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ABSTRACT

Multistage stochastic optimization problems appear commonly in various disciplines in operations man-
agement and system control. While computational methods have been studied, they are mostly restricted to
two-stage problems or otherwise require strong assumptions. In this paper, we propose a simple data-driven
solution technique and uncertainty quantification method for these problems, based on natural multisample
generalizations of the well-known sample average approximation and the so-called single replication pro-
cedure. Under the assumptions of stagewise independence and the use of parameterized policies, we justify
statistical consistency and a coverage guarantee on bounding the optimality gap using our approaches. Our
developments entail the establishment of several new statistical properties of the so-called multisample
U-process that closely connect to multistage stochastic optimization.

1 INTRODUCTION

A multistage stochastic optimization problem comprises a sequential decision process of an agent over a
given time horizon, where each time or stage entails a new randomness that potentially depends on the past.
Correspondingly, the agent makes a decision at each stage depending on past history, the collection of which
is often known as a policy. The goal is to devise a policy that minimizes the overall expected penalty (or
equivalently maximizes the expected reward). This problem appears commonly in various disciplines such
as operations management (Talluri and Van Ryzin 2006; Scarf 1960) and stochastic control (Koussoulas
and Leondes 1986; Moore, Zhou, and Lim 1999).

In this paper, we are interested in data-driven solution techniques and uncertainty quantification for
multistage stochastic optimization. While computational methods have been studied for such problems in
the past (Swamy and Shmoys 2005; Shapiro 2003), they appear mostly restricted to two-stage problems
or otherwise require strong assumptions. Part of the challenges seem to be the complexity involved in
extending single- or two-stage techniques to more general sequential settings (Shapiro and Nemirovski
2005; Shapiro 2008). Because of this, the asymptotics of SAA (Shapiro, Dentcheva, and Ruszczynski 2021
Chapter 5), and inference methods such as the batching (Mak, Morton, and Wood 1999), the so-called
single replication procedure (SRP) (Bayraksan and Morton 2006), the bootstrap (Eichhorn and Römisch
2007; Chen and Woodruff 2023) and bagging (Lam and Qian 2018a; Chen and Woodruff 2023; Lam
and Qian 2018b) are all studied in the contexts of single- or two-stage problems. For general multi-stage
problems, the complexity of SAA scenarios increases exponentially with the time horizon, thus rendering
these techniques more challenging to use and provide guarantees.

Motivated by the above, our goal in this paper is to make a step towards the solution and inference of
multistage stochastic optimization problems. In particular, we consider two assumptions. First is stagewise
independence, meaning that the randomness at each stage is independent of the past. This assumption has
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been used in Shapiro, Dentcheva, and Ruszczynski (2021) Section 5.8 which provides some consistency
results for multistage SAA, but under several additional strong assumptions. Second is parameterized
policies, meaning that instead of searching for a globally optimal policy we restrict our policy class to a
parametric form, thereby reducing the potentially infinite-dimensional problem into optimization over the
Euclidean space. These two assumptions are motivated from the gain on tractability in handling multistage
optimization. While they result in a loss on generality, there are important problems that fall under these
assumptions, as we will describe further in the sequel.

More precisely, under these assumptions, we propose a natural multisample generalization of the
well-known sample average approximation (SAA) method to integrate data into multistage stochastic
optimization. We call our approach multisample average approximation (MSAA). Correspondingly, we also
devise a method to construct statistical confidence bounds for the optimality gap of a given solution, based
on a natural generalization of SRP. This procedure, proposed in Bayraksan and Morton (2006) for single or at
most two-stage problems, entails a formula that resembles the normality confidence bound, but applies even
to problems that exhibit non-normal limits (such as problems with multiple optimal solutions) and requires
an insightful analysis that deviates from the standard route. We will present a multisample adaptation of
this procedure, which we call multisample single replication procedure (MSRP), and demonstrate how a
similar analysis as SRP can apply to multistage problems.

We present statistical consistency of our MSAA and the asymptotic coverage guarantee of MSRP.
Technically, with the stagewise independence and parameterized policy assumptions, the multistage stochastic
optimization problem reduces into the optimization of a so-called multisample U-process, which is a statistical
notion that we leverage heavily and makes our analysis tractable. U-statistic can be viewed as a generalization
of the sample mean but, instead of having one observation at each summand in the averaging, it uses a
symmetric function of several different observations in the summand, and multisample U-statistic further
generalizes to several independent data sources. The theory of multisample U-statistics dates back to
seminal works such as Lehmann (1951) and Dwass (1956), with convergence properties examined in Sen
(1974) and Gut (1976), and further exploration in de la Pena (1992) and Arcones and Giné (1993). We
harness some of these tools and, along our analyses, we develop several new theoretical results concerning
the statistical properties of multsample U-statistics.

The rest of the paper is organized as follows. In Section 2, we introduce multistage stochastic
optimization, describe our assumptions on stagewise independence and parameterized policy, and provide
a few examples. In Section 3, we review several asymptotic results on multisample U-statistics that we will
utilize to analyze our solution and uncertainty quantification methods. In Section 4, we present statistical
consistency results on MSAA. In Section 5, we devise our MSRP to bound optimality gaps and derive its
asymptotic coverage validity.

