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ABSTRACT

Simulation and artificial intelligence (AI) have played crucial roles in the design and operational optimization
of critical infrastructures in modern societies. In this work we briefly review the latest development in three
fields, namely the stability analysis and supply demand matching in electric power grid, and the efficient
simulation in autonomous driving. We wish this tutorial may shed some light on the synergy between
simulation and Al for critical infrastructure in the near future.

1 INTRODUCTION

Simulation and artificial intelligence (Al) are playing important roles in the design and operation of critical
infrastructures in modern societies. In this work, we focus on two systems which are part of the critical
infrastructure of a society, namely electric power grid and autonomous driving. In particular, we will
consider the stability analysis and supply demand matching in electric power grid, and efficient simulation
of control policies in autonomous driving, and discuss how various simulation and Al tools are used
separately or jointly in these examples. Through these three examples, we hope to show cases of research
progress and to discuss the future research directions in these areas.

In the following discussion, we start from the role of simulation in the stability analysis in the power
grid. The dynamics of a power grid usually involves alternating currents which are described in nature by
sinusoidal signals with a single or multiple frequencies. Using the concept of phasor, which is basically a
complex number with a real part and an imaginary part, differential equations of such periodic signals in the
steady state may be transferred into algebraic equations in the complex domain. The behavior of the devices
in a power grid may be best described in very different time resolutions, typically from microseconds up
to seconds or even minutes. Therefore a detailed simulation of such system involves dynamics in multiple
time scales. This is known as the curse of stiffness. We will review existing methods to address this unique
challenge in such simulation problems in section 2.

A well-known problem in the economic operation of the power grid is the unit-commitment (UC)
problem, in which one tries to dispatch the power generation to satisfy the demand from the users with
the minimal cost. From a simulation optimization perspective, a unique feature is the presence of system
dynamics across multiple spatial resolutions. When the future generation of the renewables and demand
from the users are forecast, the UC problems is usually formulated as a mixed integer linear programming
(MILP) problem, and solved by Lagrangian relaxations. When many generators are involved, the solution
of the LR involves two iterative steps, namely first the optimization giving the multipliers and second the
update of the multipliers. This first step may be solved in a decentralized way, each of which addresses a
sub-problem. By exploring the similarity among these subproblems, the solution process may be replaced
by the approximation given by a neural network, which may be trained and learned from historical data.
We will review related work to explore such similarity across multiple spatial resolutions in section 3.

During the evaluation of control policies in autonomous driving, the safety is of crucial importance.
However, the safety of a control policy may be affected by random events that occur with very small
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probabilities. How to effectively evaluate the safety of a control policy by simulation? This is known as the
curse of rarity, or the challenge posed by rare events. Typical methods may explore the problem structure
to outline a set of representative scenarios and then to test the safety probability in each of these scenarios.
We will review related research progress in this field for simulation based safety evaluation of autonomous
driving policies in section 4.

The aforementioned stiffness across multiple temporal scales, the dynamics across multiple spatial
resolutions, and the curse of rarity are typical challenges that one may face in the simulation of critical
infrastructures. We will briefly conclude in section 5.

2 ELECTRIC POWER SYSTEM - STABILITY ANALYSIS

There are dynamics across multiple temporal scales in the electric power grid. To cope with this challenge,
both phasor and time domain simulation and analysis have been developed.

2.1 Phasor-domain Simulation
2.1.1 Current Research Status

Dynamic Phasor Method is a new type of system simulation technique, which is an extension of the concept
of steady-state phasor. The dynamic phasor X (¢) of signal x(¢) is defined as (Strunz 2013) X (¢) = £(t)e 1/,
where @ is a non-negative constant, and £(7) is the analytic signal of the signal x(¢), satisfying the relationship
between the Fourier transforms of the two signals, xz(®) and £r(®):

fr(0) = { szé‘” o= (1)

The property of zeroing the negative frequency in the analytic signal facilitates frequency reduction through
frequency shifting, simplifying computation and analysis. When the signal exhibits properties of spectral
concentration, numerical computation of the dynamic phasor is more convenient than directly calculating
of the original time-domain signal.

Sander (Sanders et al. 1990) proposed an averaging method for analyzing power electronic circuits
from the perspective of time-varying Fourier coefficients and applied it to numerical simulation of power
electronic circuits. Subsequently, this method was referred to as the dynamic phasor method. Demarcg
(DeMarco 1993) defined the dynamic phasor of various orders from the spectrum perspective under certain
restrictions on the signal spectrum, and used fundamental frequency the dynamic phasor for numerical
simulation of single-machine infinite systems. Venkatasubramanian (Venkatasubramanian 1994) defined
the dynamic phasor as the analytic signal of the original signal shifted the synchronous angular frequency
on the spectrum when the signal spectrum met the spectral concentration condition.

