable according to de Finetti’s
representation theorem. De Finetti’s representation theorem states that every sequence of conditionally i.i.d.
random variables is exchangeable, which was first proposed by de Finetti and extended by Diaconis and
Freedman for finite sequences (Diaconis and Freedman 1980). With the definition of ITE generator I, we
start from i.i.d. sequence of noise random variable

{
zI

(m)
}

and define for every m τm = h(x,ZI
(m)) where

x is a random variable independent of zI
(m) and h is a measurable function, such as a neural network in

GANs. Hence, the resulting random sequence {ŷm,x} is exchangeable. Therefore, the sequence {(xi, τ̂i)}
is also exchangeable since it is a measurable function of an exchangeable sequence.

The use of CQR provides the coverage guarantee conditioning on covariates. Compared with traditional
split conformal prediction whose nonconformity score is computed based only on Y , CQR computes the
nonconformity score based on the conditional quantiles of Y | X = x. Under Assumptions 2 and 3, the
joint distribution of (X ,Y obs) of the observed treated samples is given by PX |T=1 ×PY (1)|X and the joint
distribution of observed untreated samples is given by PX |T=0 ×PY (0)|X . Hence the joint distribution of
(X ,τ) is PX ×Pτ|X since τ = Y (1)−Y (0).

With the exchangeable samples {(xi, τ̂i)}N
i=1 obtained by applying GANITE, we first split this dataset

into two disjoint subsets: a training set D1 and a calibration set D2. We use the samples in D1 to train
the conditional quantile regression estimators q̂αlo and q̂αhi . Then for each sample in D2, we compute the
nonconformity score according to (4). Given a pre-specified significant level α ∈ (0,1), we can obtain the
prediction interval Ĉ(xN+1) for a new patient’s ITE by (5).

4 NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of GANCQR. We compare our approach with three competing
methods, all of which provide prediction intervals of ITEs proposed in Lei and Candès (2021) on two
distinct datasets with different types of selection bias. The first is a semi-synthetic benchmark dataset, the
Infant Health Development Program (IHDP) dataset, where the potential outcomes are synthesized and
therefore fully known. The second dataset is a synthetic generated according to a modified process in
Section 3.6 in Lei and Candès (2021).
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Figure 1: A block diagram of GANCQR.

4.1 Datasets

The IHDP dataset, introduced by Hill (2011), comprises data collected from the Infant Health and Devel-
opment Program (IHDP), which is designed to predict the effect of receiving specialized childcare on the
cognitive test scores of infants. This dataset is commonly used for evaluating treatment effect estimation
methods (Louizos et al. 2017; Shalit et al. 2017; Yoon et al. 2018). IHDP consists of 747 units, with
608 control units and 139 treatment units, having 6 continuous and 19 binary covariates. The treatment
assignment is “de-randomized” by excluding children with non-white mothers from the treated group. For
each sample a treated and a control outcome are simulated following the approach implemented by Shalit
et al. (2017), adopting the setting of the response surface type B in Hill (2011). This simulation generates
Y (0) according to distribution N (exp((X +W )βB),1) and Y (1) according to N (XβB−ωb

B,1), where W is
an offset matrix of the same dimension as X with every entry equal to 0.5, and βB is a 25−dimensional vector
with every entry randomly sampled from (0,0.1,0.2,0.3,0.4) with probabilities (0.6,0.1,0.1,0.1,0.1). For
the bth simulation, ωb

B was chosen so that CATC equals 4 in the incomplete setting where we estimate
the effect of the treatment on the controls. Then factual outcomes are then recorded as Y (1) for t = 1 and
Y (0) for t = 0.

The synthetic dataset satisfies Assumption 2 by generating the covariates X = [X1, ...,Xd ]∼ U ([0,1]d)
where d is the dimension of the covariate vector X . The potential outcomes with heteroscedastic errors are
generated as Y (t) | X ∼N (µt(X),σ2(X)) for t = 0,1 where σ2(X)) =− log(X1), µ1(X) = f (X1) f (X2) and
µ0(X) = γ f (X1) f (X2), where f (x) = 1/(1+ exp(−12(x−0.5))) and γ = 0.5. The treatment is generated
depending on X to create a selection bias according to a propensity score e(x) = P(T = 1 | X = x) where
x = (x1, · · · ,xs). To force that e(x)∈ [0.25,0.5], the propensity score is set as e(x) = (1+β2,4(x1)/4, where
β2,4 is the cumulative distribution function of the beta distribution with shape parameters (2,4). Then the
treatment T is generated as T | X = x ∼ Bern(e(x)). In this example, we consider a low-dimensional case
with d = 10 and 1000 samples.