2 MULTISTAGE STOCHASTIC OPTIMIZATION

Consider a multistage stochastic programs described as follows. Denote a sequence of independent random
variables ξ (1),ξ (2), . . . ,ξ (c) where each of them is realized sequentially at each time over a given time
horizon c. At each time k = 1,2, . . . ,c, given ξ (1),ξ (2), . . . ,ξ (k−1) (with no observation at k = 1), the agent
makes a decision ak ∈ Dk, where Dk is some decision space, and observe the realized random variable
ξ (k). Let h(a1,a2, . . . ,ac−1;ξ (1),ξ (2), . . . ,ξ (c)) be a penalty function. Now denote the sample space of the
first k variables, i.e. (ξ (1),ξ (2), . . . ,ξ (k)), to be Sk. A decision rule at time k is defined as a deterministic
map Ak : Sk−1 −→ Dk, i.e. ak = Ak(ξ

(1),ξ (2), . . . ,ξ (k−1)). We denote the space of all feasible decision
rules at time k to be Ak., Correspondingly, a policy is defined as the combination of c−1 decision rules
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across k = 1,2, . . . ,c−1, i.e. (A1, . . . ,Ac−1), and the policy space is ∏

c−1
k=1 Ak. With these, we consider the

multistage stochastic program

minimize E[h(A1,A2(ξ
(1)), . . . ,Ac−1(ξ

(1), . . . ,ξ (c−1));ξ
(1),ξ (2), . . . ,ξ (c))]

subject to (A1, . . . ,Ac−1) ∈
c−1

∏
k=1

Ak.
(1)

We consider a parametrized policy class. That is, Ak ∈ Ak takes the form Ak(ξ
(1),ξ (2), . . . ,ξ (k)) =

g(θk;ξ (1),ξ (2), . . . ,ξ (k)) where θk is a lower-dimensional parameter than Ak itself. Typically, θk for
k = 1,2, . . . ,c are in the Euclidean space. With this, the stochastic program (1) is reduced from a
potentially infinite-dimensional space to a finite dimension. Now, replacing the decision variables ak with
the deterministic functions g(θk;ξ (1),ξ (2), . . . ,ξ (k)), we can simplify (1) as

minimize
θ∈Θ

µ(θ) := E[h(θ ;ξ
(1),ξ (2), . . . ,ξ (c))] (2)

where Θ ⊂Rd denotes a subset in the Euclidean space of dimension d.
Furthermore, note that we have assumed above that ξ (1),ξ (2), . . . ,ξ (c) are independent, or in other

words stagewise independence. Suppose each ξ (k) is drawn from distribution Fk, for k = 1,2, . . . ,c. Now,
consider the settings where there are Nk i.i.d. observations for each distribution Fk, denoted as {ξ

(k)
ik }Nk

ik=1.
Based on these samples, we can formulate an empirical counterpart of (2), by plugging in the empirical
distribution for each time k, i.e.,

minimize
θ∈Θ

µN(θ) :=

(
c

∏
k=1

1
Nk

)
N1

∑
i1=1

N2

∑
i2=1

. . .
Nc

∑
ic=1

h(θ ;ξ
(1)
i1 ,ξ

(2)
i2 , . . . ,ξ

(c)
ic ) (3)

where the subscript N := (N1,N2, . . . ,Nk) represents the vector of sample sizes. We refer to this formulation
as Multisample Average Approximation (MSAA). When N is sufficiently large for each component, solving
the MSAA problem is expected to give rise to a nearly optimal solution for the original problem (2).

Our interest in the MSAA is primarily based on two considerations. Firstly, the true distribution Fk may
not be known, but we may have real-world data (such as sales figures or customer records in the examples
below). Secondly, even with perfect information of all distributions Fk, solving the stochastic program 2
presents challenges when dealing with continuous distributions, and the finite-sample approximation through
MSAA may allow for efficient computation. Note that our MSAA relies critically on the assumptions of
stagewise independence and parameterized policy. While they clearly lead to a loss in generality, there are
still important problems that fall under these conditions. We introduce several examples.
Example 1 (Airline Management) We consider the c-class airline capacity control model in Talluri and
Van Ryzin (2006) Chapter 2.2.2. In this model, an agent aims to maximize revenue from selling a total
of C airline tickets. For k = 1,2, . . . ,c, ξ (k) customers from the k-th class arrive in order and express
willingness to purchase tickets at price pk. It is a conventional assumption that p1 < p2 < .. . < pc, as
higher-value customers, being more time-sensitive, tend to book flights closer to the departure date. The
decision variable for the agent is θ := (θ1,θ2, . . . ,θc−1) ∈ [0,C]c−1, where θk represents the number of
tickets reserved at time k for later-arriving, higher-valued customers. Consequently, the total revenue is a
deterministic function of both θ and the realized arrivals {ξ (k)}c

k=1. Thus the problem can be formulated
as a stochastic program of the form (2).
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In the above setup, other than airline ticket sales which must be integers, all variables including capacities

and decisions can be treated as continuous. Talluri and Van Ryzin (2006) present two methods for solving
the capacity control problem: dynamic programming with discretization of θ and Monte Carlo integration.
The latter method is essentially the SAA approach. The Monte Carlo approach is often preferred due to its
computational efficiency. The time complexity for dynamic programming is O

(
cC2/ε2

)
, where ε denotes

the discretization precision. However, an analysis on the optimality guarantee for the Monte Carlo method
is lacking in the literature, an issue we address in this paper.
Example 2 (Inventory Management with (s,S)-policy) A single item inventory management problem
involves managing the amount Ik of a resource using a replenishment policy, where the main tradeoff lies
between storage and backorder costs. Let Ik represent the inventory level at beginning of time k. The agent
first decides on the replenishment amount Rk (which could be zero) at a costC(Rk). Subsequently, the demand
Dk is reviewed. Here the stagewise independence of Dk is assumed. If Ik +Rk −Dk > 0, a holding cost hk
per unit is incurred; if Ik +Rk −Dk < 0, a backorder cost bk per unit is incurred. The total management cost
over the horizon k = 1,2, . . . ,c is given by ∑

c
k=1(Ik +Rk −Dk)

+hk +(Dk − Ik −Rk)
+bk +C(Rk). Although

the replenishment policy can be any arbitrary function of the tuple (k, Ik), in many cases, such as when the
replenishment cost is linear, i.e., C(Rk) =C0 +CkRk if Rk > 0 and no cost if Rk = 0, the optimal policy is
an (sk,Sk)-policy as shown by Scarf (1960). Under this policy, if Ik < sk, the inventory is replenished up
to Sk > sk. This insight simplifies the optimization problem from an infinite-dimensional space of decision
functions to a Euclidean space, represented by θ := (sk,Sk)

c
k=1 in R2c. Consequently, this reduction allows

the problem to be formulated as in (2), making it suitable for the application of MSAA.
Example 3 (Discrete Linear-Quadratic Stochastic Control) As studied by Koussoulas and Leondes (1986)
and Moore, Zhou, and Lim (1999), Linear-Quadratic Control (LQC) aims to minimize the quadratic norm
of a vector xk ∈Rs subject to linear dynamics with random noise over a time horizon c. A distinctive aspect
of LQC is that the optimal control variable uk ∈ Rd employs a linear feedback control policy from the
state variable xk, specifically, uk = Mkxk where Mk ∈Rd×s. With boundedness assumptions, the parameters
Mkk = 1c are confined within a closed set. Consequently, the problem reduces to the stochastic program
in the form of (2) where MSAA can be applied.

