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ABSTRACT

Motivated by the pressing challenges in the digital twin development for biomanufacturing processes,
we introduce an adjoint sensitivity analysis (SA) approach to expedite the learning of mechanistic model
parameters. In this paper, we consider enzymatic stochastic reaction networks representing a multi-
scale bioprocess mechanistic model that allows us to integrate disparate data from diverse production
processes and leverage the information from existing macro-kinetic and genome-scale models. To support
forward prediction and backward reasoning, we develop a convergent adjoint SA algorithm studying
how the perturbations of model parameters and inputs (e.g., initial state) propagate through enzymatic
reaction networks and impact on output trajectory predictions. This SA can provide a sample efficient
and interpretable way to assess the sensitivities between inputs and outputs accounting for their causal
dependencies. Our empirical study underscores the resilience of these sensitivities and illuminates a deeper
comprehension of the regulatory mechanisms behind bioprocess through sensitivities.

1 INTRODUCTION

With prior knowledge of the reaction network structure and regulatory mechanisms, the trajectory output of
bioprocess hinges on three key inputs: (1) initial states; (2) actions; and (3) parameters of the mechanistic
model. Suppose the effect of actions, such as feeding strategies, on state change is immediate and known.
Therefore, our objective is to develop an interpretable and sample-efficient sensitivity analysis (SA) approach
for the multi-scale bioprocess mechanistic model that focuses on investigating the sensitivities between
inputs (i.e., initial states and model parameters) and outputs.

A multi-scale bioprocess mechanistic model can facilitate the development of digital twins and Bio-
Foundries for biomanufacturing processes. Within this paradigm, the model’s foundation is constructed
upon fundamental building blocks, i.e., molecular reaction networks. There exist various challenges to
conduct SA on the mechanistic model of enzymatic stochastic reaction networks. One significant feature
is its double-stochasticity, which means at any time molecular reaction rates are contingent upon random
states, such as species concentrations and environmental variables. Upon formulating the multi-scale
bioprocess mechanistic model in the form of stochastic differential equations (SDEs), the drift and diffu-
sion terms could be built based on Michaelis–Menten kinetics, which is the most frequently used kinetic
model of enzymatic reactions found in existing literature (Kyriakopoulos et al. 2018). It leverages our
existing understanding of the reaction rate structure and encapsulates the double stochasticity inherent in
stochastic reaction networks, i.e., both the drift and diffusion terms are contingent upon the current states.
Consequently, deriving analytical solutions for such SDEs, characterizing stochastic molecular reaction
network dynamics and variations, could be difficult. Moreover, the interactions between input factors and
intermediate states further introduce high complexity in SA.

Existing sensitivity analysis approaches could be divided into two categories: local and global sensitivity
analysis. Global sensitivity analysis focuses on the impact of significant variations in model inputs. For
example, the Sobol method (Sobol 2001) is a global sensitivity analysis approach based on variance
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decomposition, which decomposes the variance of the model output into the contributions of different
model inputs and parameters. In contrast, the objective of local sensitivity analysis is to quantify the
effects of minor perturbations in model inputs and parameters on model predictions. There are a variety
of local sensitivity analysis approaches including finite direct differential method (Kramer et al. 1984),
Nominal Range Sensitivity Method (Cullen and Frey 2002), and automatic differentiation (Kedem 1980).
Unfortunately, most of these existing approaches are not applicable to our study since they scale poorly,
either in terms of computational time or memory usage, as the number of parameters and states within
the model increases. Given that the multi-scale bioprocess model typically represents a complex system
with many inputs and parameters, these limitations pose a significant barrier to the learning process of
underlying mechanisms.

In this paper, we formulate the multi-scale bioprocess mechanistic model in SDEs form, accounting
for underlying causal interdependencies of an enzymatic stochastic reaction network, and then develop an
adjoint SA approach studying the sensitivities between inputs and outputs. It can correctly and efficiently
quantify the contribution and criticality of each input and model parameter impacting on the prediction
errors of multivariate output trajectories, such as productivity and product critical quality attributes (CQAs).
To support forward prediction and backward reasoning, this adjoint sensitivity analysis over the operator
of SDEs, characterizing bioprocess mechanisms, exhibits robust scalability even when the complexity of
the mechanistic model increases. In addition, since it leverages the structural information of the regulatory
reaction network, the adjoint SA can provide sample efficient and interpretable guidance to search inputs
and model parameters, accounting for their interactions, to speed up the learning process.

This paper addresses two key challenges in bioprocess modeling through the development of the
adjoint SA approach. Firstly, it addresses the issue that the dimensionality of model parameters can be
so high that searching for the optimal parameter estimation becomes challenging. The local SA approach
assesses the impact of model parameters on prediction accuracy and expedites process mechanism learning.
This facilitates digital twin development and more efficient experimental design, which is crucial in the
costly, highly regulated biomanufacturing industry. Secondly, it handles the intricate interdependencies in
bioprocesses. By leveraging structural information within enzymatic molecular reaction networks, the paper
mitigates complexity and streamlines the calculation of input-output sensitivities, alleviating computational
bottlenecks encountered in previous local SA studies.

