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ABSTRACT

We review optimal transport (OT) which can be informally described as “deforming” a source probability
distribution into a target probability distribution with minimal cost. OT was formulated more than two
centuries ago and became famous for its relevance to economics and logistics especially after the seminal
work on linear programming by Kantorovich, Koopmans, and Dantzig. OT has since seen multiple
resurgences, first due to the rise of computer vision in the 1990s, and more recently due to the maturing
of large-scale optimization solvers alongside the rise of machine learning and artificial intelligence. This
tutorial formally introduces OT to a simulation audience that is steeped in the concepts of operations
research (OR). The early parts of the tutorial focus on application contexts. This is followed by the Monge
and Kantorovich OT formulations along with key structural results and examples. The tutorial ends with
a short section on semidiscrete OT.

1 INTRODUCTION AND PERSPECTIVE

Every undergraduate student majoring in OR eventually sees the “transportation problem” (Ford and
Fulkerson 1956) as an example application of linear programming. This problem is formulated as

min
hm,n

M

∑
m=1

N

∑
n=1

cm,nhm,n (1)

subject to hm,n ≥ 0 and

N

∑
n=1

hm,n = pm, m = 1, ...,M, (2)

M

∑
m=1

hm,n = qn, n = 1, ...,N. (3)

The typical intepretation of this model is that goods are being shipped from M “supply nodes” (such as
warehouses) to N “demand nodes” (such as distribution centers). The decision variables hm,n determine
the number of units to ship from supply node m to demand node n. The coefficients cm,n represent unit
cost of shipment from m to n. The right-hand side values pm (respectively, qn) represent the total units
supplied by node m (demanded by node n). Without loss of generality, these values may be normalized,
i.e., ∑m pm = ∑n qn = 1, thus representing the proportion of overall supply at node m or demand at node n.
In that case, the decision variable can be viewed as a “joint probability,” or the proportion of total units
to be assigned to a particular supply/demand combination. The objective function can then be interpreted
as the expected cost of shipping one unit; our goal is to find a transportation policy h that minimizes this
expected value.

Problem (1)-(3) is, of course, trivial to solve using linear programming. We may, however, generalize
it by making one or both of the supply/demand distributions continuous. Suppose, for example, that we
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still have M supply facilities, but demand can now arise anywhere in some geographical region Y ⊆ R2.
Then, (1) becomes

min
h

M

∑
m=1

∫
Y

c(m,y)h(m,y)dy. (4)

The decision variable is now an infinite-dimensional function h defined on {1, ...,M}×Y . Constraints
(2)-(3) now become ∫

Y
h(m,y)dy = pm, m = 1, ...,M, (5)

M

∑
m=1

h(m,y) = g(y) , y ∈ Y , (6)

where g is a probability density function supported on Y . This formulation is known as the semidiscrete
optimal transport problem, and also has applications in logistics, particularly in geographical partitioning
or districting problems (see Section 3 for examples).

In a more general form, the optimal transport problem (Villani 2021) transforms one continuous
probability distribution into another. Formally, we may have nearly arbitrary domains X and Y and solve

min
h

∫
X

∫
Y

c(x,y)h(x,y)dxdy. (7)

subject to ∫
Y

h(x,y)dy = f (x) , x ∈ X , (8)∫
X

h(x,y)dx = g(y) , y ∈ Y , (9)

wherein our goal is now to find a joint density h coupling the two marginal densities f and g in a way that
minimizes expected cost (7). This general formulation has diverse applications in economics, computer
vision, machine learning, statistics, algorithmic fairness, and other contexts. Of course, it is also much
harder to solve than the transportation LP! Most computational methods focus on special cases, and virtually
all research on the general problem assumes the quadratic cost function c(x,y) = ∥x− y∥2

2 (in which case
the objective is called the Wasserstein 2-distance between f and g).

The authors of this tutorial all have research interests in simulation. All three of us, independently,
became interested in OT because of its deep connections to ideas and methods that are very well-known to
the simulation community. OT itself may not be a “simulation” problem in a strict sense, but simulation
researchers appear to be in an excellent position to contribute to it. Moreover, OT has a way of arising
unexpectedly in many operations research problems involving optimization and uncertainty. A good example
is the tutorial by Blanchet and Shapiro (2023) on distributionally robust optimization (DRO), which appeared
in last year’s WSC proceedings. In this paper, Kantorovich duality results, which are central to the study
of OT, were used to tractably reformulate various DRO problems.

This tutorial aims to provide a comprehensive introduction to OT for operations researchers in general,
and for simulation researchers in particular. No prior knowledge of OT is assumed. Unlike many overviews
of this area (e.g., Villani 2021), which tend to focus on the deep theory underlying the general case,
we devote considerable space to the semidiscrete problem, as it has many interesting applications and
can be solved tractably using simulation optimization methods. Indeed, some of these approaches may
offer useful guidance for how to think about the more general version. Also, the tutorial does not cover
“control” versions of OT where, in addition to the couplings associated with the transport variables, one
also introduces certain other cost variables that evolve in time. See, for instance, the treatment in (Carlier
and Lachapelle 2009).
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The tutorial is organized as follows. After some mathematical preