Proceedings of the 2024 Winter Simulation Conference
H. Lam, E. Azar, D. Batur, S. Gao, W. Xie, S. R. Hunter, and M. D. Rossetti, eds.

A COMPREHENSIVE FRAMEWORK FOR DATA-DRIVEN AGENT-BASED MODELING

Ruhollah Jamali', and Sanja Lazarova-Molnar?!

"Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, DENMARK
’Institute AIFB, Karlsruhe Institute of Technology, Karlsruhe, GERMANY

ABSTRACT

Integrating data-driven methodologies with agent-based simulation presents an opportunity to automate
modeling and enable Digital Twins for complex systems. This integration allows for utilization of real-
world data to extract models that update with changes in the corresponding real systems and enhance our
abilities to make informed decisions. We were unable to identify a systematic approach for developing
data-driven agent-based models beyond isolated attempts focused on specific aspects. In response, we
reviewed existing literature to develop a framework that systematically approaches data-driven agent-based
modeling. We believe that our framework can assist in systematically evaluating which parts of agent-based
models’ development processes can be data-driven. Furthermore, we provide a comprehensive exploration
of data-driven methods that can be applied to each stage of the model development process. Finally, we
utilize our prior works in this area to demonstrate the application of data-driven methodologies in capturing
patterns and insights for model development.

1 INTRODUCTION

Agent-based modeling (ABM) is a computational modeling approach that conceptualizes systems as compo-
sitions of autonomous, interacting agents (Macal and North 2005; Macal and North 2014). Each agent in an
agent-based model possesses their own set of properties and behavior (Castiglione 2020), ranging from simple
software components to entities with learning capabilities. Besides agents, environment and interaction rules
are components that shape the dynamics of an agent-based model of a system. The environment provides the
context in which agents exist and interact, and it can influence the behaviors of agents and their interactions.
Interaction rules define how agents interact with each other and with the environment based on physical laws,
social norms, or adaptive strategies (Epstein and Axtell 1996). ABM demonstrated a wide range of applica-
tions, especially in modeling individual decision-making in social and organizational behavior (Bonabeau
2002). The recent development of ABM tools, availability of collected data, and advances in computation
facilitated the expansion of ABM applications in a variety of domains and disciplines (Macal and North 2014).

The development of agent-based models can be broadly split into three key processes: model design
(extraction), calibration, and validation. Despite the wide range of applications of ABM, designing an
agent-based model requires a comprehensive understanding of the subject system, which makes the design
stage complex and biased toward the expert’s view of the system. Incorporating data-driven methods can
reduce bias in the model design process and lead to a more comprehensive and objective representation
of the system (Yang and van Dam 2022). The calibration process of agent-based models can often be
demanding due to the typically large number of parameters that need fine-tuning. Data-driven methods can
improve the calibration process by using data to fine-tune the multitude of parameters, thereby enhancing
the model’s accuracy (Quera-Bofarull et al. 2023). Furthermore, due to the stochastic nature of agent-based
models, validating them is a complex task. Data-driven methods can enhance the validation process of
agent-based models by utilizing real-world data to compare and validate the model’s predictions (Drchal
et al. 2016). Considering the whole process of model development, data-driven modeling employs data
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and data streams to inform and refine models continuously, leading to more robust and up-to-date models,
as well as accurate and reliable predictions (Lazarova-Molnar and Li 2019; Kavak et al. 2018).

This paper is motivated by the increasing need for more accurate and efficient agent-based models
across various fields (Steinbacher et al. 2021). However, applying data-driven methods to extract and
refine agent-based models is not straightforward. This gap between the potential of data-driven modeling
and its application in ABM is the primary motivation for this paper. Here, we present a framework
that points to how and where we can integrate data-driven modeling with ABM, identifying the different
elements in an agent-based model that can be impacted and enhanced by data. Our framework provides a
structured approach to incorporating real-world data into agent-based models, enhancing models’ accuracy
and predictive power using previous efforts in data-driven ABM to motivate our findings and framework. In
addition, we present our prior works in data-driven ABM to illustrate the practical application of data-driven
modeling, serving as a proof of concept.

