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ABSTRACT

Biomanufacturing innovation relies on an efficient Design of Experiments (DoEs) to optimize processes and
product quality. Traditional DoE methods, ignoring the underlying bioprocessing mechanisms, often suffer
from a lack of interpretability and sample efficiency. This limitation motivates us to create a new optimal
learning approach for digital twin model calibration. In this study, we consider the cell culture process
multi-scale mechanistic model, also known as Biological System-of-Systems (Bio-SoS). This model with a
modular design, composed of sub-models, allows us to integrate data across various production processes.
To calibrate the Bio-SoS digital twin, we evaluate the mean squared error of model prediction and develop
a computational approach to quantify the impact of parameter estimation error of individual sub-models
on the prediction accuracy of digital twin, which can guide sample-efficient and interpretable DoEs.

1 INTRODUCTION

To support interpretable predictions and optimal control of biomanfuacturing processes, in this paper, we
develop a digital twin calibration approach for multi-scale bioprocess mechanistic model or Biological
System-of-Systems (Bio-SoS) (Zheng et al. 2024) characterizing causal interdependence from molecular-
to cellular- to macro-kinetics. Even though this study is motivated by cell culture process, it can be extended
to calibrate general Bio-SoS with modular design. Basically, cell culture process dynamics and variations
depend on the modules: (1) a single cell mechanistic model characterizing each living cell behaviors and
their interactions with environment; (2) a metabolic shift model characterizing the change of cell metabolic
phase and behaviors as a response to culture conditions and cell age; and (3) macro-kinetic model of a
bioreactor system composed of many living cells under different metabolic phases.

The benefits of considering the Bio-SoS mechanistic model with modular design include: a) support
flexible manufacturing through assembling a system of modules to account for biomanufacturing processes
under different conditions and inputs; and b) facilitate the integration of data from different experiments
(such as 2D culture and 3D culture for iPSCs). By incorporating the structure property of the Bio-SoS
mechanistic model into the calibration method, we can quantify how the model uncertainties or errors
of different modules interact with each other and propagate through the reaction mechanism pathways to
outputs, which can support the interpretable design of experiments (DoEs) to improve model fidelity.

The model uncertainty quantification approaches for digital twin calibration can be divided into two
main categories: Bayesian and frequentist approaches (Corlu et al. 2020). Bayesian approaches treat
unknown model parameters as random variables and quantify our belief by posterior distributions. It
involves specifying prior distributions for model parameters and updates these distributions based on the
information from observed data by applying Bayes’ theorem. On the other hand, frequentist approaches
rely on traditional statistical methods, such as maximum likelihood estimation, to find parameter values
that maximize the likelihood of observed data. Those estimation approaches could be faster since there
may not exist conjugate priors and posterior sampling update can be computationally expensive.

For the propagation of input and model uncertainty to simulation outputs, to save computational budget
and time, a metamodel is often used to approximate the response surface, especially for complex stochastic
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systems. In the classical calibration approach (Kennedy and O’Hagan 2001), Gaussian Processes (GPs)
are used to model the mean response and discrepancies, deriving the posterior distribution for predictions.
Although GP metamodel is often used to propagate the inputs to output, it’s hard to interpret and leverage
prior knowledge of the real system mechanisms. To enhance interpretability and sample efficiency, the
mechanistic models can be employed to construct the response surface in our study.

Calibration criteria play a critical role to guide DoEs for digital twin calibration. Mean response and
Mean Squared Error (MSE) are widely used criteria for assessing model prediction accuracy. Tuo and
Wu (2016) shows Kennedy’s method, which models the mean output as a Gaussian process, may lead
to asymptotically L2-inconsistent. They modify the criteria into L2 norm of the discrepancy between two
system outputs and propose a L2-consistent calibration method, which has an optimal convergence rate.

To support process control, in this paper, we aim to calibrate the Bio-SoS mechanistic model to improve
its predictive accuracy and reduce the MSE of the process output prediction. We employ the Maximum
Likelihood Estimation (MLE) method to estimate model parameters and utilize bootstrap techniques to
quantify estimation errors across different modules. To optimize the digital twin calibration policy and
guide the most informative data collection, we adopt a gradient-based approach that follows the steepest
descent in policy parameter space, making the learning process more interpretable. This strategy utilizes the
Linear Noise Approximation (LNA) for uncertainty propagation and constructs a surrogate model for MSE.
Concurrently, we preserve mechanistic information by solving the Ordinary Differential Equations (ODEs)
from LNA using Euler’s method. In an online setting, a calibration policy is iteratively updated by using
a stochastic gradient method where the gradient of MSE with respect to the calibration policy parameters
follows the backward direction of the uncertainty propagation. The proposed calibration approach accounts
for the Bio-SoS mechanism structure and quantifies Bio-SoS module error interaction and their propagation
through mechanistic pathways to output, which guides the sequential DoEs to efficiently improve model
fidelity and prediction accuracy.