In AC circuit analysis, the steady-state phasor method is widely employed. The steady-state phasor is a
special case of the dynamic phasor. The steady-state phasor method performs calculations in the frequency
domain, eliminating the time-varying component ¢/’ from the time-domain signals, thereby simplifying
the equations into time-independent complex algebraic forms, significantly streamlining the computations
(Qi 2004). For a single-frequency sinusoidal signal, its instantaneous waveform is a sinusoidal curve, with
its envelope waveform being a time-invariant straight line. Consequently, the magnitude of the dynamic
phasor represents the envelope of the sinusoidal curve, while the phase of the dynamic phasor corresponds
to the phase of the sinusoidal signal. Hence, the dynamic phasor can also be referred to as the complex
envelope of the original signal.

For non-sinusoidal periodic excitations in linear time-invariant circuits, the superposition theorem holds,
allowing for Fourier series decomposition of the input signal. Each harmonic component is then analyzed
separately, and the results are summed to obtain the circuit’s full response, the method known as the phasor
method. Obviously, a higher number of harmonics leads to more accurate results. Both fundamental and
harmonic load flow analyses in power system steady-state analysis employ this approach. However, for
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aperiodic signals, the waveform of the signal x(¢) during the time period [t — T,¢] is extended left and right
along the time axis of the period T to obtain a periodic signal, and its Fourier expansion is performed on the
time window [t — T,¢]. During expansion, ¢ is a parameter, resulting in coefficients of e*®7 containing the
time parameter . The magnitude and phase of the dynamic phasor for aperiodic signals become functions
of time, with the envelope no longer being a horizontal line. As ¢ continuously changes, the dynamic
phasor of the original signal varies with time, distinguishing it fundamentally from the steady-state phasor.
However, determining the fundamental frequency @y becomes challenging when the aperiodic signal is
poorly understood. Furthermore, the lack of a property where later terms are smaller than earlier terms, as
observed in Taylor series, makes it difficult to identify which harmonics are the main components of the
signal. This makes it difficult to analyze the stage error of the Fourier series, i.e., for certain computational
accuracy requirements, it is impossible to determine the dynamic phasor order to be taken. Then the
utilization of dynamic phasors is difficult. For power systems, the fundamental components of various
electrical quantities are determinate, and there exists a qualitative understanding of the spectral distribution
of electrical quantities within the system. Hence, the dynamic phasor method holds an advantage in terms
of analytical efficiency.

Compared to time-domain simulation, dynamic phasor calculation allows the use of larger integration
step sizes. In contrast to traditional steady-state phasor methods in electromechanical transient simulations,
dynamic phasor methods consider a broader range of dynamic phasor orders, thereby enhancing compu-
tational accuracy. While increasing the order of the dynamic phasor results in increased computational
workload, enlarging the integration step size reduces computational burden. Balancing between these
factors can lead to improved computational efficiency.

The Harmonic Balance method (HB) utilizes the concept of the dynamic phasor to solve for the steady-
state periodic solutions of a system. A regular periodic solution of an ordinary or differential-algebraic
equation system can be represented by a Fourier series, i. €. , a combination of sinusoids. In many cases, a
reasonably accurate approximation is already achieved when only a small number of sinusoids is considered
(Krack and Gross 2019). In the case of linear differential equations, HB yields a linear algebraic equation
system, the solution of which can usually be given as closed-form expression. In the nonlinear case, the
algebraic equation system is nonlinear as well, and HB only yields an approximation. However, the essence
of HB relies on the Fourier series expansion of nonlinear terms. Therefore, it is constrained by the solution
of polynomial-type nonlinear systems (Dai et al. 2024). The harmonic balance method is difficult to apply
to complex nonlinear problems that are non-polynomial in nature.

For solving non-polynomial-type nonlinear systems, the HB-Taylor method approximates nonlinear
functions with finite-order polynomial expansions using Taylor series (Beléndez et al. 2006). The Alternating
FrequencylCTime Harmonic Balance method (ATF-HB) approximates the original problem by sampling
the temporal values of nonlinear terms and employing discrete Fourier transform (Cochelin and Vergez
2008). HB-recast, proposed by Cochelin et al., is an indirect method that transforms complex nonlinear
differential dynamic systems into polynomial-type differential algebraic equations without loss using
recasting techniques (Cochelin and Vergez 2008). Wu et al., based on the idea of prediction-correction,
improved the Harmonic Balance method by integrating it with the Newton method (Wu et al. 2019).

HB is widely used in solving periodic solutions of nonlinear systems. However, as a semi-analytical and
semi-numerical method, the derivation of equations becomes challenging with increasing system degrees
of freedom and method orders (Yan et al. 2023). Hall et al. proposed the High-Dimensional Harmonic
Balance method (HDHB), which simplifies equation derivation by approximating time-domain calculations
of frequency-domain nonlinear terms (Hall et al. 2002). However, the introduction of approximation
relationships may lead to non-physical false solutions (Liu et al. 2006; Labryer and Attar 2009). Dai et
al. discovered a conditionally equivalent identity between frequency-domain and time-domain nonlinear
terms. Based on this, they pioneered the Reconstruction Harmonic Balance method (RHB) to achieve
ultra-high-order (N > 100) high-precision computations. They also provided an optimal sampling theorem
for time-domain collocation calculations, theoretically eliminating non-physical solutions (Dai et al. 2022).
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2.1.2 Future Research Directions

In transient simulation calculation of power systems, the Harmonic Balance method can be applied to solve
the steady-state solutions of electrical quantities in the power system. HB provides initial steady-state
periodic solutions for electromagnetic transient simulations, improving computational efficiency.