3 BACKGROUND ON MULTISAMPLE U-STATISTICS

For a specified θ , the objective function µN(θ) in (3) constitutes a so-called multisample U-statistic, also
referred to as a generalized U-statistic in some literature. A U-statistic is a generalization of sample mean
where instead of having one observation in each summand, it consists of a symmetric function of multiple
observations in each summand. A multisample U-statistic further generalizes U-statistic to allow for several
independent sources of data.

With the above, MSAA can be viewed as a minimization of a multisample U-process, with data
size N, where the process refers to its dependence on θ . Given that the multisample U-statistic is less
well-known than the U-statistic, we will introduce related definitions in Section 3.1, and discuss some
classical asymptotic properties in Section 3.2 that are useful for our subsequent developments.

3.1 Multisample U-statistics

In order to introduce a multisample U-statistic, we first define the so-called kernel function. Let m =
(m1,m2, . . . ,mc) denote a c-dimensional vector of positive integers and |m| = ∑

c
k=1 mk. Also let x(k) =

(x(k)1 , . . . ,x(k)mk ) ∈ Rmk .
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Definition 1 (Kernel Function) hm(x(1);x(2); . . . ;x(c)) : R|m| −→ R is called a kernel function with index m
if it is symmetric to the interchange of variables within each segment k.

For example, when m= (2,2), hm(x
(1)
1 ,x(2)2 ;y(1)1 ,y(2)2 ) = hm(x

(1)
2 ,x(2)1 ;y(1)1 ,y(2)2 ) = hm(x

(1)
1 ,x(2)2 ;y(1)2 ,y(2)1 ).

However, it is prohibited to exchange arguments across segments of different x(k), i.e. hm(x
(1)
1 ,x(2)2 ;y(1)1 ,y(2)2 ) ̸=

hm(y
(1)
1 ,x(2)2 ;x(1)1 ,y(2)2 ) in general.

For k = 1,2, . . . ,c, let Fk be c distinct unknown distributions on R. Now assume that we have Nk

observations from Fk that are denoted as {ξ
(k)
ik }Nk

ik=1. Recall that N = (N1,N2, . . . ,Nc) denotes the sample
size vector. We have the following definition:
Definition 2 (Multisample U- and V-Statistics) Given m and {Fk}c

k=1 as well as the i.i.d. random variables
{ξ

(k)
ik }Nk

ik=1 drawn from the distribution Fk, the multisample V-statistic and the multisample U-statistic with
kernel function hm and sample size N = (N1,N2, . . . ,Nc) are defined as

VN[hm] :=

(
c

∏
k=1

1
Nmk

k

) N1

∑
i(1)1 =1

. . .
N1

∑
i(1)m1=1

 . . .

 Nc

∑
i(c)1 =1

. . .
Nc

∑
i(c)mc=1

hm(ξ
(1)

i(1)1

, . . . ,ξ
(1)

i(1)m1

; . . . ;ξ
(c)

i(c)1

, . . . ,ξ
(c)

i(c)mc
), and

UN[hm] :=

(
c

∏
k=1

(Nk −mk)!
Nk!

) N1

∑
i(1)1 =1

. . .
N1

∑
i(1)m1=1

 . . .

 Nc

∑
i(c)1 =1

. . .
Nc

∑
i(c)mc=1

hm(ξ
(1)

i(1)1

, . . . ,ξ
(1)

i(1)m1

; . . . ;ξ
(c)

i(c)1

, . . . ,ξ
(c)

i(c)mc
)×1dist.,

where the indicator1dist. :=1{For each k = 1, . . . ,c, i(k)s are distinct for all s = 1, . . . ,mk} excludes the sum-
mation over diagonal terms.

Note that U- and V-statistics are similar except that U does not contain repeated observations in each
summand. To analyze their asymptotics, we first notice that it is natural to understand the multisample U-
statistic as an estimator for the expectation E[hm(ξ

(1);ξ
(2); . . . ;ξ

(k))], where ξ (k) = (ξ
(k)
1 ,ξ

(k)
2 , . . . ,ξ

(k)
mk ) are

mk i.i.d. from Fk and all {ξ (k)}c
k=1 are independent. To analyze convergence properly, note that the U-statistic

UN[hm] and the V-statistic VN[hm] are defined over a c-dimensional array indexed by N = (N1,N2, . . . ,Nc).
To proceed, we have to define the convergence of an array.
Definition 3 (Stochastic Convergence of Arrays) Let SN be an c-dimensional array of random variables
indexed by integer vector N = (N1,N2, . . . ,Nc) ≥ 0 and S be a given variable. The partial order N ≥ N′

is defined in the elementwise sense. We define three modes of convergence as follows: (i) SN
P−→ S if for

any ε,δ > 0, there exists an N′ such that supN≥N′ P(|SN −S|> ε)< δ ; (ii) SN
Lp

−→ S if for any ε > 0, there
exists an N′ such that supN≥N′ E|SN −S|p < ε; (iii) SN

a.s.−−→ S if for a.s. ω ∈ Ω and ε > 0, there exists an
N′ such that supN≥N′ |SN(ω)−S(ω)|< ε .