In sum, we develop an interpretable and sample efficient calibration approach for a multi-scale bio-
process mechanistic model so that the digital twin of the cell culture process can improve process prediction
and support optimal control. Even though this paper focuses on cell culture, the proposed calibration
approach can be extendable to digital twins of general biomanufacturing systems with modular design.
The key contributions of the proposed calibration approach and the benefits are summarized as follows.

• We proposed a new DoE method for calibrating a multi-scale bioprocess mechanistic model by
updating the parameters using closed-form gradients that incorporate the mechanism structure
information.

• We assess the MSE of the process output prediction and use a LNA-based metamodel along with
Euler’s method to estimate how model uncertainty propagates through Bio-SoS mechanism pathways
and impacts on the output prediction accuracy. This approach can advance our understanding on
how the errors in individual module parameters affect the overall prediction accuracy of digital
twin model.

• Built on the LNA, we further develop a gradient-based policy optimization to guide most informative
experiments and support sample-efficient optimal learning.

The organization of the paper is as follows. In Section 2, we describe the multi-scale mechanistic model.
Then, we propose the novel calibration method for the multi-scale model in Sections 3, which includes
two main procedures: model inference and policy update. A stochastic gradient method is developed for
the model inference in Section 4. The calibration policy gradient estimation and update method is further
developed in Section 5. Then we validate our method in Section 6 and conclude this paper in Section 7.
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2 PROBLEM DESCRIPTION AND BIO-SOS MECHANISTIC MODEL

In this study, we explore a multi-scale bioprocess mechanistic model designed to elucidate the interdepen-
dencies that exist across molecular, cellular, and macroscopic levels within a cell culture process. This
comprehensive model integrates the complexities of biological interactions within and between these scales
and extends applicably to a broader range of biological systems, referred to as Bio-SoS. A detailed summary
of the variable notations used within our model is provided in Table 1.

Our model is based on the structured Markov chain, capturing both dynamics and variability inherent in
cellular processes through a state transition probabilistic model. Each individual cell operates as a complex
system, and collectively, numerous cells at various metabolic phases within the bioreactor form an intricate
system of systems. This interaction is depicted in Figure 1, where three distinct metabolic phases are
considered. Cells interact with each other by altering their environment conditions, through nutrient uptake
and the production of metabolic wastes, and in turn, respond to these environmental changes.

Table 1: Summary of key variables and their descriptions.

s̃ Single cell state sss Macro-state
r Reaction indices (r = 1,2, . . . ,R) Zt Cell phases for single cell (Zt = i, i = 0,1, . . . , I)
Xi,t Cell density in i-th phase (i = 0,1, . . . , I) m State component indices (m = 1,2, . . . ,M)
t Time (t = 0,1,2, . . . ,T ) k Calibration iteration number (k = 1,2 . . . ,K)
Pii′ Transition probability from i- to i′-th phase βββ Parameters for phase shift model
ααα i Model parameters for cells in phase i θθθ c True model parameters
θ̂θθ k Estimated model parameters at iteration k ωωωk Policy parameters
λ Learning rate for updating parameter γk Learning rate for updating policy
uuuk Virtual model update function θ̃θθ k bootstrapping estimation for θ̂θθ k

At any time t, for each single cell in the i-th metabolic phase, denoted by Zt = i with i ∈ {0,1, . . . , I}
(i.e., growth, stationary, death phases, etc), the dynamic behaviors of its metabolic network can be
characterized by a stochastic model specified by parameters ααα i and a metabolic phase shift model with
Pi j(ssst ;βββ ) representing the transition probability from Zt = i to Zt = j. Therefore, in this paper, we focus
on calibrating the mechanistic model of the Bio-SoS specified by the calibration parameters θθθ ≡ {ααα i,βββ}:
(1) ααα i characterizing cell mechanism dynamics in i-th metabolic phase or class; and (2) βββ characterizing
the phase shift probability that impacts the percentage of cells in each phase or class.

2.1 Single Cell Model

This section describes a stochastic metabolic model to understand the dynamics of a single cell across
different metabolic phases: growth (Z = 0), production (Z = 1) and so on. The model includes two main
components: the Stochastic Modular Reaction Networks (SMRN) and the metabolic phase shift dynamics.
Following the study (Anderson and Kurtz 2011), the SMRN can be constructed s̃i

t+1 = s̃i
t +N ·RRRi

s(t), where
s̃i

t is the state for cells in i-th phase, N represents the stoichiometric matrix characterizing the structure of
molecular reaction network, RRRi

s(t) follows a multivariate Poisson process with molecular reaction rate vector
ννν(ssst ;ααα i). This reaction rate depends on macro-environment ssst , typically modeled using a Michaelis-Menten
(MM) equation (Kyriakopoulos et al. 2018; Wang et al. 2024).

The metabolic shift model addresses the transitions between metabolic phases based on environmental
changes. At any time t, we have the metabolic phase-shift probability matrix P(ssst ;βββ ) depending on the
environmental condition ssst , where each element represents

Pii′(ssst)≡ P[Zt+1 = i′|Zt = i] for i, i′ = 0,1, . . . , I.
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Figure 1: An illustration of the multi-scale mechanistic model for cell culture process and Bio-SoS.