The structure of the paper is organized as follows. In Section 2, we initiate by delineating the multi-scale
bioprocess mechanistic model and summarizing its key characteristics. Subsequently, in Section 3, we
proceed to construct a metamodel to the multi-scale bioprocess, leveraging the insights from the preceding
section. Section 4 is dedicated to local sensitivity analysis algorithm development, which will help us
investigate the barriers to the reduction of model prediction errors and provide a guidance to speed up the
search for optimal inputs. Building upon this part, Section 4.2 introduces an adjoint SA algorithm on SDEs
designed to enhance computational efficiency. Improvements brought by the algorithm will be validated in
Section 5 through the empirical study of its finite-sample performance. Finally, in Section 6, we synthesize
the findings and insights gathered throughout this study, leading to the paper’s conclusion.

2 PROBLEM DESCRIPTION

2.1 Multi-Scale Bioprocess Stochastic Reaction Network

A multi-scale bioprocessing mechanistic model characterizes the causal dependence from molecular to
macroscopic kinetics and it is built on the fundamental building block, i.e., enzymatic molecular reaction
networks. Suppose the system is composed of I species, denoted by XXX = (X1,X2, . . . ,XI)

⊤, interacting with
each other through J reactions. At any time t, let ssst = (s1

t ,s
2
t , . . . ,s

I
t )
⊤ ∈RI

+ be the bioprocess state, where
si

t denotes the number of molecules of species i. Each j-th reaction with j = 1,2, . . . ,J is characterized by a
reaction vector NNN j ∈RI , describing the change in the numbers of I species’ molecules when a j-th molecular
reaction occurs. The associated reaction rate denoted by v j, depending on state, such as the current number
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of molecules of each species, describes the rate at which the j-th reaction occurs. Specifically, for the j-th
reaction equation given by

p j1X1 + p j2X2 + · · ·+ p jIXI
vvv j−→ q j1X1 +q j2X2 + · · ·+q jIXI,

the reaction relational structure, specified by the vector NNN j = (q j1− p j1,q j2− p j2, . . . ,q jI− piI)
⊤, is known

for j = 1,2, . . . ,J. Thus, the stoichiometry matrix NNN = (NNN1,NNN2, . . . ,NNNJ) ∈ RI×J characterizes the structure
information of the reaction network composed of J reactions. The (i, j)-th element of NNN, denoted by Ni j,
represents the number of molecules of the i-th species that are either consumed (indicated by a negative
value) or produced (indicated by a positive value) in each random occurrence of the j-th reaction.

In this paper, we suppose that the structure of the reaction network represented by matrix NNN is known.
The regulation mechanism of each j-th reaction is characterized by the reaction rate function vvv j, which is
associated with the current system state ssst and the mechanistic model parameters denoted by θθθ t . Let RRRt be a
vector of the occurrences of each molecular reaction in a given short time interval (t, t +∆t] and the system
state is updated from ssst to ssst+1. Since a molecular reaction will occur when one molecule collides, binds,
and reacts with another one while molecules move around randomly, driven by stochastic thermodynamics
of Brownian motion (Golightly and Wilkinson 2005), the occurrences of molecular reactions are modeled
by non-homogeneous Poisson process. Therefore, the state transition model becomes,

ssst+1 = ssst +NNN ·RRRt with RRRt ∼ Poisson(vvv(ssst ,θθθ t)),

where NNN ·RRRt represents the net amount of reaction outputs during time interval (t, t +∆t].
Michaelis–Menten (MM) kinetics is commonly used to model the regulation mechanisms of enzymatic

reaction networks and the flux rates vvv(ssst ,θθθ t) depend on the state (Michaelis and Menten 2007). In an
enzymatic molecular reaction as shown in the first equation in (1), the substrate (S) initially forms a reversible
complex (ES) with the enzyme (E), i.e., the enzyme and substrate have to interact for the enzyme to be
able to perform its catalytic function to produce the product (P), with KF , KR, and Kcat representing kinetic
rates. For MM kinetics as shown in the second equation in (1), we assume the enzyme is either present
as the free enzyme or as the ES complex, i.e., [E]total = [E]+ [ES] with [E] denoting the concentration
of the enzyme. Suppose the rate of formation of the ES complex is equal to the rate of dissociation plus
the breakdown, i.e., KF [E][S] = [ES](KR +Kcat). Thus, the parameters in MM kinetics characterize the
regulation mechanisms of enzymatic reaction network: (1) V j

max = Kcat [E]total , is the maximum possible
velocity of the j-th molecular reaction that can occur when all the enzyme molecules are bound with the
substrate, i.e.,[E]total = [ES]; and (2) K j

m = KR+Kcat
KF

= [E][S]
[ES] is a dissociation constant for the ES complex,

E +S
KF
⇄
KR

ES Kcat→ E +P(product) and vvv j(ssst ,θθθ t) =
V j

maxs j
t

K j
m + s j

t
. (1)

By applying diffusion approximation, the state transition model becomes,

p(ssst+1|ssst ,θθθ t)∼
{

N (ssst +NNNvvv(ssst ,θθθ t)∆t,NNNdiag(vvv(ssst ,θθθ t))NNN⊤∆t),ssst+1 > 000,
0,ssst+1 ≤ 000.