In fact, either SN
Lp

−→ S or SN
a.s.−−→ S implies SN

P−→ S, the same as when c = 1. The a.s.-convergence
of a stochastic array is more complicated than that of a single sequence. It is usually challenging, if not
possible, to achieve a.s.-convergence with mere integrability. In the literature, an alternative sufficient
condition for a c-dimensional array is E|X |(log+ |X |)c−1 < ∞ (Smythe 1973; Gut 1976; Sen 1977). When
c = 2, the specified condition corresponds to the Orlicz space L log+ L. Therefore, we shall use the term
Orlicz condition to refer to such conditions (for all c ≥ 2). Recall the variable hm(ξ

(1);ξ
(2); . . . ;ξ

(k)),
where ξ (k) = (ξ

(k)
1 ,ξ

(k)
2 , . . . ,ξ

(k)
mk ) are i.i.d. from Fk and all {ξ (k)}c

k=1 are independent. The subsequent
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kernel types are relevant when discussing the convergence of UN[hm] and VN[hm] to the mean value
E[hm(ξ

(1);ξ
(2); . . . ;ξ

(k))].
Definition 4 (Kernel Types) Let Fc := F1 ×F2 × . . .×Fc and hm be given. Then

(i) hm ∈ Lp(Fc) if E|hm(ξ
(1);ξ

(2); . . . ;ξ
(c))|p < ∞;

(ii) hm ∈ Op(Fc) if E[|hm(ξ
(1); . . . ;ξ

(c))|p(log+ |hm(ξ
(1); . . . ;ξ

(c))|p)c−1]< ∞.
(iii) hm ∈ L p(Fc) or hm ∈ O p(Fc) if the respective condition for Lp(Fc) or Op(Fc) holds for all

(ξ (1); . . . ;ξ
(c)) when the indices i1, i2, . . . , imk in ξ

(k) = (ξ
(k)
i1 , . . . ,ξ

(k)
im1

) are not necessarily distinct.

To better clarify (iii), take for instance h(2,2)(x1,x2;y1,y2) ∈ L 1(F1 ×F2). Then (iii) implies

E|h(X1,X2;Y1,Y2)|+E|h(X1,X1;Y1,Y2)|+E|h(X1,X2;Y1,Y1)|+E|h(X1,X1;Y1,Y1)|< ∞,

where Xi (i = 1,2) and Yi ( j = 1,2) are i.i.d. drawn from F1 and F2 separately. We can see that hm ∈L p(Fc)
and hm ∈ O p(Fc) implies hm ∈ Lp(Fc) and hm ∈ Op(Fc) respectively, as both require the expected value
remains finite regardless of repetitions among the indices.

3.2 Asymptotics of Multisample U-Statistics

We are now ready to introduce the Law of Large Numbers (LLN) for the multisample U-statistics and
V-statistics. For brevity, we denote µ = E|hm(ξ

(1);ξ
(2); . . . ;ξ

(k))|.
Theorem 1 (Multisample Law of Large Numbers) With Definitions 2, 3 and 4, we have the following:

(a) hm ∈ L1(Fc) implies UN[hm]
L1

−→ µ .
(b) hm ∈ O1(Fc) implies UN[hm]

a.s.−−→ µ .

(c) hm ∈ L 1(Fc) implies VN[hm]
L1

−→ µ .
(d) hm ∈ O1(Fc) implies VN[hm]

a.s.−−→ µ .

Sen (1977) first proved (b) and (d). The multi-index backward martingale theory developed in Gut
(1976) almost implies all of (a) (b) (c) and (d) as special cases. However, there are two missing arguments:
an explicit backward martingale construction (Christofides and Serfling 1990) and a multisample Hewitt
Savage 0-1 law, both of which can be established with some efforts.

Unlike the LLNs, we must impose an index sequence to derive the multisample Central Limit Theorem
(CLT), which reduces the asymptotic analysis from an array to a sequence. An index sequence is denoted by
{Nℓ}∞

ℓ=0, where each Nℓ is a c-dimensional integer vector. This sequence satisfies the following conditions:
(i) N0 = (0,0, . . . ,0); (ii) Nℓ+1 ≥ Nℓ according to the elementwise partial order; (iii) ∑

c
k=1 Nk ≡ ℓ. Then,

a stochastic array SN on a given index sequence {Nℓ}∞
ℓ=0 is a random sequence indexed by the norm

|N| := ∑
c
k=1 Nk. To establish a multisample CLT, we make following assumption:

Assumption 1 The sample size vector N increases according to a given index sequence on which the ratio
Nk/|N| converges to γk ∈ (0,1). That is, lim|N|→∞ Nk/|N|= γk > 0 and ∑

c
k=1 γk = 1.

To see the necessity of such an assumption, consider S(N1,N2) = ∑
N1
i=1 Xi +∑

N2
j=1Yj where {Xi}∞

i=1 and
{Yj}∞

j=1 are i.i.d. zero-mean Gaussian variables with distinct variances σ2
X and σ2

Y . For a zigzag index
sequence such that the ratio N1/N2 diverges and oscillates between two values, the variance of S(N1,N2)
will also oscillate. Consequently, even when SN is properly scaled, no weak convergence can be concluded.
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Theorem 2 (Multisample CLT) Suppose Assumption 1 holds and assume the kernel hm ∈ L2(Fc). Then

lim
|N|→∞

√
|N|× (UN[hm]−µ)

d−→ N

(
0,

c

∑
k=1

m2
k

γk
Var

(
E[hm(ξ

(1);ξ
(2); . . . ;ξ

(c))|ξ (k)
1 ]
))

, (4)

where N stands for the Gaussian distribution. The same convergence holds for VN[hm] if hm ∈ L 2(Fc).
The CLT for a multisample U-statistic has been proved in Lehmann (1951) and Dwass (1956).

4 SOLUTION CONSISTENCY AND VARIANCE ESTIMATION OF MSAA

We now present our main results on the statistical properties of MSAA. We first generalize the LLN for
multisample U-statistics in Section 3.2 to a uniform LLN for multisample U-processes (Section 4.1). Using
this, we study the consistency (Section 4.2) and associated variance estimation (Section 4.3) of MSAA.