In this paper, we contribute to the ongoing efforts to improve the development of agent-based models
and inspire further research in this direction. We believe that the successful integration of data-driven
modeling and ABM can open up new possibilities for simulating and understanding complex systems.
To accomplish our goal, we commence by reviewing the literature on data-driven agent-based modeling
(DDABM) and simulation. This is followed by a discussion on the challenges and limitations inherent in
the existing frameworks and the identification of essential concepts and requirements for a Framework for
DDABM (Section 2). Subsequently, we explore the essential part of an agent-based model to explain how
we designed the framework for DDABM (Section 3). Then, we present our previous efforts in DDABM
as case studies that showcase the role of data-driven methodologies in the model development process
(Section 4). Finally, we summarize the findings and discuss the potential of our proposed framework in
facilitating the development of more realistic and practical agent-based models (Section 5).

2 RELATED WORK ON DATA-DRIVEN AGENT-BASED MODELING

Data-driven approaches for ABM are becoming increasingly popular in a variety of fields, which underscores
their importance. In the following, we present examples of some of the related works and frameworks that
have been introduced. Steinbacher et al. (2021) discussed the advances in ABM of economic and social
behavior, highlighting the role of data-driven approaches in capturing the complexity and heterogeneity
of economic systems. Similarly, Sajjad et al. (2016b) advocated for a data-driven approach in social
simulation, emphasizing its benefits in capturing the complexity and heterogeneity of social systems. The
integration of big data, agents, and machine learning in ABM has been promoted by Kavak et al. (2018),
arguing that this integration can lead to more robust and accurate models. Jamali et al. (2024) demonstrated
the importance of using data in ABM development through a case study of Schelling’s model.

The application of data-driven approaches in ABM motivated the development of multiple frameworks
for DDABM. Ravaioli et al. (2023), presents a data-driven agent-based model for agricultural land use. This
model integrates machine learning (ML) algorithms to learn agents’ behavioral rules from data, as opposed
to relying on pre-defined theoretical or heuristic rules. CFBM (Combination Framework of Business
Intelligence and Multi-agent based platform) framework manages and integrates empirical data collected
from the target system and the data produced by the simulation model (Truong et al. 2016). Zhou etal. (2024)
proposed a data-driven framework for ABM of vehicular travel. Their framework utilizes publicly available
data to model the behavior of vehicles within an urban environment, resulting in a more accurate and realistic
simulation. Lastly, Patsatzis et al. (2023) proposed an Equation/Variable free machine learning (EVFML)
framework to control the collective dynamics of complex systems modeled via agent-based simulators.

The aforementioned frameworks are designed for specific applications or domains, such as agricultural
land use, business intelligence, vehicular travel, and controlling the collective dynamics of complex systems.
While these frameworks have proven effective in their respective domains, their specificity limits their
applicability to other contexts or domains. The absence of a general framework also means that each
new application requires the development of a new, custom framework, which can be time-consuming and
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resource-intensive. The first step towards improving the state of DDABM is to develop a general framework
that is flexible and adaptable, capable of accommodating different types of data, and applicable across a
wide range of domains. In this paper, we focus on developing a general framework to address the current
challenges and limitations and provide a basis for further advancements in DDABM and digital twins.

3 FRAMEWORK FOR DATA-DRIVEN AGENT-BASED MODELING

To motivate our framework, we reviewed state-of-the-art applications of DDABM in different fields.
Through this review, we observed how data can contribute to different aspects of model extraction (Zhang
et al. 2016; Zhou et al. 2024; Zilske et al. 2011; Rosés et al. 2021; An et al. 2005), model refinement
(Lamperti et al. 2018; Kim et al. 2021; Chen and Desiderio 2022a; Dyer et al. 2023; Clark et al. 2021;
Niida et al. 2019), and model validation (Hua et al. 2022; Thaler and Siebers 2020; Dehkordi et al.
2023). Hence, our resulting framework targets these three key processes in ABM: model extraction, model
refinement, and model validation, each represented by a specific component. Data-driven approaches can
support these processes to further automate ABM. Additionally, we introduce Data Pipeline as the fourth
component, which focuses on data collection. In the following, we elaborate on the specific element of
each of these components and illustrate our framework for DDABM. Figure 1 illustrates our framework for
data-driven agent-based model development. Data Pipeline is concerned with the collection, processing,
and preparation of data before its utilization for the other three key processes in ABM. Model Extraction
employs the processed data from the Data Pipeline to design and implement the model. The extracted model
can help revise data sources and improve data quality requirements, resulting in Data Pipeline improvement
to better support the model extraction process. The implemented model is subjected to Model Refinement,
where the model’s parameters are adjusted to ensure it accurately represents the real-world system as it is
intended to simulate. Finally, Model Validation is the process of assessing how well the extracted model
reflects the real system’s behavior considering predefined simulation goals. Further, we elaborate on each
component of the framework with a focus on the model extraction from data, encircled in green in Figure 1.
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Figure 1: An overview of the framework for developing data-driven agent-based models.
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3.1 Data Pipeline

The Data Pipeline serves as the foundation for collecting, validating, preprocessing, and analyzing relevant
data before utilizing it in the other three components of our framework. The Data Pipeline consists of three
main steps: data collection, data validation, and data analysis, elaborated as follows:

Data Collection: Understanding a system or process begins with data collection, which involves
gathering numerical, categorical, text, or image data depending on the characteristics of the system or
process under study. Data sources are diverse and can include databases, sensors, user inputs, or even
systematic generation. Developing agent-based models from data can be challenging as the data needed
for bottom-up behavior is not traditionally collected and may be less efficient to obtain than data for
top-down techniques (McAllister et al. 2005). Additionally, collected data often lacks elements such as
time scales, behavioral properties, and descriptions properly expressing behavioral actions. Subsequently,
the information gathered often fails to clearly express the feedback relationships between agents and
components of the environment. Therefore, defining and categorizing necessary data types is crucial for
creating relevant models and identifying behavioral patterns. This approach streamlines data collection,
ensures a comprehensive record of the data, saves project resources, and simplifies model creation (Altaweel
et al. 2010). Altaweel et al. (2010) presented a framework to guide the determination of data requirements,
structure data needs, and enable data collection for ABM.

Data Validation and Preprocessing: Collected data often requires validation and preprocessing. The
quality of the derived model relies on the quality and validity of the data, which demonstrates the importance
of data validation (Bokrantz et al. 2018). Besides data validation, suitable data preprocessing can improve the
performance of data-driven models (Wu et al. 2009). Data preprocessing is the transformation of the validated
data into a format or structure that is conducive to analysis and model extraction. This step may include
handling missing values, removing duplicates, normalization, dimension reduction, or feature selection.

Data Analysis: The data analysis is applying methods and techniques to extract meaningful insights
that will inform model extraction, model refinement, or model validation stages. The goal of this step
is to understand the underlying patterns and relationships in the data. Depending on the nature of the
data and the model’s specific requirements, various statistical and machine-learning techniques could be
employed for analysing data. According to Abu-Mostafa et al. (2012), there are two types of models for
learning from data: Statistical learning models and Machine learning models. Machine learning models
"make less restrictive assumptions and deal with more general models than in statistics" (Abu-Mostafa
et al. 2012). Following this definition, Kavak (2019) proposed a categorization of model families for each
type. Statistical learning models include Markov models, probability distributions, time series forecasting
regression models, and probabilistic classifiers. Machine learning models include classifiers, clustering
algorithms, and regressor model families. The choice of data analysis method depends on the specific
element of the agent-based model being extracted from the data. In the following subsection, we highlight
previous efforts in DDABM, focusing on elements of an agent-based model and suggesting data analysis
methods applicable to each element’s design and development.

3.2 Model Extraction

To identify the elements and sub-elements of an agent-based model, we conducted a literature review on
applications of DDABM, summarized in Table 1. Based on our literature review, agent-based models have
three core elements: agents, environment, and interaction rules. Subsequently, we describe relevant
practical approaches to design and extract each of these elements and their sub-elements from data.

3.2.1 Agents Design

"An agent is identifiable, a discrete individual with a set of characteristics and rules governing its behaviors
and decision-making capability" (Macal and North 2005). Kavak (2019) provided a data-driven approach
for modeling agents where the author divided their approach into four main steps: data preparation, attribute
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Table 1: Overview of DDABM approaches, viewed through our framework from Figure 1.
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model creation, behavior model creation, and integration. Building on this definition and our literature
review, we divide agent design into three main parts: type/group, characteristics, and behaviors. Further,
we explain how each of these parts can be designed using data-driven approaches.

Type/group: Classification of agents in types or groups depends on factors such as their roles, functions,
behaviors, or other distinguishing attributes. Typically, model definition and target groups provide a clear
indication of agents’ types or groups. For example, in an agent-based model of a pandemic, agents are
grouped into categories such as healthy, infected, and recovered. However, in some cases, agents’ types
are not obvious. For instance, Wolf et al. (2015) needed to group the inhabitants of Berlin based on their
information for developing a model, where each group indicates the types of transport use. In this case, the
authors applied classification methods on survey data to classify the inhabitants. In addition to classification
methods, clustering is also practical, especially when there is no prior information to classify agents. For
example, Saadat et al. (2018) employed clustering to find agents’ types while developing an agent-based
model for simulating large-scale usage trends of the GitHub collaborative development tool.

Characteristic: Agent characteristics are divided into static and dynamic characteristics. Static charac-
teristics remain constant during the simulation, such as agents’ roles or initial states. Descriptive statistics are
useful to derive static characteristics from data. For example, Hunter et al. (2018) used data to determine age
and gender breakdowns of populations in their infectious disease outbreak model. Dynamic characteristics, on
the other hand, change over time based on the agent’s interactions in the system. Descriptive statistics can also
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help to extract dynamic characteristics of agents from data. For instance, Rai and Robinson (2015) matched
agents’ attributes representing their beliefs to available survey data of population-wide household-level of
Austin in their model. Sajjad et al. (2016a) also used descriptive statistics from Korean census data to calcu-
late agent disposable income characteristics. Time-series analysis or state-transition models are also practical
methods for analyzing dynamic characteristics from data. For example, Monti et al. (2023) employed time
series analysis to improve agent income estimation in their agent-based model of the housing market.

Behavior: Agents’ behaviors encompass their goals, actions, and decision-making processes. An
agent’s goal is what it aims to achieve. Depending on the model’s subject, different types of data-driven
methods can help to derive agents’ goals from the data. Braubach et al. (2005) provided a generic
representation of goal properties for agents representing humans. In some cases, identifying goals from
available data is relatively straightforward. For example, Luo et al. (2018) developed an agent-based model
of crowd movement using visual data, simply assigning agents’ goals to their respective locations in the
final frame of the data. When there is a common goal among agents, clustering algorithms can group agents
based on their historical behaviors, and these clusters can then be interpreted as their goals. If the goals
of agents are already known and labeled in the historical data, supervised learning algorithms can predict
the goals of new agents. When the goals can be quantified, regression analysis can be used to predict
these quantities based on other characteristics of the agents. However, in some cases, finding agents’ goals
from data might be challenging. If the goals of the agents involve a sequence of actions (like in a game
or a plan), hidden Markov model (HMM), sequence analysis, or process mining techniques can be used to
learn these sequences from historical data. For instance, Rai and Hu (2013) in their model of smart office
feed sensor data in real-time to the HMM, and the output is the recognized behavior patterns that can be
interpreted as the agent’s goals in the model. Recently Kasumba et al. (2024) introduced a data-driven
approach for goal recognition design that can account for agents with general behavioral models.

Agents’ actions are activities they perform to achieve their goals. In an agent-based model, these
actions represent the behaviors or steps agents take within the environment. Typically, actions can be
derived by observing available data. For example, in a traffic agent-based model, an agent’s (car) action
could be moving forward, turning, or stopping. It is important to identify the possible actions and the
conditions under which these actions occur, which can be derived by analyzing historical data. For instance,
Hassan et al. (2010) employed data from the Spanish census sample of the 1980 survey to estimate action
probabilities and distributions, such as age-related probabilities of having children, regression equations to
determine whether an agent searches for a partner or not, and the fertility rate.

Agent’s decision-making process is the logic or strategy it uses to decide what action to take at each
step of the simulation. Decision-making is typically based on the agent’s current state, the state of the
environment, and the agent’s goals. For example, in a traffic agent-based model, a car might decide which
way to turn at an intersection based on its destination, the current traffic conditions, and the traffic rules.
DeAngelis and Diaz (2019) provided an overview of different methods for integrating decisions into ABM.
To derive decision-making processes, we need to capture how agents make decisions in the real world. Data-
driven methodologies for replicating decision-making process of agents can be divided into interpretable
methods and black-box methods. Interpretable methods, like decision trees, facilitate the extraction and
understanding of agents’ decision-making rules from data. In contrast, Black-box methods like support
vector machines, can capture and replicate more complex decision-making rules but are less suitable for
understanding the underlying rules. In our previous work (Jamali et al. 2024), we employed both categories
to derive decision-making rules by experimenting with Schelling’s model variations to demonstrate the
advantages and disadvantages of each method. In some models, when authors can formulate a mathematical
equation to represent the decision-making rule of agents, they derive the component of the equation from
data. For instance, Rai and Robinson (2015) modeled agents’ decisions on using solar solutions with an
equation consisting of three main components: financial (covers payback period and net monthly electricity
bill savings), environmental (overall environmental concern), and agent’s social belief derived from survey
data.
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3.2.2 Environment Design

The environment in agent-based models is the context or space in which the agents operate. We can define
the environment through its components, characteristics, and structure.

Component: The environment in an agent-based model can have physical or non-physical components,
which can be identified using data-driven methods. Spatial analysis uncovers the physical layout and detects
patterns in environmental features. For example, Rosés et al. (2021) based the spatial layer of their model’s
environment from location-based social networks data, taxi trip data, weather data, land use information,
population density, and points of interest. To identify non-physical components, we can employ time-series
analysis, machine learning, or network analysis. Network analysis reveals the relationships between different
components, like connections in a transportation network. In the urban crime model by Rosés et al. (2021),
the temporal layer of the environment (which is a proxy for the presence of victims on a given day with
specific weather characteristics) was derived from data on the day of the week and various weather conditions.

Characteristics: Environment characteristics are divided into static and dynamic, similar to agent charac-
teristics. Therefore, both agents and their environments can be modeled using similar data-driven techniques
but applied to different types of data. For example, An et al. (2005) derived environment characteristics in
their model, such as spatially varying forest volume and growth rate, from data of the environmental system.

Structure: The structure of the environment includes both spatial and time step structures, which
can be derived from data. The spatial structure refers to the physical layout of the environment. Spatial
analysis can be used to capture this layout. For example, Rosés et al. (2021) used data both to identify the
components of the environment and determine their layout in the model.

3.2.3 Interaction Rules

In addition to agents’ behaviors, which concerns agents’ decision-making rules for selecting actions toward
reaching their goals, agents can affect each other and the environment. The rules that define these interactions
are known in ABM as interaction rules. Interaction rules are derived from theoretical principles, empirical
data, or a combination of both. Here, we categorize interaction rules into three main sub-elements:
how agents interact with each other (agent-agent interactions), with their environment (agent-environment
interactions), and the structure or topology of these interactions.

Agent-agent: Agent-agent interaction rules govern how agents interact with each other in the model.
Wolf et al. (2015) derived agent-agent interaction rules based on their survey respondents. Based on their
descriptive analysis, they defined a sociodemographic coordinate system for agents. In their model, the
likelihood that two agents communicate with each other is a function of sociodemographic coordinates and
the distance of agents. In the model presented by Rai and Robinson (2015), the attitude evolution process
is the result of agent-agent interactions where they used survey respondent data to define the basis of the
interaction rules between neighbors that can affect their decision on adopting solar solutions. Statistical
analysis can also be utilized to identify correlations and dependencies between different variables in the data
that can help us capture how agents affect each other in the data. For instance, a strong correlation between
the behaviors of two agents might suggest a rule where the behavior of one agent influences that of the other.

Agent-environment: Agent-environment interaction rules describe how agents interact with the en-
vironment. Sensitivity analysis can assist in understanding which environmental factors have the most
significant impact on agents’ behaviors, thereby helping to derive agent-environment interaction rules. The
study by Zhan et al. (2024) is an example of capturing agent-agent and agent-environment rules from
data by estimating the coefficients associated with the interaction rules using statistical data fitting. Spatial
analysis techniques can analyze data in order to find the spatial distribution of agents and their interactions
with the environment. For example, data indicating a higher density of agents in certain areas of the
environment suggests an interaction rule where agents are attracted to these areas. Techniques such as
autocorrelation, cross-correlation, and spectral analysis can identify patterns and derive interaction rules.
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For instance, if there is a strong temporal correlation between an environmental variable and a variable
describing agent’s behavior, it may indicate that the agent’s behavior is influenced by this variable.
Topology: Topology of interactions describes the structure of connections among agents in agent-based
models. An et al. (2005) employed available data to find the spatial fuelwood model interaction topology.
In their model, the interaction indicates how fuelwood collectors from the household interact with the
environment in the model. In another study, Rai and Robinson (2015) used actual agent locations and
distances from other agents to generate the networks in their agent-based model of technology adoption.

3.3 Model Refinement

Model Refinement refers to the processes of parameter calibration, simulation output validation, and
scenario testing/sensitivity analysis. Parameter calibration aligns the model with empirical data to ensure its
representativeness and applicability in real-world systems. Traditional methods for calibration often involve
a manual process where parameters are adjusted iteratively based on the difference between the simulation
output and the observed data. This process can be time-consuming and computationally intensive, especially
for complex models with a large number of parameters. However, recent advancements in computational
techniques have led to the development of more sophisticated and efficient calibration methods. E.g.,
Kim et al. (2021) developed a framework for the automatic calibration of dynamic and heterogeneous
parameters in agent-based models. In another work, Lamperti et al. (2018) proposed an approach that
utilizes machine learning surrogates for calibrating agent-based models. The process of simulation output
validation is minimizing the difference between the model’s output and the observed real-world data (Chen
and Desiderio 2022a; Chen and Desiderio 2022b). Methods like regression-based calibration (Chen and
Desiderio 2022b), meta-modeling nonparametric regression (Chen and Desiderio 2022a), and gradient-
assisted calibration (Dyer et al. 2023) calibrate an agent-based model by employing simulation output
validation technique. Scenario testing and sensitivity analysis are the last approaches used to calibrate agent-
based models. Scenario Testing involves creating hypothetical situations or ‘scenarios’ to evaluate how well
the agent-based model performs (Clark et al. 2021). These scenarios can be extreme or mild variations of
input parameters to understand their effects on model outcomes. For example, Zhang et al. (2016) calibrated
their model based on a random sample of available data where each data can be considered as a scenario.
Finally, sensitivity analysis is a systematic method to determine how different values of an independent
variable impact a particular dependent variable under a given set of assumptions (Niida et al. 2019).

3.4 Model Validation

Model validation and model refinement components are entangled as sometimes validating concludes by
calibrating the model, which implies adjusting parameters within the current model structure. However,
sometimes model validation requires partially changing the model, which means modifying the model’s
structure or adding a new component to it. Model validation component in the development of data-driven
agent-based models ensures the reliability and accuracy of simulation outcomes. In our framework, we
consider four main strategies for model validation as presented by Huaetal. (2022): manual/visual inspection,
property testing, model-based testing, and machine learning approaches. Manual/visual inspection strategies
refer to visual inspection of the agent-based model to verify its accuracy. Despite being a necessary strategy,
a manual inspection can be tedious and prone to errors, and there will be a risk of overlooking certain
aspects. However, manual inspection strategies can be practical, as Kumaresan et al. (2023) demonstrated.
In their agent-based model for COVID-19 case forecasting, they employed manual and automated parameter
fitting approaches to fit and validate their model with real-world data. In another study, Bemthuis and
Lazarova-Molnar (2023) presented and approach for face validity assessment of agent-based models by
extracting information from event logs generated by both real-life processes and simulation models. The
second strategy is property-based testing, which can be used for testing various important properties of an
agent-based model (Thaler and Siebers 2020). By developing software to run this strategy automatically,
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property-based testing can be faster than manual inspection. However, they can still be time-consuming if a
large number of properties are being tested for an agent-based model. Thaler and Siebers (2019) categorize
property-based testing into verification of models with real-world data and exploratory nature inspired by
real-world phenomena while exploring both ways. Model-based testing is interacting with the agent-based
model either online or offline to test certain properties and confirm their correctness. In the context of
agent-based models, model-based testing can be seen as a method that automatically generates test cases
from a model representing the system behavior and executes these cases to validate system requirements and
consistency (Clark et al. 2021). For instance, Monti et al. (2023) employed time series analysis to calculate
the R-squared coefficient that represents goodness of fit between learned time series and ground truth ones;
to validate their model output. Machine learning algorithms can also learn patterns from large datasets and
make predictions, which can be used to validate the outputs of agent-based models (Bonabeau 2002).