2.2 Macro-Kinetic State Transition

Suppose the environmental condition ssst in bioreactor is homogeneous over space. The cell population
dynamics are characterized by the evolution of cell densities in each metabolic phase i, i.e.

dXi,t

dt
= µi(ssst)Xi,t +∑

i′ ̸=i
Pi′i,t(ssst)Xi′,t , (1)

where µi(ssst) represents cell growth rate and the second term represents the instantaneous cells metabolic
shifting from i′-th phase to i-th phase. Let ssst denote metabolite concentrations (i.e., the number of molecules
per unit of volume) in the system at time t. Define ∆s̃(i,n)t+1 as the change in metabolic concentration for the

n-th cell in phase i, calculated as s̃(i,n)t+1 − s̃(i,n)t . Then at any time t, given the density Xi,t of cells in phase i,
the overall change of metabolite concentration is the sum of the contributions from individual cells,

ssst+1−ssst =
I

∑
i=0

Xi,t

∑
n=1

∆s̃(i,n)t+1 =
I

∑
i=0

NRRRi(t), (2)

where RRRi(t) is a multivariate Poisson process with reaction rate vector Xi,tvvv(ssst ;ααα i); as detailed in equation (10)
from Zheng et al. (2024). Without losing generality, in the following sections, we consider a two-phase
mechanistic model with parameters θθθ = [ααα0,ααα1,βββ ].

2.3 State Transition Probability

In a short time interval [t, t + dt], the change of state ssst is denoted by dssst = ssst+dt −ssst = ∑
1
i=0 NdRRRi(t) =

NdRRR(t), where RRR(t) is a multivariate Poisson process with parameter ∑
1
i=0 Xi,tννν(ssst ;ααα i). Then E(dRRR |

ssst) = ∑
1
i=0 Xi,tννν(ssst ;ααα i) and Var(dRRR | ssst) ≈ diag{∑1

i=0 Xi,tννν
r(ssst ;ααα i)}, with r = 1,2, · · · ,R representing the

component indices of ννν . The approximation is made under the assumption that the time interval is small,
so the state doesn’t change too much and different reactions can be treated independent. By forming as a
Stochastic Differential Equations (SDEs), we have

NdRRR(t) | ssst = NE(dRRR | ssst)dt +NVar(dRRR | ssst)dBBBt
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≈ N
1

∑
i=0

Xi,tννν(ssst ;ααα i)dt +

{
Ndiag{

1

∑
i=0

Xi,tννν
r(ssst ;ααα i)}N⊤

} 1
2

dBBBt , (3)

where BBBt denotes standard Brownian motion. By Euler-Maruyama method (Bayram et al. 2018), a normal
approximation can be applied to (3)

N∆RRR(t) | ssst ≈ N
1

∑
i=0

Xi,tννν(ssst ;ααα i)∆t +

{
Ndiag{

1

∑
i=0

Xi,tννν
r(ssst ;ααα i)}N⊤

} 1
2

∆BBBt

∼N

{
N

1

∑
i=0

Xi,tννν(ssst ;ααα i)∆t,Ndiag{
1

∑
i=0

Xi,tννν
r(ssst ;ααα i)}N⊤diag{∆t}

}
,

where ∆BBBt is a Gaussian random vector with mean zero and covariance matrix diag{∆t}. Finally, we
approximate conditional distribution of ssst+1 as

(ssst+1−ssst)|ssst ,θθθ ∼N {µµµ(θθθ),Σ(θθθ)}, (4)

where µµµ(θθθ) = N∑
1
i=0 Xi,tννν(ssst ;ααα i)∆t and Σ(θθθ) = Ndiag{∑1

i=0 Xi,tννν
r(ssst ;ααα i)}N⊤diag{∆t}}.

3 DIGITAL TWIN CALIBRATION FOR BIO-SOS MECHANISTIC MODEL

To facilitate digital twin calibration, in this paper, we consider the physical system as a finite horizon
stochastic process. Its dynamics can be characterized by a Bio-SoS mechanistic model specified by
equations (1) and (2) with underlying true parameters, denoted by θθθ c = [αααc

0,ααα
c
1,βββ

c]. Our goal is to develop
a calibration method that can efficiently guide the DoEs and most informative data collection to improve
model fidelity and the prediction accuracy of the digital twin. For simplification, we consider batch-based
cell culture experiments with the selection of initial concentration sss0 as the decision variable.