4.1 Multisample Wald’s Uniform Law of Large Numbers

We consider a parameterized family of function kernels {hm(θ ;x(1),x(2), . . . ,x(c))}θ∈Θ and recall the mean
function µ(θ) := E[hm(θ ;ξ (1),ξ (2), . . . ,ξ (c))]. The parameterized UN[hm(θ)] and VN[hm(θ)] define the
U-process and V-process respectively. Analogous to the classical Wald’s Uniform Law of Large Numbers
(ULLN), we make the following assumptions:
Assumption 2 We have the following:

(i) There exists a metric ρ such that (Θ;ρ) is a compact space.
(ii) For any fixed (x(1),x(2), . . . ,x(c)), hm(θ ;x(1),x(2), . . . ,x(c)) is a continuous function on (Θ;ρ).

(iii) There exists a dominating kernel function Hm such that for all (x(1),x(2), . . . ,x(c)) ∈ R|m|

sup
θ∈Θ

|h(θ ;x(1),x(2), . . . ,x(c))| ≤ Hm(x(1),x(2), . . . ,x(c)).

With Assumption 2, a multisample ULLN holds for Hm under different additional assumptions. This
is presented in the following result:
Theorem 3 (Multisample Wald’s ULLNs) Recall Definition 4. Under Assumption 2,

(a) Hm ∈ L1(Fc) implies supθ∈Θ |UN[hm(θ)]−µ(θ)| P−→ 0.
(b) Hm ∈ O1(Fc) implies supθ∈Θ |UN[hm(θ)]−µ(θ)| a.s.−−→ 0.

(c) Hm ∈ L 1(Fc) implies supθ∈Θ |VN[hm(θ)]−µ(θ)| P−→ 0.
(d) Hm ∈ O1(Fc) implies supθ∈Θ |VN[hm(θ)]−µ(θ)| a.s.−−→ 0.

We outline the main idea of proving Theorem 3. Given the ρ-continuity and the dominating function
Hm, we can prove the uniform convergence up to an error interval (−ε,ε) on an open ball Bε centered
at any arbitrary point θ ′ ∈ Θ, provided the radius of the open ball Bε is sufficiently small. That is,
supθ∈Bε

|UN[hm(θ)]−µ(θ)| ≤ ε eventually, where the multisample LLNs proved in Theorem 1 are involved.
The type of convergence (in probability or almost surely) and whether it extends to the V-process depends
on the assumptions made on Hm. Moreover, for any ε > 0, a finite number of such open balls can cover
Θ, implied by the compactness assumption. Consequently, the convergence on small open balls extends to
the entire metric space (Θ,ρ). This proof is similar to that in Wald (1949) and Chapter 2.6, Lemma A1
of Rubinstein and Shapiro (1993), but adapted to the multisample LLNs in a tedious fashion.
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4.2 Solution Consistency of MSAA

We now consider the objective function µ(θ) in the stochastic program (2) and the MSAA objective function
µN(θ) in (3). The latter, µN(θ), is a multisample U-process (or V-process, which is identical in this case)
characterized by m = (1,1, . . . ,1), with µ(θ) representing its mean function. As a consequence, Theorem
3 implies the consistency of the MSAA objective value estimator µ∗

N. This is presented in Corollary 4.
For the special case where m = (1,1, . . . ,1), we will omit the subscript m in subsequent discussions.
Corollary 4 (MSAA Consistency) Assume the function h(θ ; ·) in (2) satisfies Assumption 2 with a

dominating function H ∈ L1(Fc). Then |µ∗
N −µ∗| P−→ 0. Besides, H ∈ O1(Fc) implies |µ∗

N −µ∗| a.s.−−→ 0 too.
We briefly discuss the potential strengthening of our consistency results in Corollary 4. Throughout

this paper, we make the two assumptions on stagewise independence and parametrized policy. The first
assumption, stagewise independence, appears challenging to relax for a similar result, as the empirical
estimate µN(θ) relies on the independence assumption represented by Fc = F1×F2× . . .×Fc. However, for
the second assumption, instead of the conventional Euclidean policy parametrization, Θ can be a space of
decision rules. For instance, let Θk be a family of continuous functions mapping the realized information
at time k, denoted as (ξ (1),ξ (2), . . . ,ξ (k)) ∈ Rdk , to a decision space Dk ⊂ Rd′

k (in control theory, this is
called a closed-loop control). If each Dk is compact, all ξ (k) are bounded, and Θk is equicontinuous, then
the composite policy space Θ := ∏

c
k=1 Θk is compact with respect to the supremum norm. Furthermore, if

the expected cost µ(θ) remains continuous to the control policy θk ∈ Θk, the multisample Wald’s ULLNs
can be applied to derive MSAA consistency. This can expand the scope of applicability of our approach.

4.3 Variance Estimation

In addition to solution consistency, we are interested in quantifying the uncertainty or error of the solution.
To do so, we adapt the Single Replication Procedure (SRP) (Bayraksan and Morton 2006) to multistage.
Achieving this requires estimating the asymptotic variance, displayed in (4), uniformly across all θ ∈ Θ.
When m = (1,1, . . . ,1), we suppress the subscript m and consider

S(1)N [h(θ)] :=
1

N1

N1

∑
i1=1

((
c

∏
k=2

1
Nk

)
N2

∑
i2=1

. . .
Nc

∑
ic=1

h(θ ;ξ
(1)
i1 ;ξ

(2)
i2 ; . . . ;ξ

(c)
ic )−µN(θ)

)2

(5)

as an estimator of the variance of conditional expectation s1[h(θ)] :=Var(E[h(θ ;ξ (1);ξ (2); . . . ;ξ (c))|ξ (1)]).
The next corollary states that this estimator S(1)N [h(θ)] is uniformly consistent over Θ:
Corollary 5 (Consistency of Variance Estimator) Suppose the objective function h(θ ; ·) in (2) satisfies

Assumption 2 with a dominating function H ∈ L2(Fc). Then supθ∈Θ |S(1)N [h(θ)]− s1[h(θ)]|
P−→ 0. Besides,

if H ∈ O2(Fc), the a.s.-convergence holds too.

Proof. Define g(θ ; ·) := h(θ ; ·)−µ(θ). Then

S(1)N [h(θ)] =
1

N1

N1

∑
i1=1

((
c

∏
k=2

1
Nk

)
N2

∑
i2=1

. . .
Nc

∑
ic=1

h(θ ;ξ
(1)
i1 ; . . . ;ξ

(c)
ic )−µ(θ)− (µN(θ)−µ(θ))

)2

=
1

N1

N1

∑
i1=1

((
c

∏
k=2

1
Nk

)
N2

∑
i2=1

. . .
Nc

∑
ic=1

g(θ ;ξ
(1)
i1 ; . . . ;ξ

(c)
ic )

)2

− (µN(θ)−µ(θ))2
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=

(
1

N1

c

∏
k=2

1
N2

k

)
N1

∑
i1=1

N2

∑
i2=1

. . .
Nc

∑
ic=1

N2

∑
j2=1

. . .
Nc

∑
jc=1

g(θ ;ξ
(1)
i1 ;ξ

(2)
i2 ; . . . ;ξ

(c)
ic )g(θ ;ξ

(1)
i1 ;ξ

(2)
j2 ; . . . ;ξ

(c)
jc )− (µN(θ)−µ(θ))2

The first term can be seen as a V-process of the following kernel function with m = (1,2,2, . . . ,2):

fm(θ ;x(1);x(2)1 ,x(2)2 ;x(3)1 ,x(3)2 ; . . . ;x(c)1 ,x(c)2 ) := g(θ ;x(1);x(2)1 ; . . . ;x(c)1 )g(θ ;x(1);x(2)2 ; . . . ;x(c)2 )

The Cauchy–Schwarz inequality implies

E|g(θ ;ξ
(1)
i1 ;ξ

(2)
i2 ; . . . ;ξ

(c)
ic )g(θ ;ξ

(1)
i1 ;ξ

(2)
j2 ; . . . ;ξ

(c)
jc )| ≤ E|g(θ ;ξ

(1)
i1 ;ξ

(2)
i2 ; . . . ;ξ

(c)
ic )|2 ≤ 4E|H(ξ

(1)
i1 ; . . . ;ξ

(c)
ic )|2 < ∞

The same inequality holds with arbitrary variable repetition, i.e., ik = jk for some k ∈ {2,3, . . . ,c}. Denote
ν(θ) := E[g(θ ;ξ

(1)
i1 ;ξ

(2)
i2 ; . . . ;ξ

(c)
ic )g(θ ;ξ

(1)
i1 ;ξ

(2)
j2 ; . . . ;ξ

(c)
jc )]. Then

sup
θ∈Θ

∣∣∣∣∣
(

1
N1

c

∏
k=2

1
N2

k

)
N1

∑
i1=1

N2

∑
i2=1

. . .
Nc

∑
ic=1

N2

∑
j2=1

. . .
Nc

∑
jc=1

fm(θ ;ξ
(1)
i1 ;ξ

(2)
i2 ,ξ

(2)
j2 ; . . . ;ξ

(c)
ic ,ξ

(c)
jc )−ν(θ)

∣∣∣∣∣ P−→ 0, (6)

despite that fm may not be a symmetric function. In fact, Theorem 3 holds without the symmetric kernel
assumption. According to the tower rule,

ν(θ) =E[E[g(θ ;ξ
(1)
i1 ;ξ

(2)
i2 ; . . . ;ξ

(c)
ic )g(θ ;ξ

(1)
i1 ;ξ

(2)
j2 ; . . . ;ξ

(c)
jc )|ξ (1)

i1 ]]

=E[
(
E[g(θ ;ξ

(1)
i1 ;ξ

(2)
i2 ; . . . ;ξ

(c)
ic )|ξ (1)

i1 ]
)2

] = Var(E[h(θ ;ξ
(1);ξ

(2); . . . ;ξ
(c))|ξ (1)]) = s1[h(θ)].

Consequently,

sup
θ∈Θ

|S(1)N [h(θ)]− s1[h(θ)]| ≤ sup
θ∈Θ

|µN(θ)−µ(θ)|2

+ sup
θ∈Θ

∣∣∣∣∣
(

1
N1

c

∏
k=2

1
N2

k

)
N1

∑
i1=1

N2

∑
i2=1

. . .
Nc

∑
ic=1

N2

∑
j2=1

. . .
Nc

∑
jc=1

fm(θ ;ξ
(1)
i1 ;ξ

(2)
i2 ,ξ

(2)
j2 ; . . . ;ξ

(c)
ic ,ξ

(c)
jc )− s1[h(θ)]

∣∣∣∣∣,
where the first term converges to 0 almost surely and the second term converges to 0 in probability. Hence
supθ∈Θ |S(1)N [hm(θ)]− s1(θ)|

P−→ 0. The proof for a.s.-convergence is similar, where the stronger assumption
Hm ∈ O2(Fc) implies a.s.-convergence in (6).

5 MULTISAMPLE SINGLE REPLICATION PROCEDURE

We now consider uncertainty quantification, more concretely constructing an upper confidence bound for
the optimality gap, for a given solution θ̂ of the stochastic program (2). More precisely, we define the
optimality gap of solution θ̂ as G(θ̂) := µ(θ̂)−µ∗. Let µ∗

N be the optimal value from the MSAA problem
(3) with random samples {ξ

(k)
ik }Nk

ik=1 for k = 1, . . . ,c. Then

E[µ∗
N] = E

[
min
θ∈Θ

(
c

∏
k=1

1
Nk

)
N1

∑
i1=1

N2

∑
i2=1

. . .
Nc

∑
ic=1

h(θ ;ξ
(1)
i1 ,ξ

(2)
i2 , . . . ,ξ

(c)
ic )

]
≤ min

θ∈Θ

µ(θ) = µ
∗,
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which indicates that µ∗

N is a lower bound of µ∗ in expectation. By the definition of optimality, we have
E[µ∗

N] ≤ µ∗ ≤ E[µN(θ̂)] = µ(θ̂) so that µ(θ̂)−E[µ∗
N] ≥ G(θ̂) is an upper bound for the optimality gap.

Intuitively, when N−→∞ elementwise, both µ∗
N and µN(θ̂)would serve as good estimators for their respective

mean, implied by their consistency. Hence, we estimate the optimality gap as GN(θ̂) := µN(θ̂)−µ∗
N, i.e.

GN(θ̂) =

(
c

∏
k=1

1
Nk

)
N1

∑
i1=1

. . .
Nc

∑
ic=1

h(θ̂ ;ξ
(1)
i1 , . . . ,ξ

(c)
ic )−

(
c

∏
k=1

1
Nk

)
N1

∑
i1=1

. . .
Nc

∑
ic=1

h(θ ∗
N;ξ

(1)
i1 , . . . ,ξ

(c)
ic ). (7)

Now consider the function f (θ ;x(1),x(2), . . . ,x(c)) := h(θ̂ ;x(1),x(2), . . . ,x(c))− h(θ ;x(1),x(2), . . . ,x(c)) and
define its mean process to be µ

f
N(θ) := ∏

c
k=1

1
Nk

∑
N2
i2=1 . . .∑

Nc
ic=1 f (θ ;ξ

(1)
i1 ;ξ

(2)
i2 ; . . . ;ξ

(c)
ic ). Then the sample

variance process of the ℓ-th conditional expectation is defined as

S(ℓ)N [ f (θ)] :=
1
Nℓ

Nℓ

∑
iℓ=1

(
c

∏
k ̸=ℓ

(
1

Nk

Nk

∑
ik=1

)
◦ f (θ ;ξ

(1)
i1 ;ξ

(2)
i2 ; . . . ;ξ

(c)
ic )−µ

f
N(θ)

)2

. (8)

For a fixed θ , equation (8) serves as a natural estimator for the conditional variance. Specifically, by setting
c = 2, suppressing θ and representing (ξ

(1)
i1 ,ξ

(2)
i2 ) as (Xi,Yj), it simplifies to

S(1)N [ f ] :=
1

N1

N1

∑
i=1

(
N2

∑
j=1

f (Xi,Yj)−µ
f

N
N2

)2

and S(2)N [ f ] :=
1

N2

N2

∑
j=1

(
N1

∑
i=1

f (Xi,Yj)−µ
f

N
N1

)2

,

which are intuitive choices for estimating Var(E[ f (X1,Y1)|X1]) and Var(E[ f (X1,Y1)|Y1]). Now we impose
Assumption 1. Recall the ratio γk = lim|N|−→∞ Nk/|N| and define the variance process as SN[ f (θ)] =

∑
c
ℓ=1

|N|
Nk

S(ℓ)N [ f (θ)]. Also, recall that sk[ f (θ)] = Var(E[ f (θ ;ξ (1);ξ (2); . . . ;ξ (c))|ξ (k)]) and define s[ f (θ)] =

∑
c
ℓ=1

1
γℓ

sℓ[ f (θ)]. Then according to Corollary 5, if supθ∈Θ | f (θ ;x(1), . . . ,x(c))| ∈ O2(Fc), we have the

a.s.-covergence that supθ∈Θ |SN[ f (θ)]− s[ f (θ)]| a.s.−−→ 0. The analysis is formally summarized as follows:
Lemma 6 Let Θ∗ be the optimal solution set of the stochastic program (2), and θ ∗

min,θ
∗
max ∈ Θ such that

s[ f (θ ∗
min)] ≤ s[ f (θ ∗)] ≤ s[ f (θ ∗

max)] for all θ ∗ ∈ Θ. Under Assumptions 1 and 2 and that the dominating
function H ∈ O2(Fc), we assert (a) µ∗

N
a.s.−−→ µ∗; (b) all limit points of θ ∗

N lie in Θ∗; (c) with probability 1
that

s[ f (θ ∗
min)]≤ liminf

|N|−→∞

SN[ f (θ ∗
N)]≤ limsup

|N|−→∞

SN[ f (θ ∗
N)]≤ s[ f (θ ∗

max)].

In Lemma 6, both (a) and (b) are trivially implied by the uniform convergence established in Corollary 5.
Due to the compactness of Θ, the sequence {θ ∗

N}∞

|N|=1 can be decomposed into at most countable convergent
subsequences. For each subsequence, s[ f (θ ∗

min)] ≤ lim|N|−→∞ SN[ f (θ ∗
N)] ≤ s[ f (θ ∗

max)] with probability 1.
Hence (c) follows.

Based on Lemma 6, we propose the Multisample Single Replication Procedure (MSRP) that generalizes
SRP in a natural fashion. This is presented in Algorithm 1, which exhibits asymptotically valid coverage
as described in the theorem below. The notation Φ

−1
1−α

stands for the (1−α)-quantile of a standard normal
distribution. Its proof is similar to that used for SRP in Bayraksan and Morton (2006). Intuitively, a
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uniform convergence estimator for the asymptotic variance is needed for this procedure, as it utilizes the
same dataset to solve the MSAA for θ ∗

N and to estimate the asymptotic variance at θ ∗
N as specified by

the CLT in Theorem 2. Relying on uniformity conveniently circumvent potential issues with correlation.
These intuitions follow the elegant arguments of Bayraksan and Morton (2006).

Algorithm 1 Multisample Single Replication Procedure

1: procedure INPUT(confidence level α ∈ (0,1); candidate policy θ̂ ∈ Θ)
2: Samples {ξ

(k)
ik }Nk

ik=1 with sizes N = (N1,N2, . . . ,Nc)
3: Minimize µN(θ) over Θ to obtain solution θ ∗

N.
4: Calculate GN(θ̂) as defined in (7) and S(ℓ)N [ f (θ ∗

N)] as defined in (8).

5: return upper confidence bound GN(θ̂)+
√

∑
c
ℓ=1

1
Nℓ

S(ℓ)N [ f (θ ∗
N)]×Φ

−1
1−α

6: end procedure

Theorem 7 (Asymptotically Valid Coverage) Suppose Assumptions 1 and 2 hold and that the dominating
function H2 ∈ O(Fc). Given α ∈ (0, 1

2) and letting Φ
−1
1−α

be the (1−α)-quantile of the standard normal
distribution,

liminf
|N|−→∞

P

(
G(θ̂)≤ GN(θ̂)+

√
c

∑
ℓ=1

1
Nℓ

S(ℓ)N [ f (θ ∗
N)]×Φ

−1
1−α

)
≥ 1−α.

ACKNOWLEDGMENTS

We gratefully acknowledge support from the InnoHK initiative, the Government of the HKSAR, Laboratory
for AI-Powered Financial Technologies, and the Columbia SEAS Innovation Hub grant.

REFERENCES

Arcones, M. A. and E. Giné. 1993. “Limit theorems for U-processes”. The Annals of Probability:1494–1542.
Bayraksan, G. and D. P. Morton. 2006. “Assessing solution quality in stochastic programs”. Mathematical

Programming 108:495–514.
Chen, X. and D. L. Woodruff. 2023. “Software for data-based stochastic programming using bootstrap

estimation”. INFORMS Journal on Computing 35(6):1218–1224.
Christofides, T. C. and R. J. Serfling. 1990. “Maximal inequalities and convergence results for generalized

U-statistics”. Journal of statistical planning and inference 24(3):271–286.
de la Pena, V. H. 1992. “Decoupling and Khintchine’s inequalities for U-statistics”. The Annals of Proba-

bility:1877–1892.
Dwass, M. 1956. “The large-sample power of rank order tests in the two-sample problem”. The Annals of

Mathematical Statistics:352–374.
Eichhorn, A. and W. Römisch. 2007. “Stochastic integer programming: Limit theorems and confidence

intervals”. Mathematics of Operations Research 32(1):118–135.
Gut, A. 1976. “Convergence of reversed martingales with multidimensional indices”. Duke Math Jour-

nal 43(2).
Koussoulas, N. T. and C. T. Leondes. 1986. “The multiple linear quadratic Gaussian problem”. International

Journal of Control 43(2):337–349.

3310



Yan, and Lam
Lam, H. and H. Qian. 2018a. “Assessing solution quality in stochastic optimization via bootstrap aggregating”.

In 2018 Winter Simulation Conference (WSC), 2061–2071. IEEE.
Lam, H. and H. Qian. 2018b. “Bounding optimality gap in stochastic optimization via bagging: Statistical

efficiency and stability”. arXiv preprint arXiv:1810.02905.
Lehmann, E. L. 1951. “Consistency and unbiasedness of certain nonparametric tests”. The annals of

mathematical statistics:165–179.
Mak, W.-K., D. P. Morton, and R. K. Wood. 1999. “Monte Carlo bounding techniques for determining

solution quality in stochastic programs”. Operations research letters 24(1-2):47–56.
Moore, J. B., X. Y. Zhou, and A. E. Lim. 1999. “Discrete time LQG controls with control dependent

noise”. Systems & Control Letters 36(3):199–206.
Rubinstein, R. Y. and A. Shapiro. 1993. Discrete event systems: sensitivity analysis and stochastic opti-

mization by the score function method, Volume 13. Wiley.
Scarf 1960. “The Optimality of (s, S) Policies in the Dynamic Inventory Problem”. Mathematical Methods

in the Social Sciences.
Sen, P. K. 1974. “Weak convergence of generalized U-statistics”. The Annals of Probability:90–102.
Sen, P. K. 1977. “Almost sure convergence of generalized U-statistics”. The Annals of Probability:287–290.
Shapiro, A. 2003. “Inference of statistical bounds for multistage stochastic programming problems”.

Mathematical Methods of Operations Research 58(1):57–68.
Shapiro, A. 2008. “Stochastic programming approach to optimization under uncertainty”. Mathematical

Programming 112:183–220.
Shapiro, A., D. Dentcheva, and A. Ruszczynski. 2021. Lectures on stochastic programming: modeling and

theory. SIAM.
Shapiro, A. and A. Nemirovski. 2005. “On complexity of stochastic programming problems”. Continuous

optimization: Current trends and modern applications:111–146.
Smythe, R. T. 1973. “Strong laws of large numbers for r-dimensional arrays of random variables”. The

Annals of Probability:164–170.
Swamy, C. and D. B. Shmoys. 2005. “Sampling-based approximation algorithms for multi-stage stochastic

optimization”. In 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05),
357–366. IEEE.

Talluri, K. T. and G. J. Van Ryzin. 2006. The theory and practice of revenue management, Volume 68.
Springer Science & Business Media.

Wald, A. 1949. “Note on the consistency of the maximum likelihood estimate”. The Annals of Mathematical
Statistics 20(4):595–601.

AUTHOR BIOGRAPHIES

YUNHAO YAN is a Ph.D. student in the Department of Industrial Engineering and Operations Research
at Columbia University. His email address is yy2882@columbia.edu.

HENRY LAM is an Associate Professor in the Department of Industrial Engineering and Operations
Research at Columbia University. His email address is henry.lam@columbia.edu.

3311

mailto://yy2882@columbia.edu
mailto://henry.lam@columbia.edu

	INTRODUCTION
	MULTISTAGE STOCHASTIC OPTIMIZATION
	Background on Multisample U-Statistics
	Multisample U-statistics
	Asymptotics of Multisample U-Statistics

	Solution Consistency and Variance Estimation of MSAA
	Multisample Wald's Uniform Law of Large Numbers
	Solution Consistency of MSAA
	Variance Estimation

	Multisample Single Replication Procedure

