
Proceedings of the 2024 Winter Simulation Conference
H. Lam, E. Azar, D. Batur, S. Gao, W. Xie, S. R. Hunter, and M. D. Rossetti, eds.

DISTRIBUTED MODEL EXPLORATION WITH EMEWS

Nicholson Collier1,2, Justin M. Wozniak2,3, Arindam Fadikar1,2, Abby Stevens1,2, and Jonathan Ozik1,2

1Decision and Infrastructure Sciences Division, Argonne National Laboratory, Lemont, IL, USA
2Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA

3Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, USA

ABSTRACT

As high-performance computing resources have become increasingly available, new modes of applying and
experimenting with simulation and other computational tools have become possible. This tutorial presents
recent advancements to the Extreme-scale Model Exploration with Swift (EMEWS) framework. EMEWS
is a high-performance computing (HPC) model exploration (ME) framework, developed for large-scale
analyses (e.g., calibration, optimization) of computational models. We focus on three new use-inspired
EMEWS capabilities, improved accessibility through binary installation, a new decoupled architecture
(EMEWS DB) and task API for distributing workflows on heterogeneous compute resources, and improved
EMEWS project creation capabilities. We present a complete worked example where EMEWS DB is used
to connect a Python Bayesian optimization algorithm to worker pools running both locally and on remote
compute resources. The example, including an R version, and additional details on EMEWS are made
available on a public website.

1 INTRODUCTION

The Extreme-scale Model Exploration with Swift (EMEWS) framework is a high-performance computing
(HPC) model exploration (ME) framework, developed for large-scale analyses of computational models
that require the use of approximate, heuristic ME methods, such as calibration or Bayesian optimization,
involving large ensembles. EMEWS was introduced to Winter Simulation Conference attendees through
a previous advanced tutorial (Ozik et al. 2016). Since that time, the importance and complexity of
computational studies for advancing scientific insight and supporting decision making has only increased.
Our research group has been applying and evolving EMEWS to adapt to changing requirements related to
ease of deployment, robustness, scalability, and heterogeneous computing resources. EMEWS has been used
across many computational methods and applications, including agent-based models (ABMs) of infectious
diseases (Ozik et al. 2018; Tatara et al. 2019), ABMs of information diffusion (Kaligotla et al. 2020;
Lindau et al. 2021), ABMs of molecular systems (Ozik et al. 2019), deep learning for cancer (Wozniak
et al. 2018), and microsimulations in cancer (Rutter et al. 2019; Nascimento de Lima et al. 2023).

EMEWS has also been used to support the COVID-19 response in Chicago and Illinois (Ozik et al.
2021). Informed by this experience in time-critical computing, a set of requirements for an open science
platform for robust epidemic analysis emerged (Collier et al. 2023). These needs, which include support
for very large number of tasks, analyses that extend beyond resource wall times, analysis persistence of data
and metadata across computational campaigns, and coordinating tasks across distributed HPC resources,
with robust, secure and automated access to each of the resources, guided the development of the new
capabilities in EMEWS. In the same pandemic response context, EMEWS has enabled the development
of new, fast time-to-solution, large-scale ME algorithms, that can exploit the concurrency provided by
HPC systems. These include trajectory-oriented (Fadikar et al. 2023; Fadikar et al. 2024) and large-batch
Bayesian optimization (Binois et al. 2021) approaches.

72979-8-3315-3420-2/24/$31.00 ©2024

Collier, Wozniak, Fadikar, Stevens, and Ozik

Through this tutorial paper we present the latest advances to the EMEWS framework, with a focus
on demonstrating 1) a new software installation approach for ease of deployment, 2) a new decoupled
architecture and task API for distributed workflows, and 3) new EMEWS project creation capabilities.
These are use-inspired advancements to the EMEWS framework that together enable new and powerful
modes of using computational studies in support of advancing science and improving support for evidence
based decision making. These and other capabilities can be further explored on the EMEWS Project (2024a)
site.

The remainder of this paper is organized as follows. In Section 2, we describe related HPC workflow
systems, including how EMEWS expands on existing capabilities. In Section 3, we present the expanded
EMEWS capabilities: binary installations, EMEWS DB, and the EMEWS project creator. In Section 4,
we provide a complete worked example showing EMEWS DB in both a local and remote configuration,
running Python and R ME algorithms. We summarize our contributions and discuss future directions in
Section 5.

2 RELATED WORK

Workflow management systems that coordinate tasks on HPC or cloud resources have gained in popularity
as many-task computing has played an increasingly central role across scientific domains, with many
open source systems being under active development (Workflows Community Initiative 2024). These
systems can be thought of as divided between declarative and programmatically defined workflow systems.
Merlin (Peterson et al. 2022) is in the first category of systems where a specification, in the form of a directed
acyclic graph (DAG), defines all task dependencies and the system is charged with coordinating the necessary
steps to complete the set of tasks. Systems like Swift/T (Wozniak et al. 2013) and Parsl (Babuji et al. 2019),
on the other hand, use code and code analysis to determine inter-task dependencies. Both approaches have
their advantages, including simplifying the workflow description interface for the declarative systems, and
enabling more fine-grained control of workflows with the programmatic approach. The EMEWS framework
has been built on the Swift/T workflow system (hereafter Swift), which provides flexibility in incorporating
multiple programming languages within workflows (Wozniak et al. 2015), and through message passing,
compiler techniques (Armstrong et al. 2014), and work stealing capabilities (Lusk et al. 2010), enables
EMEWS workflows to efficiently scale to the largest computing resources (Ozik et al. 2021).

Building on the proliferation of workflow systems, there has been an emergence of approaches to allow
increasingly complex algorithms to control the overall workflow logic. Two such examples are the Python
libraries Colmena (Ward et al. 2021) and libEnsemble (Hudson et al. 2022), where the logic of producing
additional tasks based on the results of earlier tasks are encapsulated in Python code called “thinkers” in
the former and “generators” in the latter. This inversion of control (Ozik et al. 2015) pattern delegates the
workflow progression logic to something outside of the workflow system itself and allows for arbitrarily
complicated logic that can be defined using, in this case Python-based, scripts and 3rd party libraries for,
e.g., statistical or machine learning based decisions on task generation. EMEWS, through the use of general
task queues, provides the ability to define such control algorithms, also referred to as model exploration
(ME) algorithms, in multiple languages, with a primary focus on Python and R. This extends the utility of
EMEWS beyond the Python ecosystem (Wozniak et al. 2018; Rutter et al. 2019; Ozik et al. 2021).

Another trend for workflow systems is distributing them across multiple resources. This can provide
bursting capabilities when demand for specific tasks within a workflow spike and also can align tasks
with their optimal resource configurations. In this space, Globus Compute (formerly funcX) (Chard et al.
2020) has been used by Colmena (Ward et al. 2023) and libEnsemble (Hudson et al. 2024) to securely
enable the execution of tasks on a mix of distributed resources, e.g., sending simulation tasks to CPU
resources and AI/machine learning tasks to GPU resources. Balsam (Salim et al. 2019) is a Python-based
workflow manager that provides centralized access to a number of existing HPC resources, including those
at the Argonne and Oak Ridge Leaderships Computing Facilities (ALCF/OLCF) and the National Energy
Research Scientific Computing Center (NERSC). Currently, access to the Balsam service is not public but

73

Collier, Wozniak, Fadikar, Stevens, and Ozik

is administered by the ALCF. With its latest capability enhancements, EMEWS, through the EMEWS DB
queues discussed below, leverages Globus Compute to coordinate tasks across federated HPC resources,
with robust, secure, and automated access to each of the resources. What is unique about EMEWS is that
rather than employ a global task queue, each resource is provided with a local queue, which is located within
the security cordon of the resource. This ensures alignment with the diverse authentication requirements
of each HPC facility. Furthermore, these capabilities are available to anyone with a free Globus account.