(2)

Thus, the multi-scale bioprocess mechanistic model is further represented as a system of Stochastic
Differential Equations (SDEs), intricately reliant on parameters θθθ t and current states ssst . The diffusion term
is necessary due to the inherent stochasticity of molecular reactions in the bioprocess:

(dssst ,dθθθ t)
⊤ = (µ(ssst ,θθθ t), f (ssst ,θθθ t))

⊤dt +(σ(ssst ,θθθ t),g(ssst ,θθθ t))
⊤dWt , (3)

where µ , f are the drift terms and σ , g are the diffusion terms defined as:

(µ(ssst ,θθθ t), f (ssst ,θθθ t))
⊤ = E[(ssst+∆t ,θθθ t+∆t)

⊤− (ssst ,θθθ t)
⊤|ssst ,θθθ t ],

(σ2(ssst ,θθθ t),g2(ssst ,θθθ t))
⊤ = Var[(ssst+∆t ,θθθ t+∆t)

⊤|ssst ,θθθ t ].
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The specific form of infinitesimal mean and variance on the right side will be derived in Section 3. This
SDE system is the foundational groundwork for the subsequent local sensitivity analysis we will conduct.
In this paper, θθθ t remains constant, resulting in both f and g becoming 0. However, given that we model
the dynamics of θθθ t in SDE form as shown in Equation (3), our approach can be readily extended to
accommodate the scenarios where θθθ t varies over time.

Given any feasible policy with action, i.e., aaat = π(ssst) at any decision time t, we consider the state
transition model characterizing the process mechanistic dynamics and inherent stochasticity, i.e.,

ssst+1 ∼ p(ssst+1|ssst ,aaat ;θθθ).

For the biomanufacturing process, suppose the impact of decision aaat (e.g., feeding strategy) on the state is
known and happens immediately; that means we get the post-decision state denoted by sss′t = fff (ssst ,aaat) with
a known function fff . For notation simplification, we ignore the impact of action. The proposed sensitivity
analysis over inputs (i.e., states and model parameters) is extendable to account for the policy effect.

2.2 Adjoint Sensitivity Analysis on Model Parameters and State Variables

Local sensitivity analysis studies the changes in the model prediction outputs with respect to initial input
values, i.e., (sss0,θθθ 0). The variations around this local point are quantified by the sensitivity coefficients (Zi
2011) that are intimately connected to the solution of the SDE system (3). In Section 3, we will derive
µ(ssst ,θθθ t) and σ(ssst ,θθθ t), showing that both functions are characterized by infinite differentiability, with their
first-order derivatives being bounded, i.e., µ,σ ∈C∞,1

b . Consequently, once the initial values are given, a
unique solution to the system (3) is guaranteed to exist. We use Φ0,t2(sss0,θθθ 0) to represent the solution of
the SDEs in (3) at time t2 and it is called forward flow satisfying the property:

Φ0,t2(sss0,θθθ 0) = Φ0,t(Φt,t2(sss0,θθθ 0)) for 0≤ t ≤ t2.

To simulate Φ0,t2(sss0,θθθ 0), we consider its calculus form based on Equation (3):

Φ0,t2(sss0,θθθ 0) = (sss0,θθθ 0)
⊤+

∫ t2

0
(µ(Φ0,t(sss0,θθθ 0)), f (Φ0,t(sss0,θθθ 0)))

⊤dt

+
∫ t2

0
(σ(Φ0,t(sss0,θθθ 0)),g(Φ0,t(sss0,θθθ 0)))

⊤ ◦dWt , (4)

where ◦dWt represents the Stratonovich stochastic integral. For a continuous semimartingale { ft}t<T
adapted to the forward filtration {F0,t}t<T , the Stratonovich stochastic integral is:∫ T

0
ft ◦dWt = lim

|Π|→0

N

∑
i=1

( fti−1 + fti)
2

(Wti−Wti−1),

where Π = {0 = t0 < 0 < .. . < tN = T} is a partition of time interval [0,T ] and |Π|= max
n

(tn− tn−1). The

reason to introduce Stratonovich stochastic integral is that we could generate the inverse flow ψ0,t2 ≡Φ
−1
0,t2

from SDE system (3) based on Equation (4) (Kunita 2019):

ψ0,t2(ssst2 ,θθθ t2) = (ssst2 ,θθθ t2)
⊤−

∫ t2

0
(µ(ψt,t2(ssst2 ,θθθ t2)), f (ψt,t2(ssst2 ,θθθ t2)))

⊤dt

−
∫ t2

0
(σ(ψt,t2(ssst2 ,θθθ t2)),g(ψt,t2(ssst2 ,θθθ t2)))

⊤ ◦dW̃t , (5)

where W̃t is the backward Wiener process defined as W̃t = Wt −WT for any t < T . It is adapted to the
backward filtration {Ft,T}t<T . The difference between Equations (4) and (5) is only the negative sign, and
such symmetry is attributed to the use of Stratonovich stochastic integral.
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We could further define a scalar loss function L of Φ0,T (sss0,θθθ 0). Then, the loss for system (3) becomes
L (Φ0,T (sss0,θθθ 0)) and the sensitivity coefficient for sss0 and θθθ 0 becomes,

A0,T (sss0,θθθ 0)≡
(

∂L (Φ0,T (sss0,θθθ 0))

∂sss0
,
∂L (Φ0,T (sss0,θθθ 0))

∂θθθ 0

)⊤
. (6)

Then, based on the chain rule, we have

A0,T (sss0,θθθ 0) = ▽ΦL (Φ0,T (sss0,θθθ 0))▽Φ0,T (sss0,θθθ 0). (7)

For▽Φ0,T (sss0,θθθ 0) in (6), we first derive
(

∂sssT
∂sss0

, ∂θθθ T
∂θθθ 0

)⊤
under the assumption that (sssT ,θθθ T )

⊤ is deterministic,

i.e., not dependent on the Wiener process Wt . We then extend to the case that (sssT ,θθθ T )
⊤ is stochastically

obtained from forward flow Φ0,T (sss0,θθθ 0) from SDE system (3) and derive
(

∂Φ0,T (sss0,θθθ 0)
∂sss0

,
∂Φ0,T (sss0,θθθ 0)

∂θθθ 0

)⊤
, which

implements the structural information in the stochastic reaction network through a dual process of forward
and backward propagation.

Then, for ▽ΦL (Φ0,T (sss0,θθθ 0)) in (7), it is determined by the loss function L . Denote the observed
bioprocess states as sssc, the underlying true parameters of the real reaction network as θθθ

c and the output as
O(sssc) which is a scalar function of states. Here the superscript “c" indicates data and parameters from the
real system. Then the simulated output is denoted by O(sss), where sss is the simulated state with initial state
sss0 = sssc

0 and θθθ 0 as the input of simulation model. L is a scalar function measuring the difference of observed
and simulated outputs, such as mean squared error (MSE) , i.e.,E[(O(sssc)−O(sss))2|sss0,θθθ 0]. Then we could
generate ▽ΦL (Φ0,T (sss0)). Combining the above results, we can derive the sensitivities A0,T (sss0,θθθ 0), which
can identify the key contributor to the model prediction MSE.

3 METAMODELING AND PREDICTION

In this section, we will derive the expression of µ and σ , we start with two-step transition from initial
states,

E(sss2|sss0,θθθ 0) =
∫

p(sss1,θθθ 1|sss0,θθθ 0)E(sss2|sss1,θθθ 1)d(sss1,θθθ 1) =
∫

p(sss1,θθθ 1|sss0,θθθ 0)[sss1 +NNNvvv(sss1,θθθ 1)∆t]d(sss1,θθθ 1)

= E(sss1|sss0,θθθ 0)+
∫

p(sss1,θθθ 1|sss0,θθθ 0)NNNvvv(sss1,θθθ 1)∆td(sss1,θθθ 1). (8)

By combining Equation (8) and E(sss1|sss0,θθθ 0) = sss0 +NNNvvv(sss0,θθθ 0)∆t, we have

E(sss2|sss0,θθθ 0) = sss0 +NNNvvv(sss0,θθθ 0)∆t +NNN
∫

p(sss1,θθθ 1|sss0,θθθ 0)vvv(sss1,θθθ 1)∆td(sss1,θθθ 1). (9)

We need to calculate
∫

p(sss1,θθθ 1|sss0,θθθ 0)vvv(sss1,θθθ 1)∆td(sss1,θθθ 1) in Equation (9), i.e., the expectation of flux
rate after one step transition. For each j-th reaction, its reaction rate v j(sss1,θθθ 1) is related to s j

1, and by
applying the MM kinetics in (1), we have∫

p(sss1,θθθ 1|sss0,θθθ 0)vvv j(sss1,θθθ 1)∆td(sss1,θθθ 1) =
∫

p(s j
1,θθθ 1|sss0,θθθ 0)

V j
maxs j

1

K j
m + s j

1

∆td(sss1,θθθ 1)

=
∫

p(s j
1,θθθ 1|sss0,θθθ 0)

(
V j

max−
V j

maxK j
m

K j
m + s j

1

)
∆td(sss1,θθθ 1)

= V j
max∆t−V j

maxK j
m∆t

∫
p(s j

1,θθθ 1|sss0,θθθ 0)
1

K j
m + s j

1

d(sss1,θθθ 1). (10)
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To compute the second term in Equation (10), we first consider the probability distribution function
p(s j

1,θθθ 1|sss0,θθθ 0). Since θθθ t is constant over time, we will put our focus on p(s j
1|sss0,θθθ 0). As shown in

Section 2.1, we’ve already derived the state transition model in Equation (2). This model adopts a truncated
normal distribution, which is motivated by the fact that the concentration of molecules, represented by s j

1,
cannot be negative in reality. Furthermore, the introduction of the truncated normal distribution is due to
the absence of an inverse moment for the standard normal distribution. To address this issue, we will first
review Theorem 1 and then apply it to approximate the second term in Equation (10).
Theorem 1 (Hall (1979)) Suppose µ > 0 and X is a random variable with density

φ(X) =

{
k√

2πσ
e
−(X−µ)2

2σ2 ,X ≥ a > 0,
0,X < a,

where k is the normalization constant. Then for each σ̂ = σ

µ
≤ 1

5 and any value of a satisfying the inequality
σ̂2 ≤ a

µ
≤ 1

25 , we have: µE[X−1] = I(σ̂)+ e1, |e1|< 8000σ̂12 < 3.3×10−5, where I(σ̂) is given in terms
of Dawson’s Integral by the following equations:

I(σ̂) =

√
2

σ̂
D
(

1√
2σ̂

)
, D(x) = e−x2

∫ x

0
et2

dt.

Before applying Theorem 1, we rewrite Equation (10) by changing the variable,∫
p(s j

1|sss0,θθθ 0)
1

K j
m + s j

1

ds j
1

ŝ j
1=s j

1+K j
m

=
∫

p(ŝ j
1|sss0,θθθ 0)

1

ŝ j
1

dŝ j
1.

When sss0≫ ∆t, both conditions σ̂ ≤ 1
5 and σ̂2 ≤ a

µ
≤ 1

25 could be satisfied. Thus, Theorem 1 is applicable

to the approximation of
∫

p(s j
1|sss0,θθθ 0)

1
K j

m+s j
1
ds j

1, which means:

∫
p(s j

1|sss0,θθθ 0)
1

K j
m + s j

1

ds j
1 ≈

I(σ̂ j
0 )

µ
j

0

, (11)

µ
j

0 = s j
0 +

R

∑
k=1

NNN j,kvvvk(sss0,θθθ 0)∆t +K j
m, σ

j
0 =

√
R

∑
k=1

NNN2
j,kvvvk(sss0,θθθ 0)∆t, σ̂

j
0 =

σ
j

0

µ
j

0

.

Since Dawson’s Integral does not have an analytic expression, we introduce an analytic approximation of
Dawson’s Integral (Filobello-Nino et al. 2019): D(x)≈ 1

2x +
1

4x3 for x > 2.68. Based on Filobello-Nino’s
results, the approximation above can control the relative error below 2.5% (Filobello-Nino et al. 2019).
Since we follow Theorem 1’s assumption that σ̂0 ≤ 1

5 , we could derive 1√
2σ̂0
≥ 1√

2
5

> 2.68. Thus:

I(σ̂ j
0 )

µ
j

0

=

√
2

σ̂
j

0
D
(

1√
2σ̂

j
0

)
µ

j
0

≈

√
2

σ̂
j

0

√
2σ̂

j
0

2

(
1+ (

√
2σ̂

j
0 )

2

2

)
µ

j
0

=
1+(σ̂ j

0 )
2

µ
j

0

=
(σ j

0 )
2 +(µ j

0)
2

(µ j
0)

3
. (12)

Combining results from Equations (9), (10), (11), and (12), we can get,

E(sss2|sss0,θθθ 0)≈ f (vvv(sss0,θθθ 0))≜ sss0 +NNNvvv(sss0,θθθ 0)∆t +NNNVmax∆t−NNN∆t
(

Vmax⊙Km⊙
I(σ̂0)

µ0

)
,
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where I(σ̂0)
µ0

,Vmax and Km are R-dimensional vectors with jth component equal to I(σ̂ j
0 )

µ
j

0
,V j

max and K j
m.

In addition, we can derive Var(sss2|s0,θθθ 0) following above process:

Var(sss2|sss0,θθθ 0) =
∫

p(sss1,θθθ 1|sss0,θθθ 0)Var(sss2|sss1,θθθ 1)d(sss1,θθθ 1)

=
∫

p(sss1,θθθ 1|sss0,θθθ 0)
[
NNNdiag(vvv(sss1,θθθ 1))NNN⊤∆t

]
d(sss1,θθθ 1)

= NNNdiag
(

Vmax−
(

Vmax⊙Km⊙
I(σ̂0)

µ0

))
NNN⊤∆t.

Since we know the distribution of sss2 conditioned on sss0, we could extend it to time t and write the form
of µ and σ :

dssst = µ(ssst ,θθθ t)dt +σ(ssst ,θθθ t)dWt ,

µ(ssst ,θθθ t) = E[ssst+2−ssst |ssst ,θθθ t ]≈ NNNvvv(ssst ,θθθ t)∆t +NNNVmax∆t−NNN∆t
(

Vmax⊙Km⊙
I(σ̂t)

µt

)
,

σ
2(ssst ,θθθ t) = Var[ssst+2|ssst ,θθθ t ]≈ NNNdiag

(
Vmax−

(
Vmax⊙Km⊙

I(σ̂t)

µt

))
NNN⊤∆t.

We could also calculate ∂ µ(ssst ,θθθ t)
∂ssst

, ∂ µ(ssst ,θθθ t)
∂θθθ t

, ∂σ(ssst ,θθθ t)
∂ssst

and ∂σ(ssst ,θθθ t)
∂θθθ t

which will be the input of the algorithm
in Section 4.

4 LOCAL SENSITIVITY ANALYSIS

4.1 Convergence Analysis

We start from the gradient of the backward flow represented in Equation (5),

▽ψ0,t2(ssst2 ,θθθ t2) = ▽ssst2−▽
∫ t2

0
(µ(ψt,t2(ssst2 ,θθθ t2)), f (ψt,t2(ssst2 ,θθθ t2)))

⊤dt

−▽
∫ t2

0
(σ(ψt,t2(ssst2 ,θθθ t2)),g(ψt,t2(ssst2 ,θθθ t2)))

⊤ ◦dW̃t .

The gradient ▽sss0 is the identity matrix I with d dimension, where d is the sum of the dimension of
bioprocess states ssst and the parameter set θθθ t . For the last two terms on the right side of equation, based
on Proposition 2.4.3 and Theorem 3.4.3 from Kunita (2019), we can switch the order of derivative and
integral, i.e.,

▽ψ0,t2(ssst2 ,θθθ t2) = Id−
∫ t2

0
(▽ψ µ(ψt,t2(ssst2 ,θθθ t2)),▽ψ f (ψt,t2(ssst2 ,θθθ t2)))

⊤▽ψt,t2(ssst2 ,θθθ t2)dt

−
∫ t2

0
(▽ψσ(ψt,t2(ssst2 ,θθθ t2)),▽ψg(ψt,t2(ssst2 ,θθθ t2)))

⊤▽ψt,t2(ssst2 ,θθθ t2)◦dW̃t . (13)