For a general device model, its differential-algebraic equation (DAE) system can be expressed as:

{Tx:f(x,v)

2

i=gx,v) @
where x € R” represents the state variables, v = [va,vb,vc]T € R3? denotes the terminal voltages of the
device, i = [iy, ip, ic]T € R? is the current injected into the grid by the device, T € R"*" is the coefficient
matrix of state variables, f : R" — R"is the differential equation function of x and v, and g : R” — R3is
the algebraic equation function computing i. We assume that x(z), v(¢), and i(z) are all periodic functions
with period T. Taking x(¢) as an example, it can be expressed using a Fourier series as follows

x(t) = hT (Q)X + h" (Q1)X” (3)
where
. . . T
h(Qt) _ Lelﬂt’ellﬂt’_“ ’elet c (CH-H (4a)
X = [%(0),%(1), - ,&(H)]" e CH+Dxn (4b)

where H represents the maximum harmonic order, Q = 27” is the fundamental frequency, X(k) denotes the

Fourier coefficients, and e*¥ represents the Fourier basis function. Taking the derivative of Equation (3),
denoted as X (), and substituting Equations (4a) and (4b), we can express it in matrix form as follows:

X(r) = (Vh(Qu))" X + (Vh(u)) X" (5)

where V = diag(1,iQ,i2Q,--- ,iHQ) represents the diagonal derivative matrix operator. Substituting E-
quation (5) into Equation (2), we obtain:

T ((Vh(Q0)" X + (Vh(Q)"X)

—f (hT(Qt)X +h QR R (Q)V +hH(Qt)X*)
hT (@)1 + ()T

—g (hT(Qt)f( R (OQNR BT Q)Y + hH(Qt)X*)

(6)

In the Harmonic Balance method, Equation (6) is typically solved by equating the Fourier series in each
term. However, in practical engineering applications, models of devices often involve nonlinear functions,
making it difficult to obtain Fourier series expressions that decouple each harmonic. In such cases, ATF-HB
can be adopted, where discrete Fourier transform are used to approximate the Fourier coefficients.

2.2 Time-domain Simulation

The main goal of a time domain simulation is to determine if there is a bounded trajectory of the system toward
an equilibrium point following a disturbance (Ma and Zhang 2023). Determining the level of modeling detail
required to capture the particular phenomena of interest accurately is key when developing a power systems
simulation model. Electromagnetic transient (EMT) simulation is a vital tool for studying complex transient
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behavior. It spans the timescale from microseconds to milliseconds, over which the dynamics of wave
propagation, switching surges, inverted-based controls, stator transients and sub-synchronous resonance
interact with both electromechanical and electromagnetic phenomena (Lara et al. 2024). The objective of
this section is to provide an overview of modelling techniques and computation methods implemented in
industry applications as well as academic research.

2.2.1 Network and Device Modelling

The device and network modelsaf level of detail determines the requirements placed on time-domain
simulation solution methods. For EMT specifically, both network and device dynamics should be considered.
The network circuit dynamics in the EMT simulation is distinct from those in electromechanical
phenomena. The detailed dynamic model of a transmission line is Telegrapher’s equations using Partial
Differential Equations (PDEs) for the voltage and current across the line length with distributed parameters.
However, it is difficult to include this level of detail in time-domain simulation tools, and experience
shows that the impacts of using simplified models are not significant for most applications. The common
simplification is the lossless line assumption, i.e. the resistance and conductance per unit length are zero,
which results in a simplified two-port model interfaced via a current source with constant time delay. The
Dommel line model (Dommel 1969) extends the delayed current-source model approximating the series
resistance losses by adding lumped resistances at both ends and middle of the two-port system.

A typical application in device level EMT simulation is synchronous generators. The foundation for
modeling synchronous generators can be traced back to the early years of the 20th century, as highlighted in
references (Park 1929; Park 1933). Two prominent approaches, namely the two-reaction theory and the Park
transformation, have played pivotal roles in this historical development. To a large extent, contemporary
practices in generator modeling have evolved from the seminal works of Blondel and Park. The resulting
machine model is described sets of nonlinear ordinary differential equations (ODEs), composed of stator
and rotor voltage equations, rotor flux linkage equations, and the rotor swing dynamics. One common
simplification is to set the derivative of stator magnetic flux y to zero. The simplification implies that the
terms Y decay very rapidly after a perturbation, as observed in practice (Anderson and Fouad 2003). This
simplification also removes high frequency transients and fundamental frequency components in the d-axis
and g-axis stator currents, which in turn also allows larger time steps in the simulation execution.