The trajectory τ = (sss0,sss1, . . . ,sssT ) over a horizon of T time steps has the joint probability density function
p(τττ|θθθ ,sss0) = ∏

T−1
t=0 p(ssst+1|ssst ;θθθ) with sss0 = π(ωωω), the calibration policy parameterized by ωωω . Each transition

probability p(ssst+1|ssst ;θθθ) follows a normal distribution as defined in equation (4). At each k-th calibration
iteration, we select one design following the latest policy, i.e. sss(k)0 = π(ωωωk), run an experiment to collect
one sample path from the physical system and update the model parameters θ̂θθ k. Specifically, given the
historical samples Dk = {τττn}k

n=1, we consider maximizing the log-likelihood for θθθ ,

θ̂θθ k ≡ argmax
θθθ

L(Dk;θθθ) = argmax
θθθ

k

∑
n=1

ℓ
(

τττn|θθθ ,sss(n)0

)
, (5)

where L(Dk,θθθ) denotes the sum of log-likelihoods and ℓ(τn|θθθ ,sss(n)0 ) = log p(τττn|θθθ ,sss(n)0 ) is the log-likelihood
of trajectory τn with initial state sss(n)0 = π(ωωωn). The detailed derivation can be found in Section 4.

For digital twin calibration, we select the new design of experiment at the beginning of k-th iteration.
This selection is based on the evaluation of our current model on a set of prediction points Dtest = {sssh

0}H
h=1

sampled from a pre-specified distribution. The objective is to minimize the MSE of digital twin prediction,

ωωω
⋆
k ≜ argmin

ωωω

Jk(ωωω) with Jk(ωωω)≡
H

∑
h=1

E
[
Y p
(

sssh
0,θθθ

c
)
−Y d

(
sssh

0,uuuk(θ̂θθ k−1,ωωω)
)]2

, (6)

where uuuk(θ̂θθ k−1,ωωω) denotes the virtual model update function with the simulated trajectory τττd
k (see equa-

tion (7)), Y = φ(sssT ) represents the desired system output, such as yield and product critical quality attributes.
The superscript "p" represents for physical system and "d" for digital twin.
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To sample efficiently guide digital twin calibration, we propose a gradient-based optimal learning
approach with the procedure illustration as shown in Figure 2 and develop a calibration algorithm, which
is summarized as Algorithm 1. In specific, for optimization problem (5), we use gradient-based method

θ̂θθ k← θ̂θθ k−1 +Adamk(∇θθθ ℓ(τττk;θ̂θθ k−1,sss
(k)
0 )),

where “Adam” represents Adam optimizer (Kingma and Ba 2017). The details of the optimization steps
will be discussed in Section 4. Now we can define virtual model update function

uuuk(θθθ ,ωωω) = θθθ +Adamk
(
∇θθθ ℓ(τττ

d
k ;θθθ ,ωωω)

)
(7)

with a simulated trajectory τττd
k ∼ p(τ|θ̂θθ k−1,sss0) and sss0 = π(ωωω). Then to guide informative experiment and

improve digital twin prediction, we solve the optimization (6) by using the stochastic gradient descent

ωωωk =ωωωk−1− γk∇ωωωJk(ωωω) |ωωω=ωωωk−1 .

𝒔0
 = 𝜋(𝝎 )𝝎 𝝉𝑘

𝑑 𝒖𝑘(𝜽𝑘−1, 𝝎) prediction error 𝐽𝑘(𝝎)

2 MLE estamation for መ𝜃𝑘 
after collecting data 𝜏𝑘

1 Optimal learning based data collection on 𝜔 to guid model calibration

𝒔0
(𝑘)

 
= 𝜋(𝝎𝑘)𝝎𝑘 𝝉𝑘

 𝜽𝑘

Figure 2: The procedure illustration of the proposed calibration approach.

Inspired by Figure 2, we compute the gradient with respect to ωωω using the chain rule. Specifically, we
take the gradient with respect to uuuk, and then take the gradient to uuuk with respect to ωωω , i.e.,

ωωωk =ωωωk−1− γk∇uuuk

H

∑
h=1

E
[
Y p
(

sssh
0,θθθ

c
)
−Y d

(
sssh

0,uuuk

)]2 ∣∣∣
uuuk=(θ̂θθ k−1,ωωωk−1)

×∇ωωωuuuk

(
θ̂θθ k−1,ωωω

) ∣∣∣
ωωω=ωωωk−1

.

Since θθθ c is unknown, we use the bootstrapping to quantify the model parameter estimation uncertainty in
Section 5. Following the upper part of Figure 2, the prediction error propagates from ωωω to model parameter
update ukukuk, and then to our objective Jk(ωωω). By taking the gradient of Jk(ωωω), we can discern the influence of
ωωω on the final prediction error, which assists in selecting a more effective design. Since deriving an exact
expression for this gradient is complex, we develop an approximate closed-form representation, which will
be detailed in Section 5. This approximation provides an efficient method for improving calibration policy.

4 MODEL INFERENCE AND PARAMETER UPDATE

The gradient of the log-likelihood is calculated as

∇θθθ L(Dk;θθθ) = ∇θθθ

[
k

∑
n=1

log p(τττk|θθθ ,sss
(n)
0 )

]
=

k

∑
n=1

T−1

∑
t=0

[
∇θθθ log p(sss(n)t+1|sss

(n)
t ,θθθ)

]
.