Since ψ0,t2 is the inverse function of Φ0,t2 , we have Φ0,t2(ψ0,t2(ssst2 ,θθθ t2)) = (ssst2 ,θθθ t2). Therefore, by
applying the chain rule, ▽Φ0,t2(ψ0,t2(ssst2 ,θθθ t2))▽ψ0,t2(ssst2 ,θθθ t2) = Id . Then by applying Stratonovich version
of Itô’s formula (Theorem 2.4.1 (Kunita 2019)) on Equation (13), we have,

∂▽Φ0,t2(ψ0,t2(ssst2 ,θθθ t2))

∂▽ψ0,t2(ssst2 ,θθθ t2)
=

∂ (▽ψ0,t2(ssst2 ,θθθ t2))
−1

∂▽ψ0,t2(ssst2 ,θθθ t2)
=− 1

▽ψ0,t2(ssst2 ,θθθ t2)
2 ,
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where

▽Φ0,t2(ψ0,t2(ssst2 ,θθθ t2))

= Id−
∫ t2

0
(▽ψ µ(ψt,t2(ssst2 ,θθθ t2)),▽ψ f (ψt,t2(ssst2 ,θθθ t2)))

⊤▽ψt,t2(ssst2 ,θθθ t2)
∂▽Φt,t2(ψt,t2(ssst2 ,θθθ t2))

∂▽ψt,t2(ssst2 ,θθθ t2)
dt

−
∫ t2

0
(▽ψσ(ψt,t2(ssst2 ,θθθ t2)),▽ψg(ψt,t2(ssst2 ,θθθ t2)))

⊤▽ψt,t2(ssst2 ,θθθ t2)
∂▽Φt,t2(ψt,t2(ssst2 ,θθθ t2))

∂▽ψt,t2(ssst2 ,θθθ t2)
◦dW̃t

= Id +
∫ t2

0
(▽ψ µ(ψt,t2(ssst2 ,θθθ t2)),▽ψ f (ψt,t2(ssst2 ,θθθ t2)))

⊤▽Φt,t2(ψt,t2(ssst2 ,θθθ t2))dt

+
∫ t2

0
(▽ψσ(ψt,t2(ssst2 ,θθθ t2)),▽ψg(ψt,t2(ssst2 ,θθθ t2)))

⊤▽Φt,t2(ψt,t2(ssst2 ,θθθ t2))◦dW̃t . (14)

Let Ã0,t2(ssst2 ,θθθ t2) = A0,t2(ψ0,t2(ssst2 ,θθθ t2)). Then, by combining Equation (14) and

A0,t2(sss0,θθθ 0) = ▽L (Φ0,t2(sss0,θθθ 0))▽Φ0,t2(sss0,θθθ 0),

we can derive

Ã0,t2(ssst2 ,θθθ t2) = A0,t2(ψ0,t2(ssst2 ,θθθ t2)) = ▽L (Φ0,t2(ψ0,t2(ssst2 ,θθθ t2)))▽Φ0,t2(ψ0,t2(ssst2 ,θθθ t2))

= ▽L (ssst2)+
∫ t2

0
(▽ψ µ(ψt,t2(ssst2 ,θθθ t2)),▽ψ f (ψt,t2(ssst2 ,θθθ t2)))

⊤Ãt,t2(ssst2 ,θθθ t2)dt

+
∫ t2

0
(▽ψσ(ψt,t2(ssst2 ,θθθ t2)),▽ψg(ψt,t2(ssst2 ,θθθ t2)))

⊤Ãt,t2(ssst2 ,θθθ t2)◦dW̃t . (15)

From Equations (5) and (15), we can see that the drift and diffusion terms for ψ0,t2(ssst2 ,θθθ t2) and
Ã0,t2(ssst2 ,θθθ t2) are C∞,1

b , which means the system (Ã0,t2(ssst2 ,θθθ t2),ψ0,t2(ssst2 ,θθθ t2)) has a unique strong solution.
Thus, we could define Ã0,T (ssst2 ,θθθ t2) = F(ssst2 ,θθθ t2 ,W ) where W = {Wt}0≤t≤T is a path of Wiener process and
F : Rd×C([0,1],RJ)→Rd is a deterministic measurable function, which is also called Itô map. In our case,
the number of reactions denoted by J defines the dimension of the Wiener process deployed to simulate
the stochastic reaction network. Note that A0,t2(sss0,θθθ 0) = Ã0,t2(Φ0,t2(sss0,θθθ 0)). In Section 2.2, we’ve already
shown that Φ0,t2(sss0,θθθ 0) has a unique strong solution. Similar to F , we define G : Rd×C([0,1],RJ)→ Rd

as the solution map for forward flow, i.e., G(sss0,θθθ 0,W ) = Φ0,T (sss0,θθθ 0). Then, apparently:

A0,T (sss0,θθθ 0) = Ã0,T (G(sss0,θθθ 0,W )) = F(G(sss0,θθθ 0,W ),W ).