Another class of devices that completely differs in their energy conversion mechanism from synchronous
generators is Inverter Based Resources (IBR). Instead of using a rotational magnetic field, IBRs synthesizes
voltages through high frequency switching, introducing high-frequency dynamics into the synthesized
voltages and realized currents. Despite the high-frequency behavior, IBRs include output filters and
controllers with low-pass filters tuned to regulate average values (Yazdani and Iravani 2010). These
aspects readily provide the rationale to disregard switching-level dynamics from IBR models intended
for system-level studies (Martinez-Velasco 2015). From the perspective of EMT modeling objectives, the
main challenge arises from the network topology and conductivity matrix changes caused by the numerous
switching actions. The currently mainstream modeling approaches are mainly classified into two classes:
topology modeling method and external characteristics based modeling method. The former is subdivided
into ON/OFF model, Ron/Rorr model (Woodford et al. 2015), Transmission line model (TLM) and
L/C model (Sudha et al. 1993), according to the internal topology structure of power electronic switches
dynamics. The latter integrates the power electronic device and equivalently represents it as a multi-port
network. The performance of switch models needs to be verified against equipment behavior before
integration into existing software tools.

2.2.2 Computation Methods

The EMT simulation represents the full wave throughout the entire process, which results in a time-variant
model. As a result, these models require special consideration when choosing integration techniques. The
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most developed software solutions for EMT simulations employ the numerical integration substitution
technique with a trapezoidal rule for integration as originally developed by Dommel (Dommel and Sato
1972) to simulate circuit behavior. Examples of software environments are PSCAD, EMTP, DIgSILENT
PowerFactory, among others. The ultimate objectives are set to maximize computational speed and
modeling precision (Mahseredjian et al. 2009). To achieve trade-off between them, several factors are
typically considered when constructing numerical integration.

Firstly, the approximation accuracy and computational cost of a numerical integration method depend
on the step size h and the integration method order &'(h"), n > 1. Reducing i can improve accuracy
by reducing the relative importance of high-order terms, but it comes at the expense of more algorithm
iterations. According to Corless and Fillion (2013), if the largest error tolerated within a single iteration
is 107", it is best to choose at least a nth order algorithm.

Secondly, the stiffness of models. Although there is no widely accepted definition of model stiffness,

a classical measure is the stiffness ratio s, defined as (Eshkabilov 2020) s = r;?g:f“?“, where o; is the

real part of the ith eigenvalues. When s > 10, the equation can be considered stiff. The challenges of
simulating systems with IBRs stem from interactions across time scales, and the requirements to include
fast electromagnetic dynamics increases model stiffness further. Therefore, it becomes imperative for the
chosen numerical integrator to navigate through stiff regions. Explicit integration methods, like Runge-
Kutta, have difficulty coping with highly stiff simulation models that result from the simultaneous modeling
of electromechanical and electromagnetic phenomena. While implicit numerical integration methods can
overcome explicit methodsaf challenges with stiff systems, like trapezoidal method mentioned earlier.

In addition to conventional numerical integration methods based on Taylor approximation, recent
developments in the field of power system EMT simulation have introduced method known as geometric
numerical integration. Generally, the conventional integration methods do not exploit the underlying
structure of the system, and consequently some physical properties may be distorted or even lost, adversely
affecting the dynamic behaviour of the system during the numerical integration process. The most notable
phenomenon is the spurious energy introduced during the time discretization and numerical integration
process (Hairer et al. 2006), which degrades the numerical stability and solution accuracy. To solve this
problem, numerical integrators for preserving the underlying physical invariant have emerged. If certain
energy function is preserved along the discretized trajectories, the numerical integration methods are called
geometric numerical integrators with exact energy conservation. In general, there have been three classes
of geometric numerical methods developed so far that can achieve exact energy conservation, namely
the collocation method (Kotyczka and Leflivre 2019), the splitting method (McLachlan et al. 2002), and
the discrete gradient method (Schulze 2023). The first two methods are restricted to linear Hamiltonian
systems, which are obviously not applicable to the nonlinear synchronous generator models. The discrete
gradient method, though initially limited to linear Hamiltonian systems in astrophysics (Dahlby et al. 2011)
and classical mechanics (Liu et al. 2013) to preserve multiple invariants, is recently applied to nonlinear
systems (Budd et al. 1999) and shows excellent exact energy conservation performance. The extension
and application of the geometric numerical integration to nonlinear power system EMT simulation is very
limited. A major reason is the difficulty to reconstruct power system component models into canonical
port-Hamiltonian form, i.e. a type of special representation that follows the original geometric structure .