Each term log p(sss(n)t+1|sss
(n)
t ,θθθ) in this summation involves gradients that are detailed in Lemma 1.

Lemma 1 Conditioning on the current state ssst and model parameter θθθ , the state change during in any small
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time interval (t, t +∆t] is ∆ssst+1 = ssst+1−ssst following a multi-variate normal distribution N {µµµ(θθθ),Σ(θθθ)}.
Then the gradient of log-likelihood log p(ssst+1|ssst ,θθθ) with respect to θθθ is given by

∇θθθ log p(ssst+1|ssst ,θθθ) =−
1
2

tr
(
Σ(θθθ)−1

∇θ Σ(θθθ)
)
+∇θ µµµ(θθθ)⊤Σ(θθθ)−1(ssst+1−ssst −µµµ(θθθ))

− 1
2
(ssst+1−ssst −µµµ(θθθ))⊤

(
−Σ(θθθ)−1

∇θθθ Σ(θθθ)Σ(θθθ)−1)(ssst+1−ssst −µµµ(θθθ)).

Proof By the definition of multi-variant normal distribution, we have

p(ssst+1|ssst ,θθθ) =
1

(2π)M/2|Σ(θθθ)|1/2 exp
(
−1

2
(ssst+1−ssst −µµµ(θθθ))⊤Σ(θθθ)−1(ssst+1−ssst −µµµ(θθθ))

)
.

Taking the logarithm on both side, we have

log p(ssst+1|ssst ,θθθ) =−
1
2

log |Σ(θθθ)|− 1
2
(ssst+1−ssst −µµµ(θθθ))⊤Σ(θθθ)−1(ssst+1−ssst −µµµ(θθθ))−M

2
log(2π).

The gradient for the first term is ∇θθθ log |Σ(θθθ)|= tr
(
Σ(θθθ)−1∇θθθ Σ(θθθ)

)
, where ∇θθθ Σ(θθθ) is a tensor of M×M×q

dimension with q as the length of θθθ , and tr(·) represents the trace for first two dimensions. The gradient
for the second term is

∇θθθ (ssst+1−ssst −µµµ(θθθ))⊤Σ(θθθ)−1(ssst+1−ssst −µµµ(θθθ)) =−2∇θθθ µµµ(θθθ)⊤Σ(θθθ)−1(ssst+1−ssst −µµµ(θθθ))

+(ssst+1−ssst −µµµ(θθθ))⊤
(
−Σ(θθθ)−1

∇θθθ Σ(θθθ)Σ(θθθ)−1)(ssst+1−ssst −µµµ(θθθ)).

Given the calculated gradient, we can use the Adam optimizer (Kingma and Ba 2017) for updating θ̂θθ .
Following the algorithm in their paper, for the k-th iteration, we have

θ̂θθ k = θ̂θθ k−1 +λ ·
(1−ξ1)∑

k
l=1 ξ

k−l
1 Gl(

1−ξ k
1

)√ (1−ξ2)∑
k
l=1 ξ

k−l
2 G2

l

(1−ξ k
2 )

+ ε

, (8)

where λ is the learning rate, Gl =∇θθθ ℓ(τττ l;θ̂θθ l−1,sss
(l)
0 ) is the gradient of the likelihood function at l-th iteration,

g2
l is the element-wise square, ξ1 = 0.9,ξ2 = 0.999 are hyper-parameters related to exponential decay rates,

and ε = 10−8 is a small number to avoid zero in the denominator.

5 POLICY GRADIENT ESTIMATION AND OPTIMAL LEARNING

In this section, we turn our focus on learning the calibration policy by minimizing the prediction MSE in
(6). To develop a surrogate model of this MSE, we employ the LNA in Section 5.1 to approximate the
stochastic dynamics of the system, reflecting its sensitivity to initial conditions and parameter values. This
approach allows us to describe the system state at any given time as a normally distributed random variable,
facilitating the derivation of analytical expressions for the gradient estimator. To keep the mechanism
information, in Section 5.2, a first-order Euler’s Method is utilized to derive the closed-form solutions of
the SDE-based mechanisms obtained from LNA.

5.1 Linear Noise Approximation on Bio-SoS Dynamics

We use LNA (Fearnhead et al. 2014) to derive the solution of SDEs in Lemma 2, which allows us to
analyze the estimation error propagation from θθθ to the output prediction and develop a surrogate model of
the MSE (6). Conditional on sss0 and θθθ , we denote the state of systems at time t as ssst(θθθ). Considering the
SDEs characterizing the Bio-SoS dynamics as shown in (3), we have

dssst(θθθ) = bbb(ssst(θθθ))dt +Q(ssst(θθθ))dBBBt , (9)
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where bbb = N∑
1
i=0 Xi,t+dtννν(ssst ;ααα i) and Q =

{
Ndiag{∑1

i=0 Xi,t+dtννν
k(ssst ;ααα i)}N⊤

} 1
2 .

Lemma 2 (Linear Noise Approximation) Suppose sss0 ∼N (µ∗0,Σ
∗
0), η0 = µ∗0 and Ψ0 = Σ

∗
0. Then the solution

of SDE (9) can be approximated as
ssst(θθθ)∼ N (η t ,Ψt) ,

where η t ,Ψt are the solution of ordinary differential equations (ODEs)

dη

dt
= bbb(η),

dΨ

dt
= ΨF⊤+FΨ+QQ⊤, (10)

where we assume ssst = η t +Mt with η t representing the deterministic path and Mt representing stochastic
path, Ψt ≜ Var[Mt ], Ft is the M×M matrix with components

Ft,i j =
∂bbbi

∂ssst, j

∣∣∣∣
η t

and Qt = Q(η t).

Proof The derivation can be found in Fearnhead et al. (2014) with mt ≜ E[Mt ] = 0.

Obtaining an analytical solution for the series of ODEs described in (10) is challenging. Therefore,
we use a numerical solution approach, as described in Section 5.2. This method involves applying the
solution iteratively at each time step t, allowing us to approximate the system’s behavior over time. For the
physical system and digital twin, we denote ssst(θθθ

c) ∼ N (η t ,Ψt) and ssst(uuuk) ∼ N
(

η̂ t ,Ψ̂t

)
. Then we have

sssT (θθθ
c)− sT (uuuk)∼ N

(
ηT − η̂T ,ΨT + Ψ̂T

)
. For any m-th component Y of outputs, the surrogate model of

the MSE (6) is given by

E
[(

Y p(θθθ c)−Y d(uuuk)
)2
]
=
[
ηT,m− η̂T,m

]2
+ΨT,mm + Ψ̂T,mm. (11)

5.2 First-Order Euler’s Method for Solving LNA

To get the solution of ssst , we solve the ODEs outlined in (10) numerically by using first-order Euler’s
method. For the term η t , the update equation is given by

ηT = ηT−1 +b(ηT−1)∆t = η0 +
T−1

∑
t=0

b(ηt)∆t = η0 +
T−1

∑
t=0

1

∑
i=0

Xi,tNννν(ssst ;ααα i)∆t ≜ η0 +
T−1

∑
t=0

ft(θθθ). (12)

For the term Ψt , the update equation is given by

ΨT = ΨT−1 +
[
Ψ0F⊤T−1 +FT−1Ψ0 +QT−1QT−1

⊤
]

∆t +O((∆t)2)

= Ψ0 +
T−1

∑
t=0

[
Ψ0F⊤t +FtΨ0 +QtQt

⊤
]

∆t +O((∆t)2)

= Ψ0 +Ψ0

[
T−1

∑
t=0

1

∑
i=0

[Nννν(ssst ;ααα i)∇ssst Xi,t+dt ]

]⊤
∆t +

[
T−1

∑
t=0

1

∑
i=0

[Nννν(ssst ;ααα i)∇ssst Xi,t+dt ]

]
Ψ0∆t

+Ψ0

[
T−1

∑
t=0

1

∑
i=0

[Xi,t+dtN∇ssstννν(ssst ;ααα i)]

]⊤
∆t +

[
T−1

∑
t=0

1

∑
i=0

[Xi,t+dtN∇ssstννν(ssst ;ααα i)]

]
Ψ0∆t

+
T−1

∑
t=0

[
Ndiag{

1

∑
i=0

Xi,t+dtννν
r(ssst ;ααα i)}N⊤

]
∆t +O((∆t)2)
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≜ Ψ0 +
T−1

∑
t=0

gt(θθθ)+O((∆t)2). (13)

Then by (11)-(13), the final output discrepancy can be written as

E
[(

Y p(θθθ c)−Y d(uuuk)
)2
]
=

(
T−1

∑
t=0

[ ft,m(θθθ c)− ft,m(uuuk)]

)2

+2Ψ0,mm +
T−1

∑
t=0

[gt,mm(θθθ
c)+gt,mm(uuuk)].

Now conditional on θ̂θθ k−1, by applying a chain rule, we can update the policy parameters by

ωωωk ≈ωωωk−1− γk∇uuuk

H

∑
h=1

(T−1

∑
t=0

[ ft,m(θθθ c)− ft,m(uuuk)]

)2

+
T−1

∑
t=0

[gt,mm(θθθ
c)+gt,mm(uuuk)]

∣∣∣∣∣∣
uuuk=(θ̂θθ k−1,ωωωk−1)

×λ∇ωωω

(1−ξ1)∑
k
t=1 ξ

k−t
1 G̃t(

1−ξ k
1

)√ (1−ξ2)∑
k
t=1 ξ

k−t
2 G̃2

t

(1−ξ k
2 )

+ ε

∣∣∣∣∣
ωωω=ωωωk−1

, (14)

where G̃k = ∇θθθ ℓ(τττ
d
k ;θ̂θθ k−1,sss

(k)
0 ) and G̃t = Gt , for t = 1, . . . ,k−1. Here G̃k is a gradient based on simulation

trajectory τττd
k since ωωωk is updated at the beginning of k-th iteration and we can not get physical data τττk.

To quantify the estimation uncertainty of model parameters θθθ c, we use the parametric bootstrapping.
Based on MLE and data τττ1, . . . ,τττk−1, we have θ̂θθ k−1 as the estimator for θθθ c. Then we can generate l bootstrap
samples, denoted as θ̃θθ

1
k−1, θ̃θθ

2
k−1, . . . , θ̃θθ

l
k−1, and get the bootstrapped estimators ft,m(θθθ c)≈ 1

l ∑
l
n=1 ft,m(θ̃θθ

n
k−1)

and gt,mm(θθθ
c)≈ 1

l ∑
l
n=1 gt,mm(θ̃θθ

n
k−1). Finally, we summarize the algorithm as follows.

Algorithm 1: Gradient-based Optimal Learning.

Input:initial policy parameter ωωω0, initial model parameter θ̂θθ 0, step size λ for parameter update,
initial step size γ0 for design policy update

For k = 1 : K
1. Compute uuuk(θ̂θθ k−1,ωωω) by equation (7)
2. Update design ωωωk by equation (14)
3. Do experiments in physical system with design π(ωωωk) to get new data τττk, Dk = Dk−1∪{τττk}
4. Update model parameters θ̂θθ k by equation (8)

End

6 EMPIRICAL STUDY

For validation, we use a simplified version of the Chinese Hamster Ovary (CHO) cell culture model
(Ghorbaniaghdam et al. 2014) as our SMRN model. We combine it with a state shift model to simulate
cell culture dynamics. Our gradient-based policy is compared against a random policy and a GP-based
calibration approach. Details of experiment setup are provided in Section 6.1, with results in Section 6.2.

6.1 Cell Culture Model and Validation

CHO cells have become the most commonly used mammalian hosts for the industrial production of
monoclonal antibodies (mAbs) and recombinant protein therapeutics. The cell growth model is described
by a function characterizing different phases of cell culture

vgrowth0 = vmaxg0
GLC

KmGLC0 +GLC
X0,

dX0

dt
= vgrowth0 +β1X1−β0X0,

dX1

dt
= β0X0−β1X1,
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where vgrowth0 represents the growth rate that depends on glucose concentration in the growth phase (phase
0). The parameters β0 and β1 represent phase transition rates, reflecting the dynamic interplay between
growth and production phases. A simplified SMRN focuses on three key metabolisms: glucose consumption,
lactate production, and mAb synthesis with chemical equations: (1) GLC→ 2LAC, (2) 0.02GLC→ X,
and (3) 0.01GLC→mAb, where GLC and LAC represent glucose and lactate. At any time t, the system
state is denoted by ssst = [[GLC]t , [LAC]t , [mAb]t ] representing the concentrations of glucose, lactate, and
mAb, respectively. The flux rates vvv(ssst ;ααα i) = (−vHK ,2vHK ,vmAb), where

vHKi = vmaxHKi

GLC
KmGLCi +GLC

Xi,t , vHK = vHK0 + vHK1 ,

vmAbi = vmaxmAbi

GLC
KmGLCi +GLC

Xi,t , vmAb = vmAb0 + vmAb1 .

The metabolic reactions are formulated as a SDE system (9) to account for the inherent randomness
and fluctuations in biochemical reactions. The general form of this SDE is given by dssst(θθθ) = bbb(ssst(θθθ))dt +
Q(ssst(θθθ))dBBBt , where the mean function bbb = N∑

1
i=0 Xi,t+dtννν(ssst ;ααα i) is modeled by the stoichiometric matrix

N = [−1,−0.02,−0.01; 2,0,0; 0,0,1] and reaction rates vvv(ssst ;ααα i). The system variability is modeled by

Q =
{

Ndiag{∑1
i=0 Xi,t+dtννν

r(ssst ;ααα i)}N⊤
} 1

2 .
We fit our model by minimizing MSE = 1

n ∑
n
j=1 [Y

s
j −Y e

j ]
2 between experiment data Y e from Ghorbani-

aghdam et al. (2014) and simulation Y s from our model. The results of our model validation are depicted
in Figure 3, where the measurements are from Ghorbaniaghdam et al. (2014). The confidence interval
(CI) is calculated by the formula [x̄− zσ/

√
n, x̄+ zσ/

√
n], where x̄ is the sample mean, z is the z-score

corresponding to the 95% confidence level, which is approximately 1.96, σ is the standard deviation of
the sample, n is the number of observations in the sample. This result shows the model’s effectiveness in
capturing the dynamics of the CHO cell culture system.

Figure 3: The cell culture mechanistic model was validated by using the experimental data. Red dots
represent the experimental data from the literature, while the blue lines indicate the simulation predictions
from our model, with the mean and 95% CI calculated from 20 replications.

In the following calibration experiments, we use the fitted parameters as the true model parameters of
the physical system and assume the digital twin has the same model structure with unknown parameters.
The true parameters are (1) ααα0 = [vmaxHK0,vmaxmAb0,KmGLC0 ,vmaxg0] = [4.15×10−5,3.5×10−8,4.2,0.126];
(2) ααα1 = [vmaxHK1,vmaxmAb1,KmGLC1 ] = [1.95×10−5,7.5×10−8,3.5] and (3) βββ = [β0,β1] = [0.3,0.1].

6.2 Digital Twin Calibration

With the true parameters defined in Section 6.1, our objective is to calibrate the digital twin model by
strategically designing CHO cell culture experiments. The aim is to minimize the model prediction error
by choosing the initial glucose concentration (design variable). In each experiment, we adjust the initial
glucose concentration and then collect a new batch of data to continuously refine our digital twin model.

For the calibration experiments setting, we assume time course data of the states is collected every 12h
until 72h, so each batch includes 7-time sequence data. We focus on calibrating parameters ααα0,ααα1. The
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parameter βββ is not considered during the digital twin calibration because it’s directly related to cell density,
which is not built into our state. The design space for the initial concentrations of glucose is set within the range
[18,38] mM. The initial concentrations of lactate and mAb are [LAC]0 = 0.8 mM, [mAb]0 = 0 mM. The initial
cell densities in Phase 0 and 1 are set to be X0,0 = 180×106 cells/L, X1,0 = 10×106 cells/L, respectively. The
initial parameters for the digital twin are estimated by the first batch of data using MLE. Since our parameters
are in different scales, we set a learning rate λ = [3× 10−5,3× 10−7,3,0.3,3× 10−5,3× 10−7,0.3] for
updating the parameter and γk = 5 (for all k) for updating next design policy. The fixed set of test data
Dtest is composed of initial states sss1

0 = [28,0.8,0] and sss2
0 = [38,0.8,0].

We conducted 15 macro-replications, each consisting of K = 200 iterations under varying initial
conditions, with initial glucose levels randomly chosen from the uniform distribution over the interval
[18,38]. We compare the proposed gradient-based calibration approach with (1) a random design approach,
where the design is uniformly sampled from [8,38]; (2) GP-based approach with expected improvement

acquisition function and 20 initial points. A Matern Kernal KMatern (x,x′) = 21−ν

Γ(ν)

(√
2ν |d|
ℓ

)ν

Kν

(√
2ν |d|
ℓ

)
is

used with d = x− x′, ℓ = 1 and ν = 1.5. The GP regression is fitted using the MSE as the output and
parameters as input. The GP model is iteratively updated with data from new physical experiments. To
ensure consistency across the three approaches, we used the same random seeds for these three approaches.
The mean prediction performance and the 95% confidence interval, calculated across macro-replications,
represented by the Mean Relative Errors MRE = 1

7 ∑
7
j=1 |θ̂( j)−θ c

( j)|/|θ
c
( j)| with script ( j) representing the

j-th component, are presented in Figure 4 for mAb protein drug generation prediction and in Figure 5 for
parameter estimation, respectively. For all figures, red lines represent the performance of our approach,
green lines represent the random design and blue lines represent GP.

Figure 4: mAb prediction error. Figure 5: Parameter estimation error.

The results in Figures 4 and 5 indicate that the proposed calibration approach is significantly more
sample-efficient than the random design and GP-based calibration approach. The MRE for mAb production
predictions using our method drops to about 60% after 60 iterations, compared to 220% with a random
design. Furthermore, the MRE for our approach converges to about 35% after 60 iterations for parameter
estimations, significantly lower than the 700% observed with the random policy. In contrast, the GP-based
method requires around 125 iterations to reach similar accuracy levels for mAb production predictions.

Table 2: Comparison of runtime for various calibration methods.

Time (Hour)
50

Iterations
100

Iterations
200

Iterations
400

Iterations
Proposed Approach 0.131 0.345 0.791 1.874

Random Search 0.097 0.186 0.373 0.86
Gaussian Process 0.195 0.866 5.695 > 24
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To assess the computational efficiency, the total runtimes are presented in Table 2. it indicates that the
GP method’s computational time increases significantly with larger datasets due to its cubic computational
complexity from matrix inversion (Williams and Rasmussen 2006). In contrast, the proposed gradient
method shows a sub-cubic and more manageable increase in computation time as iterations increase,
indicating more computational efficiency.

7 CONCLUSION

This study develops a robust calibration approach for a Bio-SoS mechanistic model in the context of
cell culture processes. By strategically guiding more informative data collection through the proposed
gradient-based calibration approach, we significantly enhance the fidelity and predictive accuracy of the
digital twin model. The empirical validation using the CHO cell culture model underscores the superiority
of our approach over the traditional random design, showcasing its potential applicability across various
biological systems. Overall, this work not only contributes to the theoretical advancements in bioprocess
digital twin development but also holds promise for practical implementations that could improve the
efficiency and effectiveness of biomanufacturing in the pharmaceutical industry.
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