We follow previous studies (Louizos et al. 2017; Shalit et al. 2017; Yoon et al. 2018) to evaluate our
model under two different estimation settings. The first scenario is referred to as the in-sample setting,
where we estimate the ITE for all units in a sample with observed factual outcomes for one treatment. This
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scenario mimics real-world situations where a cohort is selected once and remains unchanged. Estimating
ITE in this context is challenging, as we never observe the ITE for any individual unit. The second scenario
is the out-of-sample setting, where we estimate ITE for units without observed outcomes. This corresponds
to the challenge of selecting the best treatment for a new patient. Within-sample error is calculated for
both the training and validation sets, while out-of-sample error is computed for the test set.

4.2 Benchmark Methods

We compare GANCQR with the state-of-art methods based on weighted split-CQR (WCQR) (Lei and
Candès 2021). WCQR takes covariate shift into account and applies weighted conformal prediction since
they compute the prediction intervals for Y (0) and Y (1). Take Y (1) for example, the corresponding
guaranteed coverage should be P(X ,Y )∼PX |T=1×PY |X (τ ∈ ĈITE(x))≥ 1−α where the actual distribution of X
is PX |T=1 = QX instead of PX .

In contrast to our basic idea that first imputes missing counterfactuals to calculate the ITE and then
constructs the prediction interval for ITE, Lei and Candès (2021) first derived prediction intervals Ĉ1(x) (resp.
Ĉ0(x)) for potential outcomes Y (1) (resp. Y (0)) using the samples with t = 1 (resp. t = 0). Assume Ĉ0(x) =[
Ŷ L

0 (x),Ŷ R
0 (x)

]
and Ĉ1(x) =

[
Ŷ L

1 (x),Ŷ R
1 (x)

]
, Lei and Candès (2021) considered three different variants to

compute the prediction interval of ITE:The Naive method obtains the lower bound by Ŷ L
1 (x)− Ŷ R

0 (x) and
the upper bound by Ŷ R

1 (x)−Ŷ L
0 (x). The Inexact Nested method first computes the prediction intervals for

ITE τ denoted by Ĉτ(x, t,y f ) according to Ĉτ(x, t,y f ) = t(y f −Ĉ0(x))+(1− t)(Ĉ1(x)−y f ). Then compute
the desired conditional quantiles of the lower bounds ĈL and upper bounds ĈR of Ĉτ(x, t,y f ). The Exact
Nested method follows the same procedure as the Inexact Nested method except for conducting CQR with
the induced data set (xi,Ci) where Ci =

[
ĈL,ĈR

]
instead of fitting their quantiles.

4.3 Performance Evaluation

There are two main indicators to evaluate the performance of interval prediction methods, adaptivity
and validity (Angelopoulos and Bates 2023). For validity, we examine whether the coverage meets the
coverage requirement. One commonly used metric is the observed prediction interval coverage probability
(PICP): PICP = N−1

test ∑
Ntest
i=1 1(τi ∈ [Li(Xi),Ui(Xi)]), where Ntest is the size of test dataset and τi is the ith

ITE value. Given a significance level α ∈ (0,1) and the number of experiments R, the mean of PICP:
PICP = R−1

∑
R
k=1 PICPk should be approximately 1−α . However, the observed coverage has fluctuations

caused by the finiteness of N, Ntest , and R. A smaller fluctuation is preferred.
For adaptivity, we check the length of the prediction intervals defined as |Ci|=Ui(Xi)−Li(Xi) where

Ci = [Li(Xi),Ui(Xi)] is an index of informativeness, and Li(Xi) and Ui(Xi) are respectively the lower and
upper bounds of the prediction interval at Xi. When PICP is acceptable, the smaller the length the
better its performance (Fontana et al. 2023). The average prediction interval length is then defined as
|C|= N−1

test ∑
Ntest
i=1 |Ci|. In general, a large |C| suggests that the conformal prediction method lacks precision,

indicating possible problems in the score or the underlying model.

4.4 Experiment Results

For a fair comparison of all methods, we use 75% samples for training and 25% samples for testing under
the out-of-sample setting for all methods. For each testing sample, we produce a 1−α = 0.9 prediction
interval for ITE using the Python library PUNCC (Mendil et al. 2023). We use two different methods to
compute the quantile regression: random forest (RF) and gradient boosting (GB). To robustly assess the
performance, we conduct 50 independent trials and report PICP and |C|.