3 SMART GRID - SUPPLY DEMAND MATCHING

From simulation optimization perspective, a unique feature of supply demand matching in smart grid is
the presence of multiple agents, and the system dynamics across multiple spatial scales. And lots of
problems in the power system could be formulated as Markov decision process (MDP) problems. We
use reinforcement learning (RL) to address the MDP problems and take the unique feature of supply
demand matching requirements into account to develop as series of efficient algorithms. For the large-scale
centralized problems, we use Lagrangian relaxation to handle the supply demand matching requirements.
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For the distributed microgrid problems, we use distributed multi-agent RL to address matching requirements
and constraints across multiple spatial scales.

3.1 Large-scale Unit Commitment Problems

With the extensive integration of renewable energy, power systems increasingly need to manage variability,
which requires enhanced real-time capabilities in system planning. Effectively solving unit commitment
(UC) problems are essential for power system operators. The UC problems are commonly formulated as
mixed integer programming (MIP) problems and the industrial-scale UC problems are typically solved using
commercial solvers such as CPLEX or GUROBI which uses advanced Branch-and-Cut or Branch-and-
Bound algorithms (Ostrowski et al. 2011). However, the performance of these solvers is far from satisfying
in large-scale UC problems. Surrogate Lagrangian relaxation (SLR) methods (Bragin et al. 2015) have
been used for large-scale UC problems (Sun et al. 2018; Wu et al. 2021). SLR divides the UC problem
into independent sub-problems for each unit that can be solved more rapidly by Lagrangian relaxation and
SLR updates the Lagrangian multipliers iteratively using their surrogate sub-gradients that are obtained by
solving some sub-problems. SLR can obtain a good enough solution of the large-scale UC problem than
commercial solvers, but it still faces challenges that it requires repetitive solving of similar sub-problems
iterations which reduces overall efficiency.

We proposed a reinforcement learning embedded surrogate Lagrangian relaxation (RL+SLR) method
for fast solving UC problems (Zhu et al. 2024). RL+SLR can swiftly solve the sub-problems for one unit
under varying Lagrangian multipliers because it formulate the sub-problems associated with each unit as
an MDP problem and apply RL to learn the optimal policy which can provide a near-optimal unit state
sequence under various Lagrangian multipliers. In the MDP of unit i at time ¢, the state s;, consists of
the unit on or off state, unit output power, open or close hold time and "penalty price" sequence W;;. W;;
consists of afpenalty pricesas w;, from the current time ¢ to T, with zeros appended at the end to maintain
constant dimensionality. The variable w;, is obtained through a weighted sum of Lagrangian multipliers,
which represents the incremental cost of the power output of the unit in the Lagrangian relaxation problem
under the current values of the multipliers. The formal definition is as follows

t—1
—
Wiy = (U + Z (As — Kl,t)rl(?i)am,t = (Wi, Wigs1, Wi, 0,0 aO)T; (7
leN],

where i, is the Lagrangian multiplier of the supply demand matching constraints, and A;;, k;, are the
Lagrangian multipliers of the upper and lower transmission capacity constraints for line / at time ¢. In the
MDP, the action for unit i involves changes in the on or off status and power output. We utilize a deep Q
networt to train agents for each unit offline, which is then used online to solve each sub-problem.

After training the Q-function for each unit, the UC problem can be solved by RL+SLR, which uses
SLR as the framework and uses RL to solve the sub-problems in the iteration of SLR. The traditional
SLR method uses the commercial solver to solve sub-problems. In RL+SLR, we can obtain near-optimal
solutions of the sub-problems of unit i under various Lagrangian multipliers by doing only 7 forward
propagation computations in the well-trained Q-function. The time complexity for solving a sub-problem
is O(T) and it is not affected by the form of the function of fuel cost.

Table 1 shows the results of the three large-scale sub-hourly UC problems for the 10K-bus system
(Birchfield et al. 2017). RL+SLR can obtain a feasible near-optimal solution with no more than 3%
performance degradation, but 25 ~ 110 times faster than Gurobi, and also 3 ~ 4 times faster than SLR.

3.2 Microgrids Problems

In this section, the Microgrids (MG) are considered to cooperatively minimize the total electricity cost
while maintaining voltage safety. The overall structure of the multi-MG system is shown in Figure 1. The
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Table 1: 10k-bus system T=96 (adapted from Zhu et al. (2024)).

Problem Units Method  Object ($) fier (8) fcpy (s) Gap

Gurobi* 37865029 - 13607 -

Pl 1136 Gurobi® 28618236 - 14712 -
SLR 28783083 1095 1398 0.58%
RL+SLR 29441396 132 543 2.88%
Gurobi* 26706896 — 9084 -
Gurobi® 26680023 — 23775 -

P2 1086 SLR 26833562 1149 1330 0.57%
RL+SLR 27362916 134 289 2.56%
Gurobi® 32953504 - 17889  —
Gurobi® 25640281 - 41178 -

3 1044 SLR 25809754 1187 1564 0.66%

RL+SLR 26235824 126 374 2.32%

2 The first feasible solution found by Gurobi.
b A good feasible solution found by Gurobi.

MGs are connected to the distribution network and the power flow is bi-directional. The distribution also
exchanges power with the high voltage grid. Each MG owns power loads and distributed energy resources.
The MGs cooperatively minimize the total electricity cost of the entire distribution system. Meanwhile, the
MGs need to ensure the safety of the power grid, which is to limit the nodal voltage within the safe range.
There are some on-line algorithms such as the on-line alternating direction method of multipliers (ADMM)
are applied to dispatch the MGs in real time (Ma et al. 2016). However, these algorithms usually depend
on the simplified mathematical models, like linear power flow equations, and only make one-step iteration
for speed improvement. And these methods are model-based that require the MGs and the operator to have
an accurate closed-form model of the distribution network and the electrical devices, which might be hard
to obtain due to privacy concerns and information scarcity.

Regional optimality

Distribution network

voltage
grid

Figure 1: The framework of the multi-MG system (adapted from Cui et al. (2024b)).

Because the economic dispatch problem belongs to the tertiary control in the power system (Chen et al.
2020). The low-frequent violation of the voltage constraint could be tolerated in practice, which would be
handled by the secondary control system (Fan et al. 2021; Xu et al. 2021). Thus, we relax the voltage
constraint as a chance constraint (Chen et al. 2022) and the energy management problem of the multi-MG
system as a constrained multi-agent Markov decision process (CMAMDP). And we propose a distributed
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RL algorithm with a convergence guarantee to solve the general CMAMDP, which could preserve private
information about local costs. To improve the performance and further preserve the privacy of local states
and actions, we develop the feature extraction module based on deep neural networks which will encrypt
the local state-action pairs, and we incorporate this module into the algorithm (Cui et al. 2024b).

We do the numerical experiments on the two distribution networks with 4 and 8 MGs. The experimental
results demonstrate that our algorithm outperforms the existing methods including the interior point method
and on-line ADMM in regulating the frequency of voltage violations. This regulation is at the expense of
1-2% higher economic cost in the experiments. Compared against the RL algorithm with fixed penalizing
term, our algorithm is adaptive to various preset limits. And our algorithm could preserve the local privacy
of each MG, and thus is more applicable in the real system.

3.3 Microgrids Real-time Pricing

In this section, we consider coordinate the MGs in the distribution network by setting prices as incentive
signals. Because of the high uncertainty of loads and renewable resources, it is necessary for the distribution
system operator (DSO) to adopt real-time prices. MGs will make the generation plans by the reference price
sequences set by DSO. The pricing task is generally modeled as a bi-level optimization problem (Alam
et al. 2018). At the upper level, the DSO decides the reference price sequence. At the lower level, the MG
makes its generation plan for the received reference prices. This bi-level optimization problem could be
transformed into a mixed-integer linear programming (MILP) problem using the KarushiCKuhniCTucker
(KKT) conditions and solved by commercial solvers (Toutounchi et al. 2019). However, due to privacy
concerns in practice, the MGs may not provide adequate information for the DSO to build a closed-form
model, which causes challenges to the implementation of the conventional model-based methods.

We transform the above problem into a MDP and solve it by the model-free RL that optimizes the
DSO pricing policy by learning from experience (Cui et al. 2024a). In this way, DSO could optimize the
pricing policy when the response behavior of the MGs is unknown. However, the action dimension of the
MDP problem is to high. For example, if the price sequences for 4 MGs are generated for the next 24
hours divided into 5 minutes, the cardinality of the action space would be 1152, which caused the agent
hard to reach an optimized policy. To address this problem, we propose to incorporate a reference policy
into the regular RL algorithm. The reference policy we set could be generated easily when the prediction
for the real-time prices of the high voltage network is obtained and it could assist the agent to generate a
reasonable policy at the beginning of training.

We do the numerical experiments on the 4 and 8 MGs in the IEEE 33-node distribution network. We
also consider two situations that these problems are transformed into MILP and mixed-integer quadratic
programming (MIQP) by KKT conditions. The results are demonstrated in TABLE 2 and 3. “Baseline”
is using Gurobi to solved the MILP or MIQP problems, which knows the complete information. Our
algorithm performs almost as well as the model-based method and is more practical by privacy preservation
for the MGs. And the results show that our algorithm is also effective when the MGs consider quadratic
cost functions and (dis)charging loss.

Table 2: Comparison of cost (U.S. $/5 minutes) of the DSO with the problem transformed as MILP.

MG number Initial policy Reference policy Our algorithm Baseline
4 400.06 352.18 323.32 317.13
8 404.04 286.57 240.35 228.14

Table 3: Comparison of cost (U.S. $/5 minutes) of the DSO with the problem transformed as MIQP.

MG number Initial policy Reference policy Our algorithm Baseline
4 409.67 373.45 346.38 338.71
8 315.57 284.59 255.82 245.26
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4 AUTONOMOUS DRIVING - EFFICIENT SIMULATION AND ANALYSIS

Curse of Rarity (Liu and Feng 2022) has been a significant long-standing problem for the simulation of
autonomous vehicles (AVs). Safety-critical events occur infrequently within high-dimensional variable
spaces, and the majority of existing data offers minimal insight into these rare occurrences. Meanwhile, as
the safety performance of AV improves, such situations become even scarcer, intensifying the Curse of Rarity
issue. The rarity creates distinguished challenges for accurately and efficiently simulating AVs and analyzing
their safety performance. For instance, it can bring severe data imbalance in safety-critical perception tasks
of AVs, hinder precise behavior modeling for both AVs and background vehicles(BVs) in safety-critical
situations, lead to severe policy gradient estimation variance for learning decision-making models, and
result in dramatic variance for AV testing. Consequently, addressing the safety-critical components in these
aspects of AVs, particularly in AV testing, is challenging. At present, there are primarily two methods for
AV testing, including scenario-based approaches and environment-based approaches.

4.1 Scenario-based Simulation

Scenario-based approaches aim to test AVs in specially crafted scenarios that emphasize safety-critical
situations. How to design and generate such scenarios, however, remains an open question, and many
approaches have been developed, including combination-based scenario generation, worst-case scenario
generation, adaptive scenario generation, and likely-failure scenario generation. The combination-based
scenario generation approach (Zhou and del Re 2017) introduces permutation and combination logic, which
fundamentally decomposes scenarios into several basic scenario units and constructs complex scenarios
by permuting and combining these basic units. The worst-case scenario generation approach (Jung et al.
2007) is to generate the most challenging scenarios for AVs. For instance, Ma et al. utilize game theory
methods to optimize the interference factors in scenarios, generating scenarios most likely to cause rollover
or hard braking of AVs (Ma 1998; Ma and Peng 1999). The adaptive scenario generation approach
calibrates the AV surrogate model gradually through dynamic testing to explore and determine the model’s
effectiveness boundaries, generating representative scenarios. For example, Mullins et al. utilize an adaptive
testing scenario search algorithm to gradually discover the model’s effectiveness boundaries and provide
corresponding test scenarios to measure its safety performance (Mullins et al. 2018). The likely-failure
scenario generation approach aims to discover the most likely scenario that causes failure to determine the
AV’s failure boundary. Koren et al. (Koren et al. 2018) apply this method to test the safety of AVs passing
through pedestrian crossings, discovering scenarios with a high probability of resulting in collisions.

However, scenario-based approaches face two limitations. Firstly, most existing scenario-based testing
methods are only suitable for short scenario segments (typically around 10 seconds), involving a limited
number of dynamic objects (e.g., one or two background road users). These scenarios are typically
characterized by simple, low-dimensional decision variables. For example, OafKelly et al. attempted to
extend the scenario-based approach to more complex, high-dimensional scenarios involving five background
vehicle (BVs) (O’Kelly et al. 2018). However, an AV operating in an urban area over an extended period
could interact with hundreds of other vehicles and road users, performing a variety of maneuvers such
as car-following, lane changing, and merging, and navigating diverse road types such as roundabouts
and intersections. Current scenario-based methods struggle to handle such complexity. While these short
segments are valuable for gauging basic driving skills, they can not adequately assess AV’s overall safety
performance efficiently (Shladover and Nowakowski 2019).

Secondly, scenario-based approaches typically test AVs on a case-by-case basis, which limits their
effectiveness. In contrast, continuous testing of AVs can automatically generate and combine various
scenario segments, efficiently uncovering potentially unknown unsafe scenarios. For instance, an AV that
performs well in two separate scenario segments might fail when these segments are combined during
continuous testing. This failure can occur because, in isolated tests, the AV is optimized to handle specific,
controlled conditions. However, when scenarios are combined, the context shifts, rendering previously
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effective strategies inadequate or inappropriate. The AV must then adapt its strategies to this broader, more
complex context. Additionally, it is important to note that most autonomous vehicles (AVs) exhibit non-
Markovian behavior in their perception, decision-making, and sometimes control modules. This means that
historical data can influence their performance in ongoing tests. Such dependencies can lead to accumulated
errors within the AV’s systems, which might worsen existing challenges and further complicate performance
in continuous testing environments. As pointed out in ISO 21448, unknown unsafe scenarios should be
proven to reach a sufficiently low level and comply with quantitative targets for AV validation. Therefore,
subjecting AV to continuous testing in spatially and temporally complex driving environments is essential
for comprehensive AV validation, a task beyond the scope of current scenario-based methods.

