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ABSTRACT

This study examines the effectiveness of different metrics in constructing ambiguity sets for Distributionally
Robust Optimization (DRO). Two main approaches for building ambiguity sets are the moment- and the
discrepancy-based approaches. The latter is more widely adopted because it incorporates a broader range of
distributional information beyond moments. Among discrepancy-based metrics, the Wasserstein distance is
often preferred for its advantageous properties over ϕ-divergence. In this study, we propose a moment-based
Kingman distance, an approximation of mean waiting time in G/G/1 queues, to determine the ambiguity set.
We demonstrate that the Kingman distance provides a straightforward and efficient method for identifying
worst-case scenarios for simple queue settings. In contrast, the Wasserstein distance requires exhaustive
exploration of the entire ambiguity set to pinpoint the worst-case distributions. These findings suggest that
the Kingman distance could offer a practical and effective alternative for DRO applications in some cases.

1 INTRODUCTION

The Wasserstein distance, sometimes referred to as transport distance, Mallow’s distance, or earthmover
distance, is a metric for the difference between two probability distributions (Panaretos and Zemel 2019).
There has been recent interest in the use of the Wasserstein distance for robust analysis and DRO of
stochastic models (Kuhn et al. 2019; Blanchet et al. 2022). This metric is used to bound differences
from the nominal probability distributions, and results within these bounds are used as robust performance
bounds for the system.

Simple queues are often key components of larger discrete-event simulation models, and in simulation
optimization settings, average waiting time or, equivalently, number-in-system measures are typically the
focus. These performance metrics are known to be strongly affected by the first two moments of the
queuing model’s probability distributions. In this case, distributions at the extremes of the Wasserstein
bounds often do not correspond to extremes of system performance. This study examines which probability
distribution distance metric aligns better with differences in system performance for a simple G/G/1 and the
capacitated G/G/1/k queue: a moment-based metric using the Kingman approximation (Kingman 1961)
or the Wasserstein distance. It is known that the discrepancy-based approach utilizes more distributional
information than just the moments (Bayraksan and Love 2015). The moment-based approach assumes that
only certain moments are known exactly, while ignoring other available information about the distribution
(Gao and Kleywegt 2023). Nevertheless, this study serves as a foundational exploration, suggesting that in
certain applications, such as simple queuing systems, a moment-based metric may offer superior performance
in DRO problems.

The paper is organized as follows. We review important concepts in distributionally in robust analysis
and discrete-event simulation in Section 2. We examine use of the moment-based Kingman distance metric
and its advantages over a Wasserstein distance metric for a G/G/1 queue in Section 3. Section 4 leaves the
reader with a summary of insights and open questions and challenges ahead.
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2 DISTRIBUTIONALLY ROBUST OPTIMIZATION

DRO seeks to optimize problems that depend on uncertain parameters often learned from data. DRO hedges
against risk of selecting an inferior system due to small samples or other corruptions in the data. The
main application of DRO has been in data-driven settings to avoid overfitting and failing to generalize on
out-of-sample data (Bertsimas and Van Parys 2022) or for adversarial learning (Blanchet et al. 2022). The
focus in this study is its use for stochastic systems.

We let the stochastic performance of the system under decision x ∈ X ⊆ Rd and a random input data
ξ ∈ Ξ that follows probability distribution ν be denoted by F (x, ξ) and its expectation denoted by

f(x, ν) := Eν [F (x, ξ)]. (1)

When addressing uncertainty in the input data, it is natural to consider a set of distributions with some
perturbation from the distribution fitted empirically to the data at hand, which we henceforth refer to as
the nominal distribution, and consider the performance of the system (decision) being evaluated under all
possible input distributions. The system under study is then better (say less costly) with alternative x1 than
x2 if f(x1, ν) < f(x2, ν) for all possible input distributions ν, which is to say under the worst possible
input distribution. This is why DRO can be viewed as a way to hedge the risks associated with input
uncertainty (Rahimian and Mehrotra 2019). We will further review input uncertainty in the next section.

In DRO, an ambiguity set P is constructed that includes distributions within a certain discrepancy
from the nominal distribution. The implicit assumption is that the true input distribution resides within
the ambiguity set. Decisions are then made to ensure robustness against the variations within this set
that minimizes the maximum value of the objective function across all the distributions in the ambiguity
set (Blanchet et al. 2022). There are two other methods we can compare DRO with. The first, stochastic
optimization (SO), assumes we know the underlying distribution ν, which often is not true. Even if we
observe multiple realizations of ξ, ν still may not be known exactly, and use of a distribution different from
ν due to the input uncertainty may result in suboptimal decisions. The second, robust optimization (RO),
on the other hand, does not rely on any specific distributional information, considering only ξ over support
U . Therefore, (DRO) acts as an intermediary framework by utilizing partial distributional information,
obtained from historical data or domain-specific knowledge, to form the ambiguity set P , providing a more
balanced approach between the full distributional knowledge of SO and the distribution-agnostic perspective
of RO. Specifically, if P contains only the true distribution of ξ, DRO reduces to SO. In addition, if P
contains all probability distributions on the support of ξ, the DRO reduces to RO.

inf
x∈X

Eν [F (x, ξ)] (SO)

inf
x∈X

sup
ξ∈U

F (x, ξ) (RO)

inf
x∈X

sup
ν∈P

Eν [F (x, ξ)] (DRO)

Since DRO finds a decision that minimizes the worst-case of the objective function among all probability
measures in the ambiguity set, the key to DRO is how to construct the ambiguity set P .

2.1 Input Uncertainty in Stochastic Simulation

DRO has a direct link to input uncertainty of stochastic systems. When we simulate a real-world system, we
typically use distributions fitted to data assumed to be random samples from the true real-world distribution.
However, generally the true distribution is not known precisely and the data we have is finite. As a result,
there is statistical error in estimating the input models. This error is called input uncertainty. For instance,
in queuing models, the input uncertainty often arises from the distributions of interarrival and service times
that are unknown or partially known.
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Let us denote by ν the input model (distribution). In this section, we show the impact of input uncertainty
on the estimation of the performance measure f(ν) defined similar to (1) but dropping x for simplicity, i.e.,
expectation of the stochastic simulation outputs F generated from random inputs ξ ∼ ν. If we assume ν
to be from a certain parametric family, an estimate of ν is reduced to estimating its parameters. If we have
no parametric assumption on ν, its estimation is the empirical distribution (Barton et al. 2022). We denote
ν0 as the true probabilistic description, and ν̂ as the fitted input model. Then a natural point estimate of
f(ν0) is

f̄(ν̂) =
1

r

r∑
j=1

Fj(ν̂),

where Fj(ν̂) := F (ξj ∼ ν̂) is the jth identically distributed simulation replication under input model ν̂.
Assuming that the simulation replications j = 1, 2, · · · , r are independent, the decomposition shows

Fj(ν̂)− f(ν0) = [Fj(ν̂)− f(ν̂)] + [f(ν̂)− f(ν0)],

where the first term is the simulation error and the second term is the input uncertainty error. By the law
of total variance, we get

Var(f̄(ν̂)) =
E[Var(Fj(ν̂)|ν̂)]

r
+Var(f(ν̂)), (2)

where the variance and expectation on the right hand side is with respect to the probability distribution
of the random ν̂ (uncertainty in the fitted input model) and the inner variance in E[Var(Fj(ν̂)|ν̂)] is with
respect to the simulation outputs’ probability distribution. Similar to the decomposition above, we see that
the estimator’s variance contains the variance due to the simulation error and variance due to uncertainty
in the fitted input model. In addition, the mean square error

E[(f(ν̂)− f(ν0))
2] = (E[f(ν̂)]− f(ν0))

2 +Var(f(ν̂)) = Bias(f(ν))2 +Var(f(ν̂))

shows that the error of the performance measure under the input model ν̂ includes the bias induced by input
uncertainty. Bias is harder to quantify but there are recent studies that tackle that in parametric (Morgan
et al. 2019) and nonparametric (Vahdat and Shashaani 2023) settings.

As demonstrated above, the uncertainty can propagate to the reliability of decision-making processes
by affecting not only the variance but also the bias of the estimated performance measures obtained from
simulation (Barton et al. 2022; Lam 2016). Therefore, accurately representing the input uncertainty in the
optimization models is essential for the validity of the simulation results.
Remark 1 When considering correcting for input-uncertainty bias in the outputs, a similar objectives as in
the DRO may be sought, whereby one can ask how wrong could the model outputs be by “mis-thinking”
or mis-specifying the model inputs; or what is the worst estimate of outputs we could have for a given
decision alternative. From this standpoint, there are ties between the worst case performance estimate in
DRO and the idea of debiasing model outputs by estimating and removing the input-uncertainty bias before
comparing systems for optimization.

2.2 Ambiguity Set Construction Methods

The construction of an ambiguity set is a pivotal step in hedging against input uncertainty in decision making.
With a parameter δ > 0 that denotes the size of the distributional uncertainty, two predominant approaches to
define an ambiguity set are the moment-based and the discrepancy-based approaches. In the moment-based
approach, the ambiguity set incorporates distributions that satisfy specific moment conditions, for example,

Pδ =

{
ν1 :

∣∣∣∣∫
Ξ
ξdν0(ξ)−

∫
Ξ
ξdν1(ξ)

∣∣∣∣ ≤ δ

}
.
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On the other hand, the discrepancy-based approach includes distributions within a certain statistical distance
from a nominal distribution ν0. In this case, the ambiguity set P is defined as

Pδ = {ν1 : d(ν0, ν1) ≤ δ},

where d(ν0, ν1) represents the distance between two distributions ν0 and ν1.
In this paper, we focus on a well-established metrics in DRO, namely the Wasserstein distance, due

to its desirable properties over the ϕ-divergence for two main reasons (Peyré et al. 2019). First, the
Wasserstein distance has been proven to effectively measure the space of probability measures with a finite
p-th moment. Second, it can quantify the distance between two distributions whose supports may not
overlap. ϕ-divergence, on the other hand, only considers distributions that are absolutely continuous with
respect to the nominal distribution and hence fails when distributions do not overlap; see Figure 1 (adapted
from (Solomon 2023)).

Figure 1: The ϕ-divergence between the nominal (blue) distribution and the alternative (red) distributions
is zero since there is no overlap between them. In contrast, the Wasserstein distance becomes larger as the
alternative distribution moves farther away from the nominal distribution.

Considering further the construction of ambiguity sets, Bertsimas and Van Parys (2022) explore the
use of the bootstrap method as an alternative to other methods that are commonly used including ambiguity
sets based on distance thresholds such as the Wasserstein distance (Kuhn et al. 2019). The authors use
bootstrap sample in place of independent validation data, for robust optimization, to estimate the fraction of
out-of-sample cost estimates (for a chosen decision) that exceed some threshold. In their setting, evaluation
of the cost function can be done inexpensively. In robust simulation optimization, however, function
evaluations are costly and the existence of a proxy (or metamodel) can be helpful so that not all bootstrap
samples need be simulated.

The optimal transport (OT) methods address the problem of transporting a source (or nominal) probability
measure ν1 ∈ P(Ξ1) to a target probability measure ν2 ∈ P(Ξ2), with the goal of minimizing the
transportation cost c. Here, P(Ξ) represents the collection of all probability measures defined on the
sigma-algebra of the sample space Ξ. A measure π ∈ Π(ν1, ν2) ⊂ P(Ξ1 × Ξ2) is known as a transport
plan and represents the amount of mass transferred from ν1 to ν2, where Π(ν1, ν2) is the set of all transport
plans between ν1 and ν2. By the Kantorovich formulation, OT problem can be expressed as

OT(ν1, ν2; c) := min
π∈Π(ν1,ν2)

∫∫
Ξ1×Ξ2

c(ξ1, ξ2)dπ(ξ2, ξ2),

where c(ξ1, ξ2) represents the cost of moving mass dπ(ξ1, ξ2). When the cost c(ξ1, ξ2) is defined as the p-th
power of the distance metric, the OT problem is defined as the Wasserstein distance of order p, commonly
referred to as the p-Wasserstein distance, that is,

dWp(ν1, ν2) = min
π∈Π(ν1,ν2)

(∫∫
Ξ1×Ξ2

(d(ξ1, ξ2))
p dπ(ξ1, ξ2)

)1/p

.
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In one dimension, the p-Wasserstein distance has a closed form given by

dWp(ν1, ν2) =

(∫ 1

0

∣∣C−1
ν1 (ξ)− C−1

ν2 (ξ)
∣∣p dξ

)1/p

,

where Cα(ξ) :=
∫ ξ
−∞ dα is the cumulative distribution function (CDF) that maps R to [0, 1] for a measure

α. It is proven that (Santambrogio 2015) when p = 1, the p-Wasserstein distance simplifies to

dW1(ν1, ν2) =

∫ 1

0

∣∣C−1
ν1 (η)− C−1

ν2 (η)
∣∣ dη =

∫
R
|Cν1(ξ)− Cν2(ξ)| dξ. (3)

In Figure 2 (adapted from (Rohde, Gustavo K. and Li, Shiying and Kolouri, Soheil 2022)), the 1-D case
of dW1 is illustrated.

Figure 2: The 1-Wasserstein distances dW1(ν0, ν1) and dW1(ν0, ν2) in 1-D computes the areas between the
CDFs Cν0 and Cν1 , and Cν0 and Cν2 , respectively. As the distance between the distributions increases, so
does dW1 .

In this paper, although unconventional, we utilize the difference in Kingman’s formula values, henceforth
referred to as the ‘Kingman distance’ and denote by dK , between the distributions in an ambiguity set
and the nominal distribution as a metric of distance between two probability distributions. This metric is
applied to input models to simulate a queueing system that relies on moment information. In the following
section, we will justify this choice by discussing the properties of Kingman’s formula in relation to the
performance measure, specifically focusing on the expected waiting time.

2.3 An Alternative Method: Kingman Distance

Kingman (1961) published the following approximation of waiting time for a G/G/1 queue with the input
parametric model ν = (ρ, c2a, c

2
s, µ):

Eν [F (ν)] ≈
(

ρ

1− ρ

)(
c2a + c2s

2

)(
1

µ

)
, (4)

where ν contains the interarrival times A and service times S, i.e., ξ = (A,S) that follow parametric
probability distributions parameterized by the utilization ρ, the average service rate µ, and the coefficients
of variation for interarrival and service time, ca and cs, respectively. The approximation is precise when
the utilization is high, and exact when interarrival times follow an exponential distribution, that is, the
M/G/1 case. A Kingman moment-based distance metric for distributions ν1 = (ρ1, c

2
a1, c

2
s1, µ1) and
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ν2 = (ρ2, c
2
a2, c

2
s2, µ2) based on (4) is

dK(ν1, ν2) =

∣∣∣∣( ρ1
1− ρ1

)(
c2a1 + c2s1

2

)(
1

µ1

)
−
(

ρ2
1− ρ2

)(
c2a2 + c2s2

2

)(
1

µ2

)∣∣∣∣ . (5)

The Kingman moment-based distance metric (5) will provide approximate correspondence to perfor-
mance distances for the G/G/1 case and exact correspondence for the M/G/1 case. We will see that this
relationship does not hold, even approximately, for the Wasserstein distance.

3 SIMULATION ON EXPECTED WAITING TIME FOR A G/G/1 QUEUE

Recall from (5) that the Kingman distance dK is positively related to the utilization ρ and the coefficient of
variation c2a. However, Figure 3 suggests that this relationship does not apply to the Wasserstein distance.
This is because the distance between the CDFs does not monotonically increase as the distance between the
nominal parameters and alternatives increases. Specifically, the area between the alternative and nominal
distributions first decreases until they match and then it increases. However, the waiting time consistently
increases as the parameters increase.

Figure 3: Alternative CDFs (colored) of Lognormal and Gamma distributions compared with the nominal
CDF reveal the effect of changing each parameter on the area between CDFs. The left column shows that
increasing c2a initially reduces the area between CDFs, but increases it once the CDFs cross. The right
column shows the same behavior as ρ increases.

In the following sections, we investigate how these different relationships can affect the identification
of the worst-case scenario.
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3.1 Simulation with Full-Factorial Experiment

To demonstrate how two different distance metrics perform in detecting the worst-case distribution, we
performed a full-factorial experiment with a G/G/1 queue. In this experiment, the interarrival times follow
a gamma distribution, while the service times follow a lognormal distribution. We assume that uncertainty
in the system arises from the unknown distribution of interarrival times. Without loss of generality, we
fix both the mean service time and the squared coefficient of variation c2s at 1 with the shape parameter
α = 1/c2a and the rate parameter λ = αρ (Abate et al. 1993). We take the full factorial design of
c2a ∈ {0.1, 0.5, 1, 2, 5, 10} and ρ ∈ {0.7, 0.8, 0.9}. Given the sensitivity of the queuing system to utilization
and arrival time variation, we vary c2a and ρ rather than shape and rate parameters for tractable insights.

As shown in Figure 4, changes in the parameters of the interarrival distribution impact the Wasserstein
distance and the simulated waiting time differently. For instance, in both the Wasserstein distance of order
1 and 2, increasing the coefficient of variation c2a from 10 to 20, while keeping the utilization rate ρ constant
at 0.7, leads to increases in both the Wasserstein distance and the waiting time. Conversely, reducing ρ
from 0.7 to 0.6, while maintaining c2a at 10, also increases the Wasserstein distance but results in a decrease
in waiting time. The same result is observed when the service times follow a gamma distribution.

These outcomes illustrate that similar changes in the Wasserstein distance can relate to divergent
effects on waiting times. Such lack of one-to-one correspondance between the performance measure and
Wasserstein distance underscores the necessity of searching the entire ambiguity set that is constructed via
Wasserstein distance to identify the worst-case scenario. In contrast, it is generally sufficient to pinpoint
the distribution that yields the maximum (positive) Kingman distance from the nominal distribution as that
corresponding to the worst-case scenario.

3.2 Simulation with Bootstrap Ambiguity Sets

Given that input uncertainty stems from the finiteness of samples used to fit input distributions, bootstrapping
can be an effective way to define ambiguity sets. Suppose we have a dataset of m interarrival times from an
unknown distribution νA, whose empirical CDF we denote as ν̂A. By applying bootstrapping to this data,
we can generate b sample sets with empirical distributions ν̂∗jA , j = 1, 2, · · · , b in the neighborhood of
the nominal probability distribution ν̂A. This process introduces perturbations to constitute the ambiguity
set as P =

⋃b
j=1 ν̂

∗j
A . For each bootstrapped sample set, the Kingman distance can be computed using

its fitted parameters following (4). To compute the Wasserstein distance of order 1 following (3), use the
empirical CDFs for the original and bootstrapped sample sets as

Cν̂A(a) =
m∑
i=1

1{Ai ≤ a}, and C
ν⋆jA

(a) =

m∑
i=1

1{A⋆j
i ≤ a}, ∀ j = 1, 2, · · · , b;

where Ai and A⋆
i represent the i-th data point in their respective sample sets..

With bootstrapped distributions forming the ambiguity set as opponsed to the full-factorial experiment
in the previous section, we again compare the effectiveness of the Wasserstein and Kingman distances
in identifying worst-case scenarios. The overall experimental design, depicted in Figure 5, is as follows.
In each experiment replication, we generates b = 100 bootstrap sample sets. For each sample set, the
Wasserstein and Kingman distances are calculated, and the sample sets producing the maximum distances,
denoted ν∗W and ν∗K are selected. The waiting times for these input distributions are then simulated for
a run-length of 10,000 times units to compute the estimated worst-case performance. Note, in some
experiment replications the same set distribution may be identified by both metrics.

In this experiment, the interarrival and service time distributions are assumed to follow gamma and
lognormal distributions, respectively. We consider multiple systems and examine whether the true most
robust system can be identified with either metric. Unlike the initial experiment, the waiting time is
simulated for a G/G/1/k queue with capacity k ∈ {100, 500, 1000}. This variable capacity is introduced
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Figure 4: Simulated waiting times for a G/G/1 queue with Gamma distributed interarrival times and: (a)
lognormal service times, and (b) Gamma service times. Kingman distance exhibits an almost monotonic
relationship with the simulated waiting times, whereas the Wasserstein distance patterns are inconsistent.

to account for scenarios where the mean of the bootstrapped samples might be less than 1, which could
indicate a potential for queue explosion when ρ = E[S]/E[A] = 1/E[A] > 1.

The results of the experiment are depicted in Figures 6 and 7. Dotted lines connect instances that the
worst case scenarios match. The ‘True Mean’ is the average waiting time with the true input distribution.
First, the Wasserstein distance often fails to identify the worst-case scenario. In comparison, the Kingman
distance more accurately identifies the true longest waiting times across all replications. We also observe
that in most cases, the quartiles derived from ν∗W are lower than those from ν∗K . The performance difference
between the two metrics is further supported by the results in Table 1 that concerns different queue capacities;
from the table we note that in most cases, the worst-case distributions do not match.
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Figure 5: The bootstrapping procedure of estimating the worst average waiting time using Kingman and
Wasserstein distance.

Figure 6: Simulated waiting times under worst-case distributions from 50 replications of a capacity-1000
queue with interarrival parameters c2a = 1 and ρ ∈ {0.7, 0.8, 0.9}. The waiting times calculated from the
distributions selected by the Kingman distance align more closely with the ‘True Mean’.

Table 1: The proportion of the cases where ν∗W matches ν∗K out of 50 experiment replications for different
queue capacities and system parameters.

Capacity k
c2a (with fixed ρ = 0.9) ρ (with fixed c2a = 1)

0.1 0.5 1 5 10 0.7 0.8 0.9
100 0.46 0.26 0.22 0.02 0.02 0.20 0.44 0.20
500 0.44 0.34 0.16 0.04 0.00 0.20 0.18 0.18
1000 0.34 0.22 0.20 0.00 0.08 0.32 0.28 0.38

Furthermore, Figure 7 suggests that relying on the Wasserstein distance for decision-making could lead
to incorrect conclusions. In Figures 6 and 7, the true mean indicates System 1 as the best system among
the others. However, with the Wasserstein distance, it is hard to distinguish System 1 from System 2 in
Figure 6, and from System 2, 3, and 5 in Figure 7. This underscores the Kingman distance as a potentially

3376



Eun, Shashaani, and Barton

Figure 7: Simulated waiting times under the same experimental settings with interarrival parameters
c2a ∈ {0.1, 0.5, 1, 5, 10} and a constant utilization rate of ρ = 0.9. The waiting times calculated from the
distributions selected by the Kingman distance align more closely with the ‘True Mean’.

Figure 8: Box plots of the scaled distance obtained from 100 bootstrap sample sets. The queuing capacity
is set to 1,000. The spreads in the Kingman distance are smaller than in the Wasserstein distance.

more reliable choice for the distance metric in robust optimization of queueing systems, where accurately
identifying the worst-case scenario is crucial.

There is an additional benefit to using Kingman distance instead of the Wasserstein distance for
constructing ambiguity set. Given that bootstrapping sets the size of the ambiguity set adaptively, it is
advantageous for a distance metric to be more robust against the inherent variability of resampling. As
shown in Figure 8, the spread of the scaled difference in the Kingman distance is generally smaller than in
the Wasserstein distance, and at worst, they are almost the same. This suggests that the size of ambiguity
is more sensitive if we use the Wasserstein compared to the Kingman distance.

4 CONCLUSION

This study has compared the Wasserstein and Kingman distance metrics in the context of DRO for G/G/1
queuing systems under input uncertainty. Our findings confirm that while the Wasserstein distance provides
a comprehensive method for spanning ambiguity sets, it often requires extensive computational resources to
pinpoint the worst-case scenarios. Conversely, the Kingman distance, anchored in moment-based metrics
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derived from Kingman’s formula, presents a more efficient alternative, closely correlating with actual
system performance and facilitating quicker identification of critical scenarios. These insights underscore
the potential for integrating the Kingman distance into DRO frameworks for significant computational
relief, particularly for queuing systems where rapid and reliable decision-making is paramount.

Future research could explore several intriguing questions. For example, the integration of different
distance metrics, specifically Wasserstein and Kingman, in the analysis of queuing systems warrants further
investigation. This approach is particularly compelling given the robust mathematical foundation and
beneficial properties of the Wasserstein distance. While the Wasserstein distance does not pinpoint the
most extreme cases effectively, it provides a justifiable characterization of possible alternative distributions
defining ambiguity sets. In certain applications, it is proven that the Wasserstein distance is superior to
ϕ-divergence (Gao and Kleywegt 2023). We can think of leveraging the Kingman distance to identify
the worst-case scenarios within the ambiguity set formed using the Wasserstein distance. Computational
studies could validate and refine this integrated approach, potentially leading to more effective and efficient
DRO strategies.

This investigation can be extended to more complex queuing systems and associated moment-based
expected waiting time approximations. Additionally, for production systems, the clearing function (CF)
approximates the non-linear relationship between expected output and expected workload. Its determination
includes input uncertainty due to its reliance on simulation data for fitting CFs (Gopalswamy and Uzsoy
2019). Developing distributionally robust methods for fitting CFs and incorporating these functions into
non-linear production planning models should be explored.
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