3 EXPANDED EMEWS CAPABILITIES

This section presents new capabilities in the EMEWS framework, including easy-to-install EMEWS
binaries (§3.1), the new EMEWS DB decoupled architecture and associated task API for distributing
workflows on heterogeneous compute resources (§3.2), and the improved EMEWS project creator (§3.3).
Further details on these are found on the EMEWS Project (2024a) site.

3.1 The EMEWS Anaconda Installer

Modern high-level scientific computing environments are used by researchers focused primarily on scientific
results, and less focused on computing internals. These can include web or shell-based environments, with
scientific tools and libraries that are easy to find, install, and incorporate into workflows. EMEWS is
designed as a workflow system that provides access to such scientific resources, but is also intended to be
scalable to exotic computing environments in which computing internals are exposed to the user.

To address this deployment challenge, we developed the EMEWS Anaconda Installer, which provides pre-
built binaries that can be quickly and seamlessly installed across platforms. This is built on Anaconda-based
installations of core EMEWS components, including Swift (Wozniak 2024a), R, Python, and PostgreSQL,
and provides further access to Anaconda packages for Python, R, etc., for the user.

The binary installation approach has software engineering trade-offs in terms of maintainability, and
strengths and weaknesses from a user perspective, when compared against the alternative, a source-based
installation process. The main complexity is that the underlying workflow engine is built on a scalable,
MPI and C -based system (Lusk et al. 2010). Compiling this system can produce errors that are unfamiliar
to users new to this type of programming. Primarily, this approach pushes the ownership of such issues
to the EMEWS team, and decreases the likelihood that end users will see them. This incurs costs on
the EMEWS team, as we must maintain binary packages for a range of OS and hardware configurations
(currently 4), with associated testing and development workloads.

The strength of this approach is that users can generally get up to speed with EMEWS on a local
system as quickly as with other Anaconda-based packages. The potential weakness of the approach is that
the user is essentially locked into Anaconda as an “OS.” Swift will use the MPI and C language runtime
in Anaconda, and other such resources, rather than those that might be available on an exotic computing
system such as a tuned vendor-provided MPI installation. However, the binary installation allows for quick
and painless startup for experimenting with EMEWS and developing workflows that can be deployed on
larger systems with more bespoke software stacks, where a source-based installation of EMEWS may
already exist, HPC facility support for installation can be requested, or the user has assessed the utility of
EMEWS such that investing in learning about source installations makes sense.

In summary, the EMEWS Anaconda Installer offers a first step for scientific users that desire to
quickly access EMEWS capabilities on small-scale resources, in an environment familiar to users of high-
level programming environments. Once “hooked” on EMEWS workflows, the user can then progress to
larger-scale runs on supercomputing systems supported by the traditional source-based EMEWS installers.

3.2 EMEWS DB

EMEWS DB builds on our earlier queue-like workflow interfaces: EMEWS Queues for Python (EQ/Py)
and R (EQ/R) (Ozik et al. 2016). There, the main user interface is a Swift script, a high-level program

74

Collier, Wozniak, Fadikar, Stevens, and Ozik

that starts the ME algorithm which then provides tasks for evaluation to the Swift script via an in memory
output queue. The tasks are distributed by the Swift runtime over a potentially large computer system
where they are evaluated, and the results are returned to the ME via an in memory input queue. The two
components here, the Swift script and the ME algorithm are tightly coupled. They both run as part of the
same HPC job and typically with the same node configuration.

EMEWS DB loosens this tight coupling by separating the execution of the Swift script from that of the
ME. A PostgreSQL database serves as a mediator between the two. The ME submits tasks to the EMEWS
task database (§3.2.1). A Swift worker pool (§3.2.2) retrieves tasks from the database for evaluation, and
returns the results to the database where they are retrieved by the ME. The communication of tasks, their
status, and evaluation results are all done through the EMEWS task queue API (§3.2.3). Figure 1 illustrates
the main components of EMEWS DB.

Figure 1: Expanded EMEWS capabilities through EMEWS DB. Python and R-based ME algorithms (1)
provide tasks to evaluate via the EMEWS Task API (2). The tasks are added to the EMEWS Task database
(DB) (3) and consumed via Swift worker pools (4). Upon task completion, the results are placed back into
the EMEWS Task DB, and are made available to the ME algorithms.

While the decoupled nature of EMEWS DB queues adds complexity compared to the existing EQ/R
and EQ/Py queues, there are many benefits. These include the ability to run long computational campaigns
with very large number of tasks and analyses that extend beyond resource wall times. The more monolithic
EQ/R and EQ/Py approaches, while convenient, are limited to the maximum length of time available for
individual HPC jobs. In addition, the mediating database better supports the persistence of data and metadata
during and across computational campaigns, enabling progress-monitoring tools to access the database,
and provides the ability to restart and/or share partial results. Another benefit is that, with increasing
levels of heterogeneity and specialization in current and upcoming computing infrastructure, EMEWS DB
can enable the execution of different types of work on different hardware resources. For example, ML
algorithms are best executed on GPUs or other accelerators, while simulations might better utilize CPU
resources. EMEWS DB enables robust, secure, and automated simultaneous access to multiple distributed
compute resources, providing the ability to create integrated, multi-resource computational workflows.

3.2.1 EMEWS Task Database

The EMEWS Task Database is a resource local SQL database, consisting of tables and SQL code that
implement the task input and output queues, a tasks table (one row for each task), and tables for associated
metadata. The tasks table contains the data associated with each task: a unique task identifier; current
status (queued, running, completed, or canceled); a task work type; the input payload (e.g., simulation

75

Collier, Wozniak, Fadikar, Stevens, and Ozik

input parameters); the result payload; the identifier of the worker pool running the task; the time the task
was created; the task execution start time; and the task execution stop time.

When a task is submitted to the database, an entry for it is created in the tasks table - including the
unique id for that task - and the creation time is recorded. Concomitantly, an entry for the task is created
in the output queue table. When that task is popped off the output queue table, the task’s table entry is
updated to tag it as running, and the start time is recorded. When the task has finished and its result is
returned to the database, the task’s table entry is updated with the result. It is also tagged as completed or
canceled, and the stop time is recorded. An entry for the task in the input queue is then created. The task
database persists regardless of the state of the worker pool, or ME. For example, an ME can submit tasks,
and stop execution. Then when restarted, it can query for the results. Similarly, if a worker pool fails, the
task database can be queried to determine the unevaluated tasks, e.g., incomplete tasks due to the worker
pool failing, and those can be resubmitted.