4 CASE STUDIES

In this section, we illustrate our proposed framework using two studies that considered different aspects of
the ABM components. In both of our examples, the goal was to enable automation and continuous model
updates as new data became available.

Our first study aimed to explore data-driven methods for reconstructing variations of Schelling’s models
(Jamali et al. 2024). The primary focus was on extracting the parameters and agent’s decision-making logic
from synthetic data generated by an original Schelling agent-based model. Our experiments confirmed that a
decision tree could accurately determine agents’ decision-making parameters in two variations of Schelling’s
model, even when high levels of irregular behavior were introduced among the agents. Irregular behavior
refers to agents exhibiting random behaviors for a certain percentage of time. We specifically choose a
decision tree as it is an interpretable model. Afterward, we introduced another variation of Schelling’s
model where the agent has a complicated decision-making policy. This time, we employed decision trees
and support vector machines to compare their performance in capturing the decision-making logic of
agents from data generated by the model. We choose these two ML methods as they are representative
of interpretable and black-box models, respectively. We observed that their performance highly depends
on how we are giving them the input features, which indicates the importance of the data pipeline in
our framework. We observed that in the case that we used the most informative features, support vector
machine (SVM) was able to perform better than the decision tree in capturing agents’ decision-making
logic, which demonstrates the ability of black-box models to capture complex patterns.

In two separate studies, we utilized data-driven methodologies to analyze decision-making patterns
in the Danish pharmaceutical market, specifically focusing on parallel imported medicines (Jamali and
Lazarova-Molnar 2023; Jamali and Lazarova-Molnar 2024). The first study concentrated on the top ten
parallel-imported medicines in terms of sales quantity. We divided each company’s pricing time series into
subsequences and applied a time-series subsequence clustering method to identify competitors’ pricing
patterns. Focusing on two popular medicines in the market allowed us to observe market pricing patterns in a
detailed case study. In the second study, we expanded our scope to include pricing information for over 400
parallel-imported medicines. We applied three distinct data analysis procedures to the historical pricing data.
The first procedure involved using descriptive statistics to identify general characteristics of the competitors’
pricing behavior. The second procedure was time series clustering, similar to the first study, but with an
automated process for creating the subsequences. The third and final procedure was the visual representation
of the competitors’ pricing behavior. Employing these procedures, we were able to observe pricing patterns
related to subgroups of competitors in the market. Moreover, the results demonstrated that competitors’
pricing decisions are not only based on their current state in the model, and there are some latent factors that
are affecting their decisions (e.g., the expiry date of medicines could be one of the factors that affect pricing).
This complexity suggests that the decision-making process of the competitors is intricate, and developing
an agent-based model that accurately represents their behavior may require additional information.
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S SUMMARY AND OUTLOOK

In this paper, we reviewed existing literature on data-driven agent-based modeling to develop a framework
that systematically approaches data-driven agent-based modeling. This framework consists of four main
components, summarized as follows. The Data Pipeline component processes and prepares data for model
extraction, refinement, and validation. The core of our proposed framework is the Model Extraction compo-
nent, where the agent-based model is extracted using processed data. The extracted models provide feedback
to revise data sources and corresponding data quality, improving the Data Pipeline for improved extraction
processes. After the data-driven extraction, models undergo Refinement, which involves fine-tuning models
to accurately reflect corresponding real-world systems (reflected in the Model Refinement component).
The fourth component of our framework is Model Validation, which evaluates to what extent the extracted
model reflects the real system’s behavior with respect to predefined simulation goals. We, furthermore,
performed a comprehensive exploration of data-driven methods that have been or can be applied in each
component of the model development framework.

Our proposed framework provides a foundation for future advancements in data-driven agent-based
modeling. Its comprehensive design makes it adaptable to a wide range of scenarios and applications. The
framework introduces a systematic approach to data-driven agent-based model development, functioning
also as a checklist that can guide the process. This would ensure incorporation of the essential data-driven
components, covering all aspects of the model. Given the wide range of applications of agent-based
modeling, the framework can be further customized and developed.

In this work, we primarily focused on the contribution of data to the model extraction phase. However,
in future, we aim to extend our focus to include data’s role in model refinement and validation phases.
Such an extension would make this work more comprehensive and holistic.
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