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ABSTRACT

Unmanned Aerial Vehicles have proven to enhance customer service and increase efficiency in supply chain
management. They offer greater flexibility, ease of operation, and bypass traffic congestions by flying directly
between nodes. This paper presents an innovative version of the Team Orienteering Problem with Time
Windows and Charging Stations. The proposed model integrates various optimization approaches, including
heuristics and AI-driven methods. The primary objectives are to maximize service rewards, minimize total
travel distance, and mitigate out-of-charge incidents. Experiments are conducted to demonstrate the
competency of the applied AI-enabled approach in various scenarios.

1 INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have many advantages such as being able to fly from one location to
another directly, extra flexibility in extreme environments and requiring much less human labor to operate
and maintain. Such advantages make UAVs a viable option for a wide range of problems. Many applications
have been found for UAVs, including search-and-rescue operations for locating avalanche survivors (Wolfe
et al. 2014), collecting research data and images (Newman, David L 2014), agricultural surveillance and
decision support (Herwitz et al. 2004), urgent healthcare item delivery (Scott and Scott 2019), power line
and pipeline inspections (Smith 2015), animal migration monitoring (Borrelle and Fletcher 2017), and
farming in areas inaccessible to ground-based machinery (Wang et al. 2019). These examples illustrate
the ever-increasing usefulness of UAVs. It can be seen from such examples that the fast-growing utilities
of UAVs will certainly make them a game-changer in supply chain management.

Although UAVs come with many advantages, they also carry with them some limitations. A critical
limitation of the current use of UAVs is represented by the lack of aerial refueling capabilities (Fravolini
et al. 2004). UAVs’ power source has limited capacity which hinders their further implementations. This
limitation also drastically increases the risk of the UAVs running out of charge and falling down. Such a
case, once it happens, will result in a significant increment in the costs of the service providers. Many kinds
of research are conducted to solve this problem, including the development of an IoT-based automated
landing system (Chae et al. 2015), an automatic battery replacement mechanism (Fujii et al. 2013), an
electromagnetic field associated with utility power lines (Silberg, Eric J and Milgram, Judah H 2010). As
a result, It’s important to consider charging methods when optimizing UAV routes.

To briefly summarize, the inspirations of this research are i) the promising future of the utilization of
UAVs in supply chain management; ii) the urgency of including charging methods as an essential part of
the optimization. This study focuses on an innovative variant of the Team Orienteering Problem (TOP) that
takes into account the UAVs routing problem with charging stations. As shown in Figure 1, at the beginning
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of the time frame, a fleet of homogeneous UAVs depart from the hub (depot) to serve the customers and
collect the rewards. At this point, UAVs’ battery is fully charged upon their departure. Several charging
stations are located in the working area. The power is consumed uniformly on the way between locations
(nodes and charging stations). If, upon finishing serving a node, the remaining power of a UAV is less than
the threshold, its next destination will be the nearest charging station. After getting fully charged again, it
immediately continues its work until the next time it needs charging. Due to the limited battery capacity
and time frame, not all the nodes are visited. Therefore, it is required to figure out the optimized sequence
of locations (nodes and charging stations) for each UAV.

This paper explores four different approaches to address the orienteering problem for UAVs with limited
battery capacities. The approaches include two heuristic methods, Simulated Annealing (SA), and a novel
integration of SA with Neural Networks (SA-NN). Each technique is applied to optimize the routing of
UAVs, taking into account the constraints of battery life and operational efficiency. A set of experiments are
conducted to compare these methodologies, emphasizing their unique advantages and practical applicability.

Figure 1: A fleet of two identical UAVs depart from the hub to visit service nodes, continuously visiting
nodes until their battery level drops below a pre-defined threshold. If necessary, the UAVs will travel to the
nearest charging station to wait for their battery to be fully charged before continuing to visit nodes. At
the end of the time frame, the UAVs return to the hub. Some nodes may not be visited due to low reward
or long distance.

2 LITERATE REVIEW

The term TOP was firstly carried out in 1996 (Chao et al. 1996), but a TOP was researched as Multiple Tour
Maximum Collection Problem (MTMCP) in as early as 1994 by Butt and Cavalier (Butt and Cavalier 1994).
Many efficient algorithms were introduced in the following years, such as column generation (Butt and
Ryan 1999), branch-and-price algorithm (Boussier et al. 2007), ant colony optimization (ACO) (Ke et al.
2008) and tabu search (TS) (Tang and Miller-Hooks 2005b). The research achievements are summarized
by Vansteenwegen et al. (Vansteenwegen et al. 2011). In this chapter, the review of literature is roughly
categorized into deterministic and stochastic problems.

2.1 Deterministic Problems

Sevkli and Sevilgen proposed a solution to an Orienteering Problem (OP) by using a strengthened version of
particle swarm optimization (PSO) (Sevkli and Sevilgen 2010) and a discrete strengthened particle swarm
optimization (DPSO) (ŞEVKLİ and SEVİLGEN 2010). Chekuri et al. tackled the OP using approximation
algorithms (Chekuri et al. 2012), while Liang et al. introduced Multi-Level Variable Neighborhood Search
(MLVNS) to solve it (Liang et al. 2013). Campos et al. proposed the use of Greedy Randomized Adaptive
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Search Procedure (GRASP) and Path Relinking to solve the OP (Campos et al. 2014), and Grasas et al.
developed a simheuristic framework that combines a metaheuristic component with simulation methods
for finding the optimal solution (Grasas et al. 2016). Poggi et al. used branch-cut and price techniques
to tackle a Team Orienteering Problem (TOP) and introduced an extended formulation that indexes edges
by the time they are placed in the route (Poggi et al. 2010). Bouly et al. proposed a memetic algorithm
for TOP that uses a simple hybrid genetic algorithm with specific algorithms designed for the problem
(Bouly et al. 2008). Muthuswamy et al. developed the first known DPSO algorithm to solve the 2, 3,
and 4-member TOP (Muthuswamy and Lam 2011). Lin et al. introduced a simulated annealing with
restart strategy (SARS) heuristic to solve the multi-constraint team orienteering problem with multiple time
windows (MC-TOP-MTW) (Lin and Vincent 2015).

2.2 Stochastic Problems

Teng et al. introduce and solve the time-constrained traveling salesman problem with stochastic travel and
service times (TCTSP) (Teng et al. 2004). Related to the TCTSP is the stochastic selective travelling
salesperson problem (SSTSP) introduced by Tang and Miller-Hooks (Tang and Miller-Hooks 2005a). Over
the years, a lot of other methodologies have been applied to tackle the problem, like an ILS-based approach
to solve the uncapacitated facility location problem (de Armas et al. 2017), a hybrid local search and
simulated annealing (Hu and Lim 2014), a hybrid greedy randomized adaptive search (Labadie et al. 2011), a
Monte Carlo sampling and Hybrid Monte Carlo sampling and an analytical solution (Papapanagiotou et al.
2014), a combination of biased-randomization techniques and Monte-Carlo simulation (Reyes-Rubiano
et al. 2018), a simheuristic algorithm is proposed as a solving approach integrating simulation inside a
multi-start heuristic framework (Fajardo et al. 2018), a Stochastic profits by exact solution algorithm and bi-
objective genetic algorithm. (Ilhan et al. 2008), a stochastic time-dependent travel times with mixed integer
linear programming-sample average approximation (Varakantham and Kumar 2013), a sample average
approximation and OPSW heuristic (Evers et al. 2014), an optimization model to address the trade-off
between the number of stations and the coverage of the demand (Pinto et al. 2019), a Business Model
Ecosystem (BMES) (Muhammad et al. 2018), a grey-DEMATEL based approach (Raj and Sah 2019), a
pulse algorithm (Duque et al. 2015), adapting paths between reward nodes as travel times are revealed
(Dolinskaya et al. 2018), an iterated local research (Gunawan et al. 2015a), a cluster search and cluster
routes (Gavalas et al. 2013), a well-tuned ILS (Gunawan et al. 2015c), an artificial bee colony (Cura 2014),
a biased-randomized selection process (Panadero et al. 2017), an enhanced ACO (Gambardella et al. 2012),
a Variable Neighborhood Search (Campbell et al. 2011), an LP-based granular variable neighborhood search
(Labadie et al. 2012), a Hybrid Variable Neighborhood Search and Simulated Annealing (Lau et al. 2012),
an ILS (Souffriau et al. 2013), a fast SA and slow SA (Lin and Vincent 2012), a Variable Neighborhood
Search (Zhang et al. 2014). The review of the literature is summarized in Table 1.

3 PROBLEM DEFINITION

In reality, for supply chain service providers operating in the same area, maximizing the total rewards
collected by UAVs is crucial in the face of fierce competition. However, it is equally important to minimize
the total distance traveled by the UAVs to ensure optimal efficiency. Additionally, ensuring that the UAVs
do not run out of charge during their operations is a critical consideration. The problem addressed in this
paper pertains to a stochastic multiobjective optimization for supply chain operations involving Unmanned
Aerial Vehicles (UAVs). Equation 1 defines the objective functions as follows:

F(x,ν) = E [(R(x,ν),D(x,ν),O(x,ν))] (1)

where:

x: Represents the deterministic decision variables or solution vector.
ν : Represents the stochastic variables.
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Table 1: Summary of literature review.

Reference Characteristic Stochasticity Time Window Stochastic Parameter Charging Station Algorithm
Deterministic Stochastic Yes No Travel Time Service Time Reward Yes No

(Sevkli and Sevilgen 2010) OP
√ √

- - -
√

Strengthened Particle Swarm Optimization
(ŞEVKLİ and SEVİLGEN 2010) OP

√ √
- - -

√
Strengthened Particle Swarm Optimization

(Chekuri et al. 2012) OP
√ √

- - -
√

Approximation Algorithm
(Liang et al. 2013) OP

√ √
- - -

√
Multi-Level Variable Neighborhood Search

(Campos et al. 2014) OP
√ √

- - -
√

Greedy Randomized Adaptive Search Procedure
(Grasas et al. 2016) TOP

√ √
- - -

√
Integer L-shaped Algorithm

(Poggi et al. 2010) TOP
√ √

- - -
√

Branch-cut-and-price algorithm
(Bouly et al. 2008) TOP

√ √
- - -

√
Memetic Algorithm

(Muthuswamy and Lam 2011) TOP
√ √

- - -
√

Discrete Particle Swarm Optimization
(Lin and Vincent 2015) TOP

√ √
- - -

√
Multi-start Simulated Annealing

(Teng et al. 2004) TOP
√ √

- - -
√

Iterated Local Search
(Tang and Miller-Hooks 2005a) TOP

√ √
- - -

√
Exact and Heuristic Approaches

(de Armas et al. 2017) TOP
√ √

- - -
√

ILS-based Approach
(Hu and Lim 2014) TOP

√ √
- - -

√
Iterative Three-component Heuristic

(Labadie et al. 2011) TOPTW
√ √

- - -
√

Hybrid Greedy Randomized Adaptive Search
(Duque et al. 2015) OPTW

√ √
- - -

√
Pulse Algorithm

(Gunawan et al. 2015a) OPTW
√ √

- - -
√

Iterated Local Search
(Gambardella et al. 2012) TOPTW

√ √
- - -

√
Enhanced Ant Colony System

(Lin and Vincent 2012) TOPTW
√ √

- - -
√

Fast SA and Slow SA
(Labadie et al. 2012) TOPTW

√ √
- - -

√
LP-based Granular Variable Neighborhood Search

(Souffriau et al. 2013) TOPTW
√ √

- - -
√

Iterated Local Search
(Gavalas et al. 2013) TOPTW

√ √
- - -

√
Cluster Search Cluster Routes

(Hu and Lim 2014) TOPTW
√ √

- - -
√

Hybrid Local Search and Simulated Annealing
(Cura 2014) TOPTW

√ √
- - -

√
Artificial Bee Colony

(Gunawan et al. 2015c) TOPTW
√ √

- - -
√

Well-Tuned Iterated Local Search
(Gunawan et al. 2015b) TOPTW

√ √
- - -

√
Hybrid Simulated Annealing and Iterated Local Search

(Ilhan et al. 2008) OPSP
√ √ √ √

Bi-objective Genetic Algorithm
(Campbell et al. 2011) OPSTS

√ √ √ √ √
Variable neighborhood search

(Papapanagiotou et al. 2014) OPSTS
√ √ √ √ √

Monte Carlo sampling
(Lau et al. 2012) DSOP

√ √ √ √
Completion Probability Approximations

(Pinto et al. 2019) DSOP
√ √ √ √

Network Design Model
(Muhammad et al. 2018) DSOP

√ √ √ √
Digitizing the Business Model Ecosystem (BMES)

(Raj and Sah 2019) TOP
√ √

- - -
√

Grey-DEMATEL Based Approach
This Paper TOPTWCS

√ √
- - -

√
SA and comparing it with Two Heuristics

R(x,ν): Represents the rewards collected by UAVs. (Maximization)
D(x,ν): Represents the total traveled distance by UAVs. (Minimization)
O(x,ν): Represents the occurrences of UAVs getting out-of-charge. (Minimization)
E [·]: Denotes the expected value operator, considering the stochastic nature of the problem.

3.1 Stochastic Variables

In real-life applications, the behavior of UAVs can be unpredictable due to various stochastic factors. In
this paper, the model considers three such factors:

• Reward: The reward associated with a UAV task can be stochastic as it may depend on random
events or variables that cannot be predicted with certainty. For example, in a surveillance scenario,
the reward can be the probability of detecting a target, which can be affected by factors such
as weather conditions, time of day, and the target’s movement. Similarly, in a package delivery
scenario, the reward can be the probability of successfully delivering a package, which can depend
on factors such as traffic conditions and the recipient’s availability.

• Service Time: The time taken by the UAV to complete a task at each node can be stochastic due
to the size, shape, and location of the delivery items, as well as the time required to process them.

• UAV Speed: The speed of the UAV is another stochastic factor considered in the model since it
can fluctuate due to weather conditions, the UAV’s battery status, and its load.

These factors are defined are listed in Table 2:

4 SOLUTION APPROACHES

This paper proposes four distinct approaches to address the problem: two heuristic methods, Simulated
Annealing (SA), and SA integrated with Neural Networks (SA-NN). Details of these approaches are
described as follows.
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Table 2: Stochastic factors and their distributions

Factor Distribution
Reward Normal (mu, sigma)

Service Time Exponential (lambda)
Speed Uniform (40 mph, 60 mph)

4.1 K-means with Maximum Reward (KMR)

This heuristic comprises of two phases, namely, clustering and sorting. The clustering phase involves
the utilization of k-means for classifying nodes into clusters. K-means clustering, a vector quantization
technique from signal processing, is popularly used for cluster analysis in data mining. The objective of
this technique is to partition n observations into k clusters, where each observation belongs to the cluster
with the nearest mean, representing a prototype of the cluster (Wagstaff, Cardie, Rogers, Schrödl, et al.
2001). The number of clusters is equal to the number of UAVs, and each UAV is assigned a specific cluster.

In the sorting phase, a descending order of nodes is generated within each cluster based on their
associated reward. According to this heuristic, the UAV will first navigate to the node with the highest
reward and continue to the next highest reward until the end of the time window. Algorithm 1 provides
the pseudocode for KMR.

Algorithm 1 K-means with Maximum Reward (KMR)
Require: Clustering Phase:

for each node i do
Perform k-means(i,NumberOfChargingStations, ’Distance’, ’cityblock’,Options)

end for
UAV selects nodes in descending order of reward within the available time window.

Ensure: Searching Phase:
for each cluster c do

for each node i in c do
Sort nodes in c by descending reward: Ri

end for
end for
Initialize best← [node(1)]
for i = 2 to NumberOfNodes do

For each node j > i, if R j > Ri, update best← [best j]
end for
return best

4.2 K-means with the Shortest Distance to the Previous Node (KSD)

This heuristic consists of two phases. The first phase is identical to that of k-means with maximum reward
(KMR). In the second phase, nodes within each cluster are sorted as follows: firstly, the node with the
shortest distance to the hub is searched, and its index is placed into a vector. Then, among the remaining
nodes in the same cluster, the node with the shortest distance to the previous node in the vector is searched
and added to the vector. Based on this heuristic, the UAV will always navigate to the node that has the
shortest distance to the node that it has just visited. KSD is similar to KMR, with the only difference being
the sorting criteria in the second phase: KSD sorts nodes based on the shortest distance to the previously
visited node, while KMR sorts nodes based on descending reward.
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4.3 Simulated Annealing

Simulated Annealing is a probabilistic technique for approximating the global optimum of a given function.
It is particularly useful for large, complex search spaces. The algorithm simulates the physical process
of heating a material and then slowly lowering the temperature to decrease defects, thus minimizing the
system energy. SA has been effectively used as a simulation-optimization approach in different applications
including healthcare (Dehghanimohammadabadi et al. 2023), manufacturing (Seif et al. 2020), and supply
chain (Juan et al. 2018), among many. SA is selected as a benchmark since it has been used in many
routing problems. Algorithm 2 provides the pseudocode for SA.

Algorithm 2 Simulated Annealing (SA)

Require: Initial solution s, initial temperature T , cooling rate α

Ensure: Optimal solution sbest
sbest ← s
while T > 0 do

Generate new candidate snew by modifying s
∆C←C(snew)−C(s)
if ∆C < 0 or rand(0,1)< e−∆C/T then

s← snew

if C(snew)<C(sbest) then
sbest ← snew

end if
end if
T ← α×T

end while
return sbest

It begins with an initial solution s, temperature T , and cooling rate α . It iteratively explores solutions,
accepting improvements and sometimes worse solutions based on a probability determined by the current
temperature and change in cost function ∆C. This probabilistic approach helps SA escape local optima.
As the algorithm progresses, temperature decreases according to α , leading to a more deterministic search.
It returns the best solution sbest found during exploration.

In the SA model, where there are I nodes and K UAVs, a solution is represented as an integer permutation
of length I+K−1. Numbers greater than I serve as delimiters. For instance, with 10 nodes and 2 UAVs,
the permutation length is 10+2−1 = 11, as shown in Figure 2. This permutation includes the nodes and
delimiters, where the delimiters indicate the division of nodes among the UAVs.

Figure 2: Example of a solution representation for SA.

4.4 Simulated Annealing with Neural Networks (SA-NN)

The fourth approach, SA-NN, enhances Simulated Annealing (SA) by incorporating a Neural Network
(NN) where NN is a substitute for the simulation model. After collecting observations from the model,
these observations are trained to predict performance measures. For this project, separate NNs are trained
for each of the discussed objective functions and then queried. This method significantly saves execution
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time, especially in stochastic models where replications are time-consuming. Using NNs can reduce the
need for extensive computational resources typically required for numerous simulations.

Detailed descriptions of these methods follow in subsequent sections. As shown in Figure 3, this figure
illustrates the difference between SA and SA-NN, where instead of a simulation model, an NN predicts
the performance measure.

Figure 3: Comparison between SA and SA-NN approaches showing the substitution of the simulation
model with a Neural Network for performance prediction.

5 EXPERIMENTAL RESULTS, COMPARISON, AND ANALYSIS

This section aims to assess the performance of the proposed models. Two experiments with two different
numbers of nodes (n=30) and a complex model (n=60) are considered. The experiments were conducted
on a machine with the following configuration: 32GB RAM, Windows 11, and an 8-core CPU. The neural
network used in the experiments was a 3-hidden-layer (128,64,64) feedforward neural network.

In addition to objective functions defined in Equation 1, multiple other metrics are measured during
the experiments including:

• TOOC (Total Time out of Charge): This metric represents the total time during which the UAVs
are out of charge or unable to perform tasks due to battery constraints.

• TTWV (Total Time Window Violation): This metric quantifies the number of times the delivery
was outside of the expected time window, indicating deviations from the desired schedule.

• TR (Total Reward): This metric measures the total reward accumulated by the UAVs during the
routing process.

• CR (Coverage Ratio): The coverage ratio indicates the percentage of nodes covered during routing
by the UAVs, providing insights into the effectiveness of the routing strategy.

• TD (Total Distance): This metric represents the overall distance covered by all UAVs to reach and
service the nodes in the network.

For the experiment with 30 nodes, it is observed that both heuristics, KSD and KMR, consistently
outperform SA-based approaches in terms of runtime, demonstrating their efficiency in solving the problem.
However, the SA algorithm achieves the highest coverage ratio (CR) among all approaches, indicating its
effectiveness in covering a higher percentage of nodes during routing. Additionally, the SA algorithm also
achieves a lower total distance (TD) compared to other approaches, with higher total reward and 100%
coverage rate, suggesting that it optimally minimizes the overall distance traveled by the UAVs to service
the nodes (See Table 3).

The SA-NN approach improved the runtime of SA but apparently was not outperforming SA in terms
of performance metrics. This is mainly due to the lack of training data or inadequate dataset for training.
Even though the training set was increased from 10,000 to 100,000, it did not improve its efficiency. To
address this, a new SA-based neural network model is applied in the next experiments.

2625



Belsare, Devanga, and Dehghanimohammadabadi

Table 3: Comparative results of all approaches with 30 nodes (Replication size = 6).

Algorithm-Metric KSD KMR SA SA-NN
Runtime (s) 0.3 0.2 849.1 557.0
TOOC 0.0 3.0 0.0 4.0
TTWV 5.0 5.0 11.0 13.0
TR 1767.0 1645.0 1864.5 1403.2
CR (%) 96.7 76.7 100.0 73.3
TD 958.7 1183.3 1092.4 1326.2

Table 4: Comparative results of all approaches with 60 nodes.

Algorithm-Metric KSD KMR SA SA-NN SA-NN-Hybrid
Runtime (s) 0.4 0.4 1155.7 654.1 704.2
TOOC 0.0 0.0 0.0 1.4 0.0
TTWV 12.0 12.0 25.0 20.2 27.0
TR 2328.6 1804.2 2803.8 1017.3 2388.5
CR (%) 66.7 36.7 76.7 33.4 63.3
TD 1203.6 1322.8 1400.0 1202.2 1494.3

In the second experiment, 60 nodes are considered, making the routing problem even more complex.
This is mainly because the increased number of nodes leads to a larger solution space and more intricate
routing paths. Results of this experiment are shown in Table 4.

A new approach called SA-NN-Hybrid is introduced to enhance the performance of the SA-NN approach.
As depicted in Figure ??, this hybrid approach combines the strengths of simulated annealing and neural
network techniques. Initially, a portion of solutions (i.e., 50%) are predicted by a neural network to expedite
the search process. Subsequently, the algorithm switches to a simulation model where actual performance
values are generated for refinement and accurate metric estimations. This hybrid model enhances the
SA-NN approach by leveraging the neural network’s rapid solution generation and the simulation model’s
precise performance evaluation. The combination leads to improved efficiency and accuracy in finding
optimal solutions.

Figure 4: The SA-NN-Hybrid model uses a neural network to predict 50% of solutions, then switches to
simulated annealing for refinement, enhancing performance.

While KSD and KMR algorithms exhibited comparable runtime, suggesting their efficiency in solving
the problem within a short duration, their performance on other metrics is significantly lower than SA-based
approaches. In general, SA outperformed all approaches with the highest reward (TR) and node coverage
(CR = 76.7%) and without any out of charge incidents. This highlights the efficiency of SA to solve the
model. Comparably, the new hybrid model achieved satisfactory similar performance with a lower runtime
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compared to SA, with almost a 40% reduction. This suggests that the hybrid approach effectively combines
the strengths of simulated annealing and neural network techniques to achieve high-quality results.

6 CONCLUSION

The paper presents an experimental analysis of the Team Orienteering Problem for Unmanned Aerial
Vehicles (UAVs) with Charging Stations, introducing four distinct approaches to enhance the UAVs’ path
planning and cruising capabilities. Initially, the study utilized two clustering-heuristic approaches: K-
means with Maximum Reward or KMR and K-means with Shortest Distance or KSD. The research extends
by incorporating advanced metaheuristic algorithms—Simulated Annealing (SA) and SA integrated with
Neural Networks (SA-NN)—to refine the solution further.

The experiments conducted provide valuable insights into the performance of various algorithms in
solving the Team Orienteering Problem for Unmanned Aerial Vehicles (UAVs). Across both experiments,
it became evident that heuristic approaches, such as those employing the shortest distance and maximum
reward strategies, showcased commendable efficiency, particularly in terms of runtime. However, as
the complexity of the problem increased, optimization-based solutions, notably simulated annealing (SA),
demonstrated superior performance, outperforming heuristic approaches in key metrics like total reward and
node coverage. The introduction of SA-NN-Hybrid further emphasized the potential of hybrid techniques
in enhancing algorithmic efficiency and solution quality. These findings underscore the importance of
selecting appropriate algorithmic strategies tailored to the problem’s complexity, with optimization-based
approaches proving particularly effective for challenging scenarios.

This paper can be extended by considering other measures AI enables, such as simultaneous learning
and optimization. In this approach, SA can optimize and NN can be utilized in a gradient-based version,
and having these two models improve each other’s performance iteratively. Additionally, exploring hybrid
approaches that combine metaheuristic algorithms with machine learning techniques could be fruitful.
For instance, integrating reinforcement learning with SA for adaptive path planning or employing genetic
algorithms to evolve neural network architectures for better prediction accuracy.
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