Using the Task Queue API (§3.2.3), an ME submits tasks to the database, pushing them on to the
output queue, and waits for some number to complete, popping them off the input queue as they become
available. Meanwhile, a Swift worker pool also using the Task Queue API, pops tasks off the output queue,
evaluates them, and pushes the results back to the input queue. As resource local the expectation is that
the database will be run on the same resource as the worker pool. This is both to avoid communication
overhead between the worker pool, which may be querying the database for 1000’s of tasks at a time,
and to avoid any security concerns with HPC compute nodes networking with remote databases. EMEWS
DB includes an API (the eqsql.db_tools module) for starting, stopping and creating the EMEWS
task database. This can be used as-is when executed on the resource running the database, or via Globus
Compute when the database is on a remote resource. For a more in-depth description of the EMEWS task
database, see (Collier et al. 2023).

3.2.2 Swift Heterogeneous Worker Pools

Worker pools are responsible for querying the database via the output queue for submitted tasks, executing
them, and then reporting the results of those tasks back to the database where the ME algorithm can retrieve
them via the input queue. Our canonical worker pool implementation is a Swift application written using
the Swift language and Python, running on a HPC resource (or locally for smaller prototype or debugging
runs) as a pilot job. Our worker pool implementation leverages the ability of Swift to distribute work across
compute processes and execute that work concurrently, to evaluate as many submitted tasks in parallel as
possible. Worker pools can run a variety of task application types using Swift’s Python and R interfaces
as well as command line executables, including MPI applications, via its app function type, and @par
keyword (Wozniak 2024b).

Worker pools can be matched to those HPC resources configured to most efficiently execute their work
type by specifying a work type for each task, such that a worker pool only pops tasks of that type off the
output queue. In this way, a worker pool configured to run a multi-process MPI application can retrieve
work of that type via an associated work type id versus another work type associated with a single process
GPU enabled application, for example. Consequently, the tasks generated by an ME need not be served
by a single worker pool, but can leverage increasingly common heterogeneous HPC architectures through
differently configured worker pools. EMEWS DB includes a worker pool API (the eqsql.worker_pool
module) for starting and stopping worker pools both locally and on remote resources.

3.2.3 Task Queue API

The EMEWS DB Task Queue API is implemented in Python in our eqsql package, and in R. The R package
implementation is essentially a wrapper around the Python code, using Reticulate (Ushey, Allaire, and
Tang 2024) together with some bespoke R functions. The core task queue API is defined in a TaskQueue
Python protocol containing methods for submitting tasks, retrieving results, and for manipulating submitted

76

Collier, Wozniak, Fadikar, Stevens, and Ozik

tasks (canceling and changing priority). The methods signatures for submitting tasks can be seen in Figure
2 for both individual and lists of tasks.

def submit_task(self, exp_id: str, eq_type: int, payload: str, priority: int = 0,
tag: str = None) -> Tuple[ResultStatus, Union[Future, None]]

def submit_tasks(self, exp_id: str, eq_type: int, payload: List[str],
priority: int = 0, tag: str = None) ->
Tuple[ResultStatus, List[Future]]

Figure 2: EMEWS DB task submission methods.

Tasks are submitted with an experiment id (the exp_id argument), identifying the experiment workflow
associated with the task, the work type of task (eq_type), matching it with a worker pool, a payload
string (payload), a priority (priority), and an optional metadata tag (tag). The payload is typically
a JSON string containing the input parameters for the task execution. When a task is submitted, an
entry is created in the EMEWS database as described in §3.2.1. Task submission returns an instance of an
eqsql.core.Future or a list of eqsql.core.Futures. A Future encapsulates the asynchronous
execution of a task, and is implemented as a Python class. Future class methods allow ME algorithm
code to query the status (running, finished, etc.) and check for a result of the encapsulated task without
waiting for it to finish. Other methods provide the ability to cancel and reprioritize the task with respect
to other tasks in the output queue.

Typically an ME algorithm will submit a number of tasks, wait for some number of results, either all of
them in the case of an iterative batch algorithm or some subset of the total in the case of an asynchronous
algorithm, and then process the results of the task evaluations. The core Task API’s as_completed
method (see Figure 3) allows an ME author to easily implement this pattern.

def as_completed(self, futures: List[Future], pop: bool = False,
timeout: float = None, n: int = None, batch_size: int = 1,
sleep: float = 0) ->
Generator[Future, None, None]

Figure 3: Task API as_completed method.

as_completed takes a Python list of Futures and returns a Python generator, allowing client code
to iterate over the Future tasks as they complete. The pop argument, when true, will pop any completed
tasks off the list of passed in Futures. By default, as_completed will loop until all the passed-in tasks
have completed. The n argument overrides this such that the loop will return that number of completed
tasks. The remaining arguments control aspects of the loop iteration, timeout after timeout seconds,
pause sleep amount between querying all the passed in Futures for results, and gather batch_size
number of results before yielding in the generator.

Figure 4 illustrates an example of an asynchronous ME using the Task Queue API. Here, line 6 initializes
a local task queue (for more on task queue types, see below). Line 9 creates a list of payloads from 2000
random samples and line 10 submits the payloads for execution. Line 11 creates a results dictionary
that holds the payload, and result (initially None) for each task. This allows the ME to assign the input (a
particular task payload) to its evaluation. Then the algorithm iterates for max_steps number of iterations,
using as_completed to retrieve results, popping the completed futures off the list of futures (line 14).
The results dictionary is updated in line 16 with the new results, and a new set of payloads is created
from the updated results in line 18. In lines 19 - 22, the task payloads are submitted, the results
dictionary is updated, and the new list of Futures is added to the existing list passed to as_completed
in the subsequent step.

77

Collier, Wozniak, Fadikar, Stevens, and Ozik

import numpy as np
import json

from eqsql.task_queues import local_queue

task_queue = local_queue.init_task_queue(...)

rng = np.random.default_rng()
payloads = [json.dumps({’x’: for x in rng.random(2000)})]
_, fts = task_queue.submit_tasks(exp_id, task_type, payloads)
results = {ft.eq_task_id: [payloads[i], None] for i, ft in enumerate(fts)}

for step in range(max_steps):
for ft in task_queue.as_completed(fts, pop=True, n=100):

result = ft.result()
results[ft.eq_task_id][1] = result

payloads = create_payloads(results)
new_fts = task_queue.submit_tasks(exp_id, task_type, payloads)
for i, ft in enumerate(new_fts):

results[ft.eq_task_id] = [payloads[i], None]
fts += new_fts

Figure 4: Sample asynchronous algorithm implementation.

The Task Queue API provides three task queue implementations: one local and two remote. Here local
implies that the ME using the task queue code is running on the same resource as the database. The remote
task queues use a mediating technology to transfer the payloads and results between the resource where the
task queue is executing and the database running on an HPC resource. Both remote task queues ultimately
call Python functions on the HPC resource which itself uses a local task queue to submit tasks and retrieve
results. The Globus Compute task queue uses Globus Compute (Chard et al. 2020), formerly known as
funcX, to execute these remote function calls, and the EMEWS Service task queue uses JSON messages
and a RESTful web service (the EMEWS service) running on the HPC resource that then executes these
functions. Regardless of whether the task queue is local or remote, they are all decoupled from worker
pool execution such that they can run on a different hardware resource, or with a different configuration.

Local task queues offer many different types of EMEWS DB usage patterns. For example, HPC
resources increasingly offer Jupyter notebook servers on which an ME using a local task queue can run,
submitting work to a worker pool running on the resource. In addition, HPC job schedulers, such as slurm
and PBS, support running a job with different applications and different arguments for each application. In
this way, a local ME, using a local task queue, and a worker pool can run as part of the same job, but use
different hardware configurations. As for the remote queues, the ME can run on hardware entirely separate
from the worker pool(s), in a Jupyter notebook running on a laptop, or on some other hardware resource
best suited for the ME, for example, while the worker pools run on more traditional HPC systems.

The above has focused on how an ME uses the Task Queue API to push tasks to the output queue.
However, the local queue also contains functionality for popping tasks off the output queue for execution
and for pushing the results of executed tasks on to the input queue. This functionality is used by our
canonical Swift worker pool implementation to get tasks, execute them concurrently, and push the results
back. This capability is implemented only in the local task queue as the EMEWS DB is intended to run
locally on the worker pool resource for security and performance as described earlier in §3.2.1. The method
signatures for the functionality used by the worker pool can be seen in Figure 5.

query_more_tasks is an output queue task query, customized for worker pools. This call allows
a worker pool to request up to batch_size tasks to consume at a time, while accounting for the number
of tasks a worker pool has obtained already but has not completed. So, for example, if a worker pool is

78

Collier, Wozniak, Fadikar, Stevens, and Ozik

def report_task(self, eq_task_id: int, eq_type: int, result: str) -> ResultStatus

def query_more_tasks(self, eq_type: int, eq_task_ids: Iterable[int], batch_size: int, threshold: int = 1, worker_pool: str = ’default’, delay: float = 0.5, timeout: float = 2.0) -> Tuple[List[int], List[Dict]]

Figure 5: Worker pool task API.

configured to possess 33 tasks at a time, and if it owns 30 uncompleted tasks when querying the output
queue, it will only obtain 3 additional tasks. The eq_task_ids argument tracks the tasks currently
owned by the worker pool. The task request can be modified using a threshold value that specifies
how large the deficit between requested tasks and owned tasks must be before more tasks are obtained.
Querying for tasks in this way allows a worker pool to tune its query to the number of available workers
such that all its workers are busy while equitably sharing work among multiple worker pools. This prevents
any one worker pool from obtaining more tasks than it can reasonably execute while potentially leaving
other pools starved of work. The remaining query_more_tasks arguments allow a worker pool to
query for tasks of a particular type (eq_type), tag the task as retrieved by the named worker pool using
the worker_pool argument, specify the number of seconds to delay when polling the EMEWS DB,
and a timeout value after which the query will timeout. query_more_tasks returns a Python Tuple
containing a list of the ids of the tasks owned by the worker pool (i.e., those currently running, and any
new ones returned by the query), and a list of Python Dictionaries containing the task payloads and query
metadata.

The report_taskmethod is simple in comparison, and is used to push the result of a task’s evaluation
to the input queue where it can be retrieved by an ME. The eq_task_id is the id of the completed task,
eq_type the work type , and result the result of the task evaluation.

3.3 EMEWS Creator

Implementing an EMEWS workflow can involve writing some amount of boilerplate code, including model
and worker pool submission scripts, and ME task submission and retrieval. EMEWS Creator, a Python
command line application for creating EMEWS workflow projects, automates the creation of this boiler
plate code for input parameter sweep, EQ/Py, EQ/R, and EMEWS DB projects. It can also be used
to initialize an EMEWS task database. As a Python package, it can be installed from PyPI using pip
install emewscreator.

The emewscreator command line application takes five commands: 1) eqpy, which creates an
EQ/Py workflow project; 2) eqr, which creates an EQ/R workflow project; 3) sweep, which creates a
sweep workflow project; 4) eqsql, which creates an EMEWS DB workflow project; and 5) initdb,
which initializes an EMEWS task database. Each of the project commands can be configured using a yaml
format file or through command line arguments. To create an EMEWS DB project, for example, configured
by a “my_cfg.yaml" file in an “emews" directory, the command line would look like:

emewscreator -o emews eqsql -c my_cfg.yaml

Example configuration files can be found on the EMEWS Creator repository (EMEWS Project 2024c).
Running emewscreator creates a canonical project directory tree containing Python, R, and Swift

code, as well as bash scripts for running a model, and submitting Swift workflows to local and HPC
resources. For example, creating an EMEWS DB project will produce Python and R prototype ME code,
and a Swift worker pool implementation, together with other required files (Swift extensions, and submission
scripts). The Python and R prototype code includes boiler plate for starting the EMEWS task database,
initializing the task queue, checking for a coherent input and output queue state, and starting a worker
pool. Sections marked with TODO contain examples of the Task API (§3.2.3) for creating task payloads,
submitting those payloads, and retrieving results. Other files also include TODO sections, but much of the
customization is achieved using yaml format configuration files, prototypes of which are also produced by

79

https://github.com/emews/emews-project-creator/tree/master/example_cfgs

Collier, Wozniak, Fadikar, Stevens, and Ozik

EMEWS Creator. A much more thorough discussion of EMEWS Creator and all its options can be found
in the EMEWS Tutorial at the EMEWS Project (2024a) site.

4 EMEWS DB WORKED EXAMPLE

In order to showcase the various elements of EMEWS DB, we provide a complete worked example where
we use a simple simulation model and an ME algorithm to optimize it. We first present the details of the
simulation model and ME algorithm (§4.1) and then demonstrate how to use the capabilities of EMEWS
DB to create local and remote Bayesian optimization EMEWS workflows (§4.2).

4.1 Simulation Model and ME Algorithm

For this example, we have adapted the Zombies demonstration model distributed with Repast4Py (Collier
and Ozik 2022). The Zombies model involves two agent types, Zombies and Humans, where the Zombies
pursue Humans, seeking to infect them. Once a Human agent is infected it is transformed into a Zombie
agent after an incubation period lasting a number of time steps. Each time step, each Zombie and Human
examines their local Moore neighborhood and moves towards the location with the most Humans or fewest
Zombies, respectively. In this adaptation, we have introduced a varying movement step size for each of
the agent types. The original model had Zombies move in fixed steps of length 0.25 (in units of the model
space) and Humans in steps of length 0.5. The present model encapsulates these two values in two float
type parameters zombie_step_size and human_step_size.

The value to optimize in this example is the remaining number of Humans at a specific simulation time
step, where we deem more surviving Humans as a better outcome. Since this is a stochastic model, we run
each parameter combination (zombie_step_size, human_step_size) five times, varying the random seed for
each, and the remaining number of Humans is averaged to yield the final number of survivors. The adaptive
parameter search algorithm we used is Thompson sampling (TS). TS (Thompson 1933; Thompson 1935) is
a probabilistic approach used in decision-making under uncertainty, particularly in the context of sequential
decision problems like reinforcement learning (Russo et al. 2018), multi-armed bandit problems (Agrawal
and Goyal 2012), and Bayesian optimization (Fadikar et al. 2023). In TS, decisions are made by sampling
from the posterior distribution of the unknown parameters in the problem space. In the Zombies model,
this distribution represents the expected number of surviving Humans based on different step sizes taken
by Humans and Zombies. The key idea is to balance exploration (trying new options) and exploitation
(leveraging current knowledge) for making optimal decisions by sampling from the posterior distribution
of the simulation input at untested settings. Here we integrate the TS algorithm with a Gaussian process
(GP) (Williams and Rasmussen 2006) surrogate, providing a non-parametric regression model to anticipate
simulation results at unexplored configurations with probabilistic uncertainty, and a method to efficiently
sample multiple parameters at a time (TS). To start with, a GP model is trained on an initial batch of
simulations and subsequently updated as the simulation dataset expands during optimization. At each
iteration, samples are drawn from the fitted GP’s predictive surface to identify the next batch of parameter
combinations for conducting new simulations. The pseudo-code for the ME can be seen in Algorithm 1.

Figure 6 demonstrates that the TS procedure is able to find an optimal parameter configuration after
just two iterations. We first fit a GP using an evenly spaced initial design of size 5. The resulting predictive
surface suggests that higher values (i.e., the maximum number of surviving Humans) are more likely at
parameters near the origin (bottom left corner). The TS procedure then samples new points close to the
origin. We fit another GP and notice that the surface is smoother, especially for smaller Zombie step sizes.
We perform one more TS iteration and only find a few additional points, evidence that the first iteration
managed to characterize the parameter space quite well already. The results confirm that, for Humans to
have the best chance of survival, Zombies should move as slowly as possible while Humans must move
faster but not too much faster, staying within their examined local neighborhood and not running into
unseen areas where Zombies might exist.

80

Collier, Wozniak, Fadikar, Stevens, and Ozik

Algorithm 1 Pseudo-code for the TS and GP ME algorithm used to optimize the Zombies model.
1: Create the initial samples
2: Submit the samples for evaluation by Zombies model
3: Wait for results (average number of Humans)
4: Update the GP surrogate with the results
5: for step in n_steps do
6: Re-sample using TS
7: Submit the samples for evaluation by Zombies model
8: Wait for results (average number of Humans)
9: Update the GP surrogate with the results

10: end for

Figure 6: Bayesian Optimization of the Zombies model. The left plot shows the initial simulation design
(in black circles), with data points sampled evenly across the grid; the middle plot is after the first TS
iteration, and the right plot is after the second TS iteration. The heatmap shows the predicted mean model
output from a fitted GP surrogate. The optimization algorithm finds the optimal parameter configuration
that maximizes surviving Humans.

4.2 EMEWS DB Example Workflows

The pseudo-code from Algorithm 1 is implemented in Python in a Jupyter notebook, which can be found in the
tutorial example repository (EMEWS Project 2024b). Leaving aside the specifics of the TS implementation
and the plotting code used to produce Figure 6, the following will focus on the EMEWS DB specific parts
of the notebook implementation. This first example uses a local task queue (§3.2.3) and subsequently we
demonstrate how to extend it to a Globus Compute remote task queue where tasks are run on a remote
HPC resource. Figure 7 begins with the initialization of the various EMEWS DB components.

Here params is a Python dictionary containing the configuration parameters for the ME. This is
typically loaded from a yaml format file created using EMEWS Creator (§3.3). The initialization begins
by starting the database (line 4) and initializing a local task queue (line 5) using the EMEWS DB eqsql
package imported in lines 1 and 2. The task_queue will submit tasks and retrieve results for the queues
in that database. In line 7 we check if the input and output database queues are empty and, if not, we abort
the run, ensuring that only tasks produced in this run are submitted and retrieved. Having confirmed that
the input and output queues are in a coherent state, a Swift worker pool is started, again using a Python
module from the eqsql packages. In this case, a local pool is started, where local indicates that the pool
runs on the same resource as the ME (i.e., the one running the notebook). Whether local or remote, the pool

81

https://github.com/emews/emews_tutorial_BO/blob/master/python

Collier, Wozniak, Fadikar, Stevens, and Ozik

from eqsql import worker_pool, db_tools
from eqsql.task_queues import local_queue
...
db_tools.start_db(params[’db_path’], pg_bin_path=params[’pg_bin_path’])
task_queue = local_queue.init_task_queue(params[’db_host’], params[’db_user’],

port=None, db_name=params[’db_name’])
if not task_queue.are_queues_empty():

print("WARNING: db input / output queues are not empty. Aborting run")
return

pool_params = worker_pool.cfg_file_to_dict(params[’pool_cfg_file’])
pool = worker_pool.start_local_pool(params[’worker_pool_id’],

params[’pool_launch_script’], exp_id,
pool_params)

Figure 7: EMEWS DB initialization.

will query the output queue of the database, popping tasks off the queue, and, with as much concurrency
as it is configured for (see §3.2.2), pass each task payload as input to a Zombies model run.

Once the EMEWS DB components have been initialized, the initial sample values can be submitted
and their results are used to train the GP and produce more points for evaluation from the TS. In Figure 8,
5 initial demonstration samples, X, hard-coded as indices in a 30×30 grid, Xgrid, are created (lines 1
and 2), and scaled for Zombies model step sizes from their 0−1 range to 0.1−1 for Zombies, and 1−3
for Humans in line 3. The resulting Xnative variable is a two-dimensional NumPy array where each
row in the array contains two elements, a Zombie step size, and a Human step size. The task payloads are
created from Xnative in line 5. Each element in Xnative is transformed into a Python List and that
list is then formatted as a JSON string. The local task queue then submits payloads for evaluation by
the worker pool (line 6). The task submission returns a Python Tuple containing the results of the task
submission (i.e., success or failure) and a list of Future objects representing each of those tasks. Line
7 passes fts (the Futures), to as_completed, which returns each future as its task completes, and
sorts the results by task id. Sorting by task id, orders the completed Futures in the order they were
submitted, that is, in the same order as Xnative, aligning the task result order with that of the inputs.
Line 8 uses a list comprehension to create a NumPy array of the results, by transforming each result from
JSON format to a floating point number. We then take the log of each of those results for numerical
stability, train the GP on the results, and begin the ME loop.

init_ids = [217, 233, 465, 697, 713]
X, Xgrid = initial_samples(init_id=init_ids)
Xnative = to_native(X, lb=np.array([0.1, 1]), ub=np.array([1, 3]))

payloads = list(map(lambda a: json.dumps(list(a)), Xnative))
_, fts = task_queue.submit_tasks(exp_id, task_type, payloads)
sorted_fts = sorted(task_queue.as_completed(fts), key=lambda ft: ft.eq_task_id)
Y = np.array([json.loads(ft.result()[1]) for ft in sorted_fts])
log response for numerical stability
Y = np.log(Y)
...
fit GP on logged response
gp = GPy.models.GPRegression(X, Y.reshape(-1,1))
gp.optimize()

Figure 8: Initial samples submission and retrieval.

82

Collier, Wozniak, Fadikar, Stevens, and Ozik

The ME loop looks much the same as the evaluation of the initial samples, and can be seen in Figure
9. The looped code begins in line 5 where the TS produces n_points new points for evaluation. These
points are then scaled to Zombies model step sizes in line 6. Lines 8 through 13 submit the new step sizes
and format the results as in the initial sample evaluation. The GP is then updated with the new results in
lines 16 through 21.

n_steps = params[’n_steps’]
n_points = params[’n_points’]

for i in np.arange(1, n_steps + 1):
X_new = TS_npoints(model = gp, npoints = n_points, Xgrid = Xgrid)
X_new_native = to_native(X_new, lb=np.array([0.1, 1]), ub=np.array([1, 3]))

payloads = list(map(lambda a: json.dumps(list(a)), X_new_native))
_, fts = task_queue.submit_tasks(exp_id, task_type, payloads)
sorted_fts = sorted(task_queue.as_completed(fts), key=lambda ft: ft.eq_task_id)
Y_new = np.array([json.loads(ft.result()[1]) for ft in sorted_fts])
log for numerical stability
Y_new = np.log(Y_new)

append to existing results
X = np.vstack([gp.X, X_new])
Y = np.vstack([gp.Y, Y_new.reshape(-1,1)])

update GP with new data
gp = GPy.models.GPRegression(X, Y.reshape(-1,1))
gp.optimize()

Figure 9: ME sample and submission loop.

The notebook implementation, described above, shows how to use EMEWS DB with a local task queue,
and was coded using a local environment created by the EMEWS Anaconda Installer (§3.1), where the
TS and GP requirements were installed using conda and pip. To run the notebook with a remote task
queue and worker pool, very little code needs to be changed. The task queue and worker pool initialization
in Figure 7 need to be updated to use their remote equivalents. Figure 10 illustrates the initialization
of a Globus Compute task queue, and a remote worker pool on an HPC resource. Line 1 imports the
gc_queue module that contains the Globus Compute task queue. The gc_queue and the remote worker
pool initialization both require a Globus Compute Executor. Line 3 imports the required package, and
lines 5 and 6 create the Executor. An Executor is best used within a Python context block, and lines
6 through 11 reflect that. The new gc_queue is created in line 7, taking the same arguments as the local
queue with the addition of the Executor (gcx). The remote worker pool is started in line 11, taking
the same arguments as the local version, with the addition of the HPC scheduler type (slurm), and the
Executor (gcx). With these changes in place, the rest of the implementation remains the same. The only
additional changes are that the worker pool configuration must be updated for the remote HPC resource
and the EMEWS DB needs to be started there.

Here we presented local and remote EMEWS DB workflows implemented using the Python Task API.
A complete worked example showing the same examples, but using the R Task API is available on the
tutorial example repository (EMEWS Project 2024b).

5 SUMMARY AND FUTURE WORK

The use-inspired development of new EMEWS capabilities was guided by the evolving requirements in
computational studies, whether they be related to ease of deployment, robustness, scalability, or the use of

83

https://github.com/emews/emews_tutorial_BO/blob/master/R

Collier, Wozniak, Fadikar, Stevens, and Ozik

from eqsql.task_queues import gc_queue
from eqsql import worker_pool
import globus_compute_sdk

gc_endpoint = ’xxxxxx’
with globus_compute_sdk.Executor(gc_endpoint) as gcx:

task_queue = gc_queue.init_task_queue(gcx,
params[’db_host’],params[’db_user’],
port=None, db_name=params[’db_name’])

pool_params = worker_pool.cfg_file_to_dict(params[’pool_cfg_file’])
pool = worker_pool.start_scheduled_pool(params[’worker_pool_id’],

params[’pool_launch_script’], exp_id,
pool_params, ’slurm’, gcx)

...

Figure 10: ME with remote worker pool.

heterogeneous computing resources. In this tutorial we have described these expanded capabilities: improved
accessibility through a new Anaconda binary installer, the new decoupled EMEWS DB architecture and
task API for distributing workflows on heterogeneous compute resources, and improved EMEWS project
creation capabilities. We have also demonstrated the use of EMEWS DB in a simple optimization example
that exercises various parts of its API. Our hope is that these capabilities are able to further advance
computational science and improve how it can support evidence based decision making.

Future work will focus on additional performance optimizations, particularly for the as_completed
method. Currently, completed tasks are retrieved one at a time, each requiring a database access. This
overhead is minimal with lower tasks counts, but can become significant at larger (100K+) counts. By
batching the completed task retrieval into much fewer database calls, much, if not all, of this overhead
could be eliminated. A similar optimization for batching task writes to the output queue is also planned.

6 ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science Foundation under Grant No.
2200234, the National Institutes of Health under grants R01AI158666, U01CA253913, R01DA057350,
and R01DA055502, the U.S. Department of Energy, Office of Science, under contract number DE-AC02-
06CH11357, and the DOE Office of Science through the Bio-preparedness Research Virtual Environment
(BRaVE) initiative. This research was completed with resources provided by the Argonne Leadership Com-
puting Facility, which is a DOE Office of Science User Facility, the National Energy Research Scientific
Computing Center (NERSC), the Laboratory Computing Resource Center at Argonne National Laboratory,
and the Research Computing Center at the University of Chicago.

REFERENCES
Agrawal, S. and N. Goyal. 2012. “Analysis of Thompson Sampling for the Multi-armed Bandit Problem”. In Proceedings of the 25th

Annual Conference on Learning Theory, edited by S. Mannor, N. Srebro, and R. C. Williamson, Volume 23 of Proceedings
of Machine Learning Research, 39.1–39.26. Edinburgh, Scotland: PMLR https://doi.org/10.5220/0005184400550065.

Armstrong, T. G., J. M. Wozniak, M. Wilde, and I. T. Foster. 2014. “Compiler Techniques for Massively Scalable Implicit
Task Parallelism”. In Proceedings of the International Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’14, 299–310. Piscataway, NJ, USA: IEEE Press https://doi.org/10.1109/SC.2014.30.

Babuji, Y., A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar, , , , , et al. 2019. “Parsl: Pervasive Parallel Programming in
Python”. In Proceedings of the 28th International Symposium on High-Performance Parallel and Distributed Computing,
HPDC ’19, 25–36. Phoenix, AZ, USA: Association for Computing Machinery https://doi.org/10.1145/3307681.3325400.

Binois, M., N. Collier, and J. Ozik. 2021. “A portfolio approach to massively parallel Bayesian optimization”. Technical report.
Chard, R., Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik, et al. 2020. “funcX: A Federated Function Serving Fabric

for Science”. 65–76. Stockholm Sweden: ACM https://doi.org/10.1145/3369583.3392683. [Online; accessed 2021-09-28].

84

https://doi.org/10.5220/0005184400550065
https://doi.org/10.1109/SC.2014.30
https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1145/3369583.3392683

Collier, Wozniak, Fadikar, Stevens, and Ozik

Collier, N. and J. Ozik. 2022. “Distributed Agent-Based Simulation with Repast4Py”. In 2022 Winter Simulation Conference
(WSC), 192–206 https://doi.org/10.1109/WSC57314.2022.10015389.

Collier, N., J. M. Wozniak, A. Stevens, Y. Babuji, M. Binois, A. Fadikar, , et al. 2023. “Developing Distributed High-performance
Computing Capabilities of an Open Science Platform for Robust Epidemic Analysis”. In 2023 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), 868–877 https://doi.org/10.1109/IPDPSW59300.2023.00143.

EMEWS Project 2024a. “EMEWS”. https://emews.github.io. accessed 03rd May 2024.
EMEWS Project 2024b. “EMEWS DB Example Tutorial Github site”. https://github.com/emews/emews_tutorial_BO. accessed

03rd May 2024.
EMEWS Project 2024c. “EMEWS Project Creator Github site”. https://github.com/emews/emews-project-creator. accessed 03rd

May 2024.
Fadikar, A., N. Collier, A. Stevens, J. Ozik, M. Binois and K. B. Toh. 2023. “Trajectory-Oriented Optimization of Stochastic

Epidemiological Models”. In 2023 Winter Simulation Conference (WSC), 1244–1255. San Antonio, TX, USA: IEEE https:
//doi.org/10.1109/WSC60868.2023.10408258.

Fadikar, A., A. Stevens, N. Collier, K. B. Toh, O. Morozova, A. Hotton, , et al. 2024. “Towards Improved Uncertainty
Quantification of Stochastic Epidemic Models Using Sequential Monte Carlo”. Technical report. arXiv:2402.15619 [stat].

Hudson, S., J. Larson, J.-L. Navarro, and S. M. Wild. 2022. “libEnsemble: A Library to Coordinate the Concurrent
Evaluation of Dynamic Ensembles of Calculations”. IEEE Transactions on Parallel and Distributed Systems 33(4):977–
988 https://doi.org/10.1109/TPDS.2021.3082815.

Hudson, S., J. Larson, J.-L. Navarro, and S. M. Wild. 2024. “Portable, heterogeneous ensemble workflows at scale using
libEnsemble”. Technical report https://doi.org/10.48550/arXiv.2403.03709. arXiv:2403.03709 [cs].

Kaligotla, C., J. Ozik, N. Collier, C. M. Macal, K. Boyd, J. Makelarski, et al. 2020. “Model Exploration of an Information-
Based Healthcare Intervention Using Parallelization and Active Learning”. Journal of Artificial Societies and Social
Simulation 23(4):1 https://doi.org/10.18564/jasss.4379.

Lindau, S. T., J. A. Makelarski, C. Kaligotla, E. M. Abramsohn, D. G. Beiser, C. Chou, , , , et al. 2021. “Building and
experimenting with an agent-based model to study the population-level impact of CommunityRx, a clinic-based community
resource referral intervention”. PLOS Computational Biology 17(10):e1009471 https://doi.org/10.1371/journal.pcbi.1009471.

Lusk, E. L., S. C. Pieper, and R. M. Butler. 2010. “More scalability, less pain : A simple programming model and
its implementation for extreme computing.”. SciDAC Rev. 17(2010):30–37. Institution: Argonne National Lab. (ANL),
Argonne, IL (United States) Number: ANL/MCS/JA-65869.

Nascimento de Lima, P., R. van den Puttelaar, A. I. Hahn, M. Harlass, N. Collier, J. Ozik, , et al. 2023. “Projected
long-term effects of colorectal cancer screening disruptions following the COVID-19 pandemic”. eLife 12:e85264 https:
//doi.org/10.7554/eLife.85264. Publisher: eLife Sciences Publications, Ltd.

Ozik, J., N. Collier, R. Heiland, G. An and P. Macklin. 2019. “Learning-accelerated discovery of immune-tumour interactions”.
Molecular Systems Design & Engineering 4(4):747–760 https://doi.org/10.1039/C9ME00036D.

Ozik, J., N. T. Collier, and J. M. Wozniak. 2015. “Many Resident Task Computing in Support of Dynamic Ensemble
Computations”. In 8th Workshop on Many-Task Computing on Clouds, Grids, and Supercomputers Proceedings. http:
//datasys.cs.iit.edu/events/MTAGS15/program.html.

Ozik, J., N. T. Collier, J. M. Wozniak, C. M. Macal and G. An. 2018. “Extreme-Scale Dynamic Exploration of a Distributed
Agent-Based Model With the EMEWS Framework”. IEEE Transactions on Computational Social Systems 5(3):884–
895 https://doi.org/10.1109/TCSS.2018.2859189.

Ozik, J., N. T. Collier, J. M. Wozniak, and C. Spagnuolo. 2016. “From desktop to Large-Scale Model Exploration with Swift/T”.
In 2016 Winter Simulation Conference (WSC), 206–220 https://doi.org/10.1109/WSC.2016.7822090.

Ozik, J., J. M. Wozniak, N. Collier, C. M. Macal and M. Binois. 2021. “A population data-driven workflow for COVID-19
modeling and learning”. The International Journal of High Performance Computing Applications 35(5):483–499 https:
//doi.org/10.1177/10943420211035164.

Peterson, J. L., B. Bay, J. Koning, P. Robinson, J. Semler, J. White, , , , , , , , , , , , , et al. 2022. “Enabling machine
learning-ready HPC ensembles with Merlin”. S0167739X22000322 https://doi.org/10.1016/j.future.2022.01.024.

Russo, D. J., B. Van Roy, A. Kazerouni, I. Osband, Z. Wen et al. 2018. “A tutorial on thompson sampling”. Foundations and
Trends® in Machine Learning 11(1):1–96 https://doi.org/10.1561/9781680834710.

Rutter, C. M., J. Ozik, M. DeYoreo, and N. Collier. 2019. “Microsimulation model calibration using incremental mixture approx-
imate Bayesian computation”. The Annals of Applied Statistics 13(4):2189–2212 https://doi.org/10.1214/19-AOAS1279.

Salim, M. A., T. D. Uram, J. T. Childers, P. Balaprakash, V. Vishwanath and M. E. Papka. 2019. “Balsam: Automated Scheduling
and Execution of Dynamic, Data-Intensive HPC Workflows”. CoRR abs/1909.08704. http://arxiv.org/abs/1909.08704.

Tatara, E., N. T. Collier, J. Ozik, A. Gutfraind, S. J. Cotler, H. Dahari, et al. 2019. “Multi-Objective Model Exploration of
Hepatitis C Elimination in an Agent-Based Model of People who Inject Drugs”. In 2019 Winter Simulation Conference
(WSC), 1008–1019 https://doi.org/10.1109/WSC40007.2019.9004747. ISSN: 0891-7736.

85

https://doi.org/10.1109/WSC57314.2022.10015389
https://doi.org/10.1109/IPDPSW59300.2023.00143
https://emews.github.io
https://github.com/emews/emews_tutorial_BO
https://github.com/emews/emews-project-creator
https://doi.org/10.1109/WSC60868.2023.10408258
https://doi.org/10.1109/WSC60868.2023.10408258
https://doi.org/10.1109/TPDS.2021.3082815
https://doi.org/10.48550/arXiv.2403.03709
https://doi.org/10.18564/jasss.4379
https://doi.org/10.1371/journal.pcbi.1009471
https://doi.org/10.7554/eLife.85264
https://doi.org/10.7554/eLife.85264
https://doi.org/10.1039/C9ME00036D
http://datasys.cs.iit.edu/events/MTAGS15/program.html
http://datasys.cs.iit.edu/events/MTAGS15/program.html
https://doi.org/10.1109/TCSS.2018.2859189
https://doi.org/10.1109/WSC.2016.7822090
https://doi.org/10.1177/10943420211035164
https://doi.org/10.1177/10943420211035164
https://doi.org/10.1016/j.future.2022.01.024
https://doi.org/10.1561/9781680834710
https://doi.org/10.1214/19-AOAS1279
http://arxiv.org/abs/1909.08704
https://doi.org/10.1109/WSC40007.2019.9004747

Collier, Wozniak, Fadikar, Stevens, and Ozik

Thompson, W. R. 1933. “On the Likelihood that One Unknown Probability Exceeds Another in View of the Evidence of Two
Samples”. Biometrika 25(3/4):285 https://doi.org/10.2307/2332286.

Thompson, W. R. 1935. “On the Theory of Apportionment”. American Journal of Mathematics 57(2):450 https://doi.org/10.
2307/2371219.

Ushey, K., J. Allaire, and Y. Tang. 2024. reticulate: Interface to ’Python’. R package version 1.36.1, https://rstudio.github.io/
reticulate/.

Ward, L., J. G. Pauloski, V. Hayot-Sasson, R. Chard, Y. Babuji, G. Sivaraman, , , et al. 2023. “Cloud Services Enable
Efficient AI-Guided Simulation Workflows across Heterogeneous Resources”. 32–41: IEEE Computer Society https:
//doi.org/10.1109/IPDPSW59300.2023.00018.

Ward, L., G. Sivaraman, J. G. Pauloski, Y. Babuji, R. Chard, N. Dandu, , , , , et al. 2021. “Colmena: Scalable Machine-Learning-
Based Steering of Ensemble Simulations for High Performance Computing”. In 2021 IEEE/ACM Workshop on Machine
Learning in High Performance Computing Environments (MLHPC), 9–20: IEEE https://doi.org/10.1109/MLHPC54614.
2021.00007.

Williams, C. K. and C. E. Rasmussen. 2006. Gaussian processes for machine learning, Volume 2. MIT press Cambridge,
MA https://doi.org/10.7551/mitpress/3206.003.0005.

Workflows Community Initiative 2024. “Workflows Systems Under Active Development”. https://workflows.community/systems.
Wozniak, Justin M. 2024a. “Swift/T Anaconda Installation”. https://anaconda.org/swift-t. accessed 10th May 2024.
Wozniak, Justin M. 2024b. “Swift/T User Guide”. https://swift-lang.github.io/swift-t/guide.html. accessed 10th May 2024.
Wozniak, J. M., T. G. Armstrong, K. Maheshwari, D. S. Katz, M. Wilde and I. T. Foster. 2015. “Interlanguage Parallel

Scripting for Distributed-memory Scientific Computing”. In Proceedings of the 10th Workshop on Workflows in Support
of Large-Scale Science, WORKS ’15, 6:1–6:11. New York, NY, USA: ACM https://doi.org/10.1145/2822332.2822338.

Wozniak, J. M., T. G. Armstrong, M. Wilde, D. S. Katz, E. Lusk and I. T. Foster. 2013. “Swift/T: Large-Scale Application
Composition via Distributed-Memory Dataflow Processing”. In 2013 13th IEEE/ACM International Symposium on Cluster,
Cloud, and Grid Computing, 95–102: IEEE https://doi.org/10.1109/CCGrid.2013.99.

Wozniak, J. M., R. Jain, P. Balaprakash, J. Ozik, N. T. Collier, J. Bauer, , , , , , et al. 2018. “CANDLE/Supervisor: a
workflow framework for machine learning applied to cancer research”. BMC Bioinformatics 19(18):491 https://doi.org/10.
1186/s12859-018-2508-4.

AUTHOR BIOGRAPHIES
NICHOLSON COLLIER is a Senior Software Engineer at Argonne National Laboratory, and Staff Software Engineer in the
Consortium for Advanced Science and Engineering at the University of Chicago. As the lead developer for the Repast project
for agent-based modeling toolkits and co-developer of the Extreme-scale Model Exploration with Swift (EMEWS) framework,
he develops, architects, and implements large-scale agent-based models and frameworks, and large-scale model exploration
workflows across various domains. His e-mail address is ncollier@anl.gov.

JUSTIN M. WOZNIAK is a computer scientist at Argonne National Laboratory, and scientist-at-large in the Consortium for
Advanced Science and Engineering at the University of Chicago. His research interests include programming systems for high
performance computing and scientific uses of machine learning. He is the lead developer of the Swift/T workflow language.
His email address is woz@anl.gov.

ARINDAM FADIKAR is an assistant computational statistician in the Decision and Infrastructure Sciences division at Argonne
National Laboratory. His primary research interest is in the area of design and analysis, calibration, uncertainty quantification
of computer models under input-dependent noise with application in epidemiology, material science, urban traffic network
systems, and cosmology. His email address is afadikar@anl.gov.

ABBY STEVENS is a computational data scientist at Argonne National Laboratory. Her research interests include interpretable
machine learning, surrogate modeling, and data assimilation with applications in epidemiology and climate science. Her email
address is stevensa@anl.gov.

JONATHAN OZIK is a Principal Computational Scientist at Argonne National Laboratory, Senior Scientist with Department
of Public Health Sciences affiliation in the Consortium for Advanced Science and Engineering (CASE) at the University of
Chicago, and Senior Institute Fellow in the Northwestern Argonne Institute of Science and Engineering (NAISE) at Northwestern
University. He is the lead of the Repast project for agent-based modeling toolkits and the Extreme-scale Model Exploration with
Swift (EMEWS) framework for large-scale model exploration on high-performance computing resources. His e-mail address
is jozik@anl.gov.

86

https://doi.org/10.2307/2332286
https://doi.org/10.2307/2371219
https://doi.org/10.2307/2371219
https://rstudio.github.io/reticulate/
https://rstudio.github.io/reticulate/
https://doi.org/10.1109/IPDPSW59300.2023.00018
https://doi.org/10.1109/IPDPSW59300.2023.00018
https://doi.org/10.1109/MLHPC54614.2021.00007
https://doi.org/10.1109/MLHPC54614.2021.00007
https://doi.org/10.7551/mitpress/3206.003.0005
https://workflows.community/systems
https://anaconda.org/swift-t
https://swift-lang.github.io/swift-t/guide.html
https://doi.org/10.1145/2822332.2822338
https://doi.org/10.1109/CCGrid.2013.99
https://doi.org/10.1186/s12859-018-2508-4
https://doi.org/10.1186/s12859-018-2508-4
mailto://ncollier@anl.gov
mailto://woz@anl.gov
mailto://afadikar@anl.gov
mailto://stevensa@anl.gov
mailto://jozik@anl.gov

	INTRODUCTION
	Related Work
	Expanded EMEWS Capabilities
	The EMEWS Anaconda Installer
	EMEWS DB
	 EMEWS Task Database
	 Swift Heterogeneous Worker Pools
	 Task Queue API

	EMEWS Creator

	EMEWS DB Worked Example
	Simulation Model and ME Algorithm
	EMEWS DB Example Workflows

	Summary and Future Work
	ACKNOWLEDGEMENTS