4.2 Environment-based Simulation

The first prevailing approach to environment-based testing involves driving AVs in naturalistic driving
environments (NDE), observing their performance, and making statistical comparisons to human driver
performance (Kalra and Paddock 2016). These statistical comparisons, essential for determining the readiness
of AVs for widespread deployment (Webb et al. 2020; Shladover and Nowakowski 2019), often quantify
safety performance using metrics such as crash rates for various types and severities of crashes per mile
driven. These metrics are commonly employed to assess the safety performance of human drivers (Kalra and
Paddock 2016). To evaluate the safety performance of AVs, most simulation methods test high-fidelity AV
models in life-like simulations of NDE, such as Microsoftafs Air-Sim (Shah et al. 2018), Google/Waymoafr's
Car-Craft (Madrigal 2017), Baiduafs AADS (Li et al. 2019), etc., where different techniques could be
utilized resulting in NDE models with different fidelity. However, these methods are based on historical
data replay or using highly simplified physics models and manually designed rules for simulation, which
differ significantly from real-world driving environments. Yan et al. further expanded to more complex
and highly interactive urban roundabout environments, learning NDE models that statistically match real
human driving behaviors (Yan et al. 2023). The main limitation of the NDE-based testing methods lies
in the difficulty of learning modeling from real data, resulting in low accuracy and poor interactivity of
the obtained NDE models, i.e. the probability distributions are not accurate enough, and there is a lack
of interaction between different traffic participants. Therefore, the accuracy of testing results based on
this NDE model is affected. Meanwhile, due to the rarity of safety-critical events in NDE, hundreds of
millions of miles and sometimes hundreds of billions of miles would be required to demonstrate the safety
performance of AVs at the level of human-driven vehicles (Kalra and Paddock 2016; Wachenfeld and
Winner 2016), which is intolerably inefficient.

The second environment-based testing approach is based on accelerated environments, which can greatly
alleviate the problem of low testing efficiency in the first approach. It increases the sampling probability
of safety-critical scenarios to reduce the number of tests while maintaining the unbiasedness of the test
results. Zhao et al. introduced importance sampling into autonomous driving testing, utilizing variance
reduction techniques on top of Monte-Carlo sampling to increase the occurrence probability of extreme
scenarios while ensuring unbiased estimation of sample parameters (Zhao et al. 2016). Since parameterized
distributions struggle to accurately fit high-dimensional parameter spaces with spatio-temporal correlations,
Zhang et al. introduced normalized flow into the importance sampling method to target the joint distribution
of spatio-temporal parameters (Zhang et al. 2022). Feng et al. constructed an accelerated environment
for autonomous vehicles based on importance sampling and NDE models, identifying critical background
vehicles and changing their action probability distributions to execute highly challenging driving strategies,
thereby accelerating the occurrence of safety events (Feng et al. 2021). However, due to the Curse of Rarity
problem, safety event information is extremely sparse, making it difficult to design effective challenging
driving strategies. Feng et al. further proposed a dense deep reinforcement learning algorithm to identify
and remove non-safety-critical data and densify key information for neural networks to learn challenging
driving strategies, thereby constructing effective accelerated environments (Feng et al. 2023). The limitation
of accelerated environment-based testing methods is the inadequate equivalence of test results with real-
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world performance. Due to the necessity of accurate real-world probability distributions for effective
importance sampling, inaccuracies in NDE models hinder the precision of importance sampling results.
As a consequence, accurately reflecting the safety performance of the tested AV becomes challenging
(Riedmaier et al. 2020).

4.3 Challenges for Simulation of Autonomous Vehicles

Several challenges must be addressed to fully leverage the environment-based simulation.

Challenge #1: Simulating Normal Driving Behaviors in Realistic and Efficient Ways. Human drivers
exhibit a wide range of behaviors influenced by personal traits, mood, experience, and cultural norms.
Driving also involves complex interactions among multiple drivers. It is challenging yet important to
develop models to capture such subtleties, and in a computationally scalable and efficient way.
Challenge #2: Simulating Rare Driving Behaviors in Safety-Critical Situations. Human drivers exhibit
an average accident rate of approximately 1.9 x 107® per mile. Safety incident data are therefore scarce
in nature. It is challenging yet crucial to generate safety-critical situations.

Challenge #3: Beyond Agent Behavior simulations. Mainstream agent simulations primarily emphasize
modeling agent behavior, typically considering environmental factors with short time durations. To create
more realistic testing environments for spatio-temporal continuous simulations, it’s essential to model the
environment dynamics over long time horizon and incorporate BV’s more complex interactions with them.
Challenge #4: Enhancing AV Safety Performance with Efficient Feedback Loop. The curse of rarity
problem leads to data imbalance, which significantly increases the training difficulty in deep learning
models. As AVs achieve better safety performance, the safety-critical events occur even less frequently. It
remains open how to model the unknown corner cases that might be missed in simulation but occur during
road test.

5 CONCLUSION

In this work we review the state of art in simulation and Al in two critical infrastructure in modern societies,
namely the power grid and autonomous driving. Beyond the common requirement on the efficiency of the
simulation and the performance of the optimization, each of these systems demonstrate specific challenges
and research opportunities for simulation and Al The stability analysis of power systems involves dynamics
in both the phasor and the time domain. The supply demand matching in power grid involves multiple
spatial and temporal resolution as well as multiple agents. The efficient evaluation of control policies in
autonomous driving needs to address rare events. We wish this work may shed light on the synergy between
simulation and Al in critical infrastructures in the near future.
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