4.2 Algorithm Development

Based on Equations (4), (5), and (15), with ∂ µ(ssst ,θθθ t)
∂ssst

, ∂ µ(ssst ,θθθ t)
∂θθθ t

, ∂σ(ssst ,θθθ t)
∂ssst

and ∂σ(ssst ,θθθ t)
∂θθθ t

as inputs, we could
approximate A0,T (sss0,θθθ 0). Since the system is described in Stratonovich integral, the most commonly used
Euler-Maruyama Scheme is not applicable, which requires the system to be represented in Itô integral.
Thus, we instead deployed the Euler-Heun method below:

(ssst+1,θθθ t+1)
⊤ = (ssst ,θθθ t)

⊤+(µ(ssst ,θθθ t), f (ssst ,θθθ t))
⊤

∆t

+
1
2

[
(σ(ssst ,θθθ t),g(ssst ,θθθ t))

⊤+(σ(ssst ,θθθ t),g(ssst ,θθθ t))
⊤
]
(Wt −Wt−1),

(ssst ,θθθ t)
⊤ = (ssst ,θθθ t)

⊤+(σ(ssst ,θθθ t),g(ssst ,θθθ t))
⊤(Wt −Wt−1).

Based on the schemes, the procedure of adjoint sensitivity analysis on the SDEs-based mechanistic
model is described in Algorithm 1. The algorithm is built on the Euler-Heun Scheme, using the gradients of
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the drift and diffusion terms as inputs, and produces the expected gradient of the simulation prediction MSE
as its output. The algorithm begins with the generation of sample paths of the Wiener process W n

t in Step 1.
Subsequently, as depicted in Steps 2 and 3, we conduct simulations under sss0 and θθθ 0 to obtain the simulated
output denoted by O(sss). In the empirical study, the observed states sssc are generated from the model with
a predefined set of true parameters θθθ

c, using the same path W n
t to control randomness. W n

t is queried
again in the backward pass W̃ n

t to generate the backward flow ψn
(t−1)∆t,T (Φ

n
0,T (sss0,θθθ 0)). By combining

observed output, simulated output, and the backward flow, we derive sensitivity Ãn
(t−1)∆t,T (Φ

n
0,T (sss0,θθθ 0))

corresponding to path W n
t in Step 6. By repeating these steps, we generate N sample paths, and the mean

value of Ãn
(t−1)∆t,T (Φ

n
0,T (sss0,θθθ 0)) for each sample path serves as the final sensitivity, as shown in Step 7.

Algorithm 1: Adjoint Sensitivity Analysis on SDEs based on MSE of Output Prediction.
Input:

• Observed states sssc from the real system.
• Initial parameters θθθ 0.
• Start time t0, end time T .
• Gradient of drift and diffusion term ∂ µ(ssst ,θθθ t)

∂ssst
, ∂ µ(ssst ,θθθ t)

∂θθθ t
, ∂σ(ssst ,θθθ t)

∂ssst
and ∂σ(ssst ,θθθ t)

∂θθθ t
.

• Number of iterations N.
• Grid size ∆t, number of steps S = T

∆t .

Output: E
[(

∂ (O(sss)−O(sssc))2

∂sss0
, ∂ (O(sss)−O(sssc))2

∂θθθ 0

)⊤∣∣∣∣(sss0,θθθ 0)

]
.

1. Calculate the real system output O(sssc) and define sss0 = sssc
0;

for n = 1, . . . ,N do
for t← 1 to S do

2. Generate a sample path of Wiener process W n
t with grid size ∆t;

3. Based on W n
t , generate Φn

0,t∆t(sss0,θθθ 0) from Equation (4) with Euler-Heun Scheme;

4. Generate backward pass W̃ n
t based on forward pass W n

t ;
5. Calculate the model prediction output O(Φn

0,T (sss0,θθθ 0));
for t← S to 1 do

6. Based on W̃ n
t , generate ψn

(t−1)∆t,T (Φ
n
0,T (sss0,θθθ 0)) from Equation (5) with Euler-Heun

Scheme;
7. Based on ψn

(t−1)∆t,T (Φ
n
0,T (sss0,θθθ 0)), generate Ãn

(t−1)∆t,T (Φ
n
0,T (sss0,θθθ 0)) from Equation (15)

with Euler-Heun Scheme, ▽L (sssT ) = 2|O(sss)−O(sssc)|;

8. Calculate E
[(

∂ (O(sss)−O(sssc))2

∂sss0
, ∂ (O(sss)−O(sssc))2

∂θθθ 0

)⊤∣∣∣∣(sss0,θθθ 0)

]
= 1

N

N
∑

n=1
Ãn

0,T (Φ
n
0,T (sss0,θθθ 0)).

From Theorem 2, as the grid or time size ∆t→ 0, the output of Algorithm 1 will converge pathwise (i.e.,
almost surely) from any fixed starting point to true local sensitivity. This sensitivity analysis, accounting
for the interdependency of multi-scale mechanistic model, accelerates the search for the optimal parameters
θθθ that minimizes the model prediction’s MSE.
Theorem 2 (Li et al. (2020)) Suppose the schemes Fh and Gh, with h = T

L denoting the size of the grid
for solvers, satisfy the following conditions:

• Fh(ssst ,θθθ t ,W )→ F(ssst ,θθθ t ,W ), Gh(ssst ,θθθ t ,W )→ G(ssst ,θθθ t ,W ) as h→ 0;
• For ∀M > 0, supssst ;θθθ t≤M |Fh(ssst ,θθθ t ,W )−F(ssst ,θθθ t ,W )| → 0 as h→ 0.
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(a) (b)

Figure 1: Interaction between subprocesses of the IVT system and their relative importance. (a) The
reaction network for the IVT process (Wang et al. 2023). (b) Relative importance of the IVT system
subprocesses parameter estimation on the output predictions at different times based on SA results.