First, we evaluate the performance of GANCQR when tackling the attrition selection bias due to
removing non-random subsets of the treated group. Figure 2 presents PICP and |C| obtained under the out-
of-sample setting and Figure 3 presents those obtained under the in-sample setting. GANCQR exhibits slight
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undercoverage since the median of the PICPs obtained by GANCQR is about 0.9. We then calculate PICP
for GANCQR using RF and GB as the regression methods and obtain PICPout

RF = 0.8956, PICPout
GB = 0.8964,

PICPin
RF = 0.8998, and PICPin

GB = 0.8989.The resulting PICP values are close to 1−α = 0.9, with very small
fluctuations. Therefore, we find that GANCQR’s performance in terms of PICP is acceptable, although some
prediction intervals exhibit unsatisfactory coverage. Notice that although the naive and exact methods have
satisfactory coverage reflected by the high PICPs, their prediction intervals are too wide to be informative
for ITE inference. To evaluate the sharpness of these intervals, we compare the resulting |C| with the
oracle length. Since the potential outcomes are all normally distributed, the ITE τ = Y (1)−Y (0) also
follows a normal distribution with variance στ = σ2

Y (1)+σ2
Y (0)− 2ρσY (1)σY (0). Hence, the oracle length

is 2×1.645στ ≈ 4.237 since σY (1) = σY (0) = 1 and the estimated correlation ρ equals 0.3415. As can be
seen from Figure 2b and 3b, the |C| values corresponding to the naive and exact methods are significantly
higher than the oracle length. In contrast, GANCQR delivers the smallest |C| values which are close to
the oracle length. While the inexact method results in shorter interval lengths, its coverage performance is
significantly compromised as a result. Moreover, employing gradient boosting as the regression method for
quantile regression outperforms the random forest method, as the former yields smaller |C| values while
maintaining comparable coverage performance.

(a) PICP (b) |C|

Figure 2: IHDP: the results obtained under the out-of-sample setting.

We use the synthetic dataset to examine the performance when tackling the self-selection bias. This
bias is induced when the distribution of treatment depends on the features of individuals. For each run,
we generate 1000 samples. Figures 4 and 5 present the performance for the synthetic dataset. GANCQR
delivers prediction intervals with the smallest |C| values, and most of the PICPs obtained by GANCQR are
greater than 0.9 since the median is higher than 0.9. We calculate the PICP and obtain PICPout

RF = 0.8995,
PICPout

GB = 0.89947, PICPin
RF = 0.9029, and PICPin

GB = 0.90293. The resulting PICP is almost equal to
1−α = 0.9. Therefore, the GANCQR’s performance in terms of PICP is acceptable. The exact and naive
methods both meet the coverage requirement, but the prediction interval lengths are unacceptably large. In
this case, the oracle length is 2×1.645στ = 3.29 as given by Lei and Candès (2021). We see that the |C|
values corresponding to the inexact and naive methods are too large as they are almost twice the oracle
length.

In brief, the results from both in-sample and out-of-sample settings across the two datasets highlight
GANCQR’s robustness. Its consistent performance suggests potential applicability in crucial real-world
scenarios, including selecting optimal treatment plans for new patients (out-of-sample) and typical data
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(a) PICP (b) |C|

Figure 3: IHDP: the results obtained under the in-sample setting.

(a) PICP (b) |C|

Figure 4: Synthetic data: the results obtained under the out-of-sample setting.

analysis (in-sample). Notably, GANCQR outperforms state-of-the-art methods, particularly the exact
method, which generates significantly wider prediction intervals in the in-sample setting compared to the
intervals in the out-of-sample setting.

5 CONCLUSIONS

In this paper, we introduced GANCQR for predictive inference of ITE on datasets afflicted by two types
of selection bias: self-selection bias and attrition selection bias. Through numerical demonstrations, we
showcased that GANCQR exhibits favorable performance in terms of both validity and efficiency when
compared to state-of-the-art methods. The slight undercoverage of GANCQR may be due to the small
sample size and estimation errors incurred by the GANITE component. To further enhance performance,
we can improve GANITE to reduce estimation errors and leverage the generative capabilities of GANs to
increase the sample size.
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(a) PICP (b) |C|

Figure 5: Synthetic data: the results obtained under the in-sample setting.
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