Then for any starting point sss0 and θθθ 0, we have,

Fh(Gh(sss0,θθθ 0,W ),W )→ F(G(sss0,θθθ 0,W ),W ) = A0,T (sss0,θθθ 0),∀sss0 ∈ Rd .

5 EMPIRICAL STUDY

In this section, we conduct the empirical study by using the In-Vitro Transcription (IVT) system example to
validate our SA algorithm. The bioprocess model from Wang et al. (2023) with the true model parameters
denoted by θθθ

c is used to assess the performance of proposed adjoint SA algorithm. We start the section
by providing an in-depth interpretation of the sensitivity analysis results obtained from Algorithm 1. We
then assess the efficacy of our approach by showing the decrease rate in the simulation output prediction
MSE over multiple search iterations of model parameters.

The IVT process is mainly composed of four sub-processes: (1) initiation; (2) elongation; (3) termination;
and (4) degradation of generated RNA molecule product. The molecular reaction network is illustrated
in Figure 1a. One insightful interpretation of the sensitivity analysis results is to investigate the relative
importance of each subprocess, which is inferred from the sensitivity of their corresponding parameters.
Aligned with this reasoning, Figure 1b presents the relative importance of each subprocess within the
IVT system. Notably, the result underscores the pivotal role of elongation reactions in the IVT process
regardless of termination time T . Furthermore, it is observed that the impact of degradation increases over
time, which fits our expectation since the synthesis rate of mRNA transcripts decreases as the IVT process
approaches completion. Concurrently, the accumulation of generated RNA transcripts leads to an increase
in the degradation rate at the system level. Therefore, the relevance of parameters associated with the
degradation model becomes increasingly significant over time. Conversely, the influence of the initiation
process appears to diminish over time as the raw materials (i.e., NTPs) used to synthesize RNA products
are consumed.

To further assess the performance of the proposed adjoint SA, we benchmark our approach with a
state-of-art gradient estimation approach (Fu 2015) that estimates the gradient by using finite difference
(FD) simulation estimator, i.e.,

O(Φn
0,T (sss0, θ̂θθ + ckeeek))−O(Φn

0,T (sss0, θ̂θθ − ckeeek))

2ck

for the n-th iteration of parameter search, where ck is the perturbation and eeek denotes a unit vector with
the element in k-th dimension equal to 1 and all remaining elements equal to 0. In our case, we define
ck = p× θ̂θθ k where p is a percentage selected to be 5%, 10%, and 20%.
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Table 1: Final RNA yield and its 95% confidence interval with θ̂θθ estimated with different approaches.

Approach Observed
Adjoint

sensitivity

Finite
difference
(p=5%)

Finite
difference
(p=10%)

Finite
difference
(p=20%)

Yield
(µM) 73.48±0.28 73.05±0.27 72.66±0.32 74.37±0.39 74.51±0.31

(a) MSE (b) Relative error between θ̂θθ and θθθ
c

Figure 2: The results of IVT output prediction MSE and model parameter estimation relative error obtained
by using adjoint SA and finite difference approaches.

Figure 2a illustrates the convergence of the Mean Squared Error (MSE) of IVT process output prediction
over the iterations. It’s evident that as the number of iterations increases, the adjoint SA approach surpasses
the finite difference gradient estimation approach. Nonetheless, same as the finite difference estimator,
the convergence speed gradually decreases, and the lower bound shows no further improvement once it
reaches approximately 0.4(g/L)2, which could be associated with a fixed step size, i.e., α = 0.01, used
during the gradient search process. This slowdown could also be attributed to our MSE objective measure
that solely relies on the final RNA yield. This discrete data provide very limited information about the
interactions within the complex reaction network. We also show the specific RNA yield prediction by
using the model with parameters θ̂θθ estimated with different approaches in Table 1. In contrast, the final
RNA yield and its 95% confidence interval (CI) obtained from the system with true parameters θθθ

c are
73.48± 0.28. There is an overlap between the 95% confidence interval of the adjoint SA approach’s
predictions and the observed RNA yield, indicating no statistically significant difference between them.
In contrast, the finite difference approach shows a significant prediction discrepancy from the observed
values, demonstrating that the adjoint SA approach outperforms the finite difference method.

Furthermore, we present the results of the expected relative error between θ̂θθ and θθθ
c, i.e., E

[
| θ̂θθ−θθθ

c

θθθ
c |
]
, in

Figure 2b. Our approach consistently outperforms the finite difference estimator, as the expected relative
error diminishes more significantly after 50 iterations compared with the finite difference estimator regardless
of the p value chosen. However, similar to the MSE results, the lower bound of the relative difference
stagnates at approximately 15%, which could be attributed to the same limitation mentioned above.
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6 CONCLUSION

In this paper, we present an adjoint sensitivity analysis approach on the stochastic differential equations
(SDEs) designed to expedite the calibration of stochastic reaction network mechanistic model parameters.
We first formulate the multi-scale bioprocess stochastic reaction network in the form of SDEs. Then, we
develop an adjoint SA algorithm on SDEs for computing local sensitivities of model parameters and validate
the convergence of the algorithm. Our empirical study underscores the importance of model parameters of
enzymatic stochastic reaction networks and provides empirical evidence of the efficacy of our approach.
Moving forward, we aim to leverage this capability by refining the loss function. Rather than solely relying
on the Mean Squared Error (MSE) of the final output, we intend to integrate additional bioprocess states
and consider the disparities between simulated and real process trajectories, which promises to enhance
the effectiveness and accuracy of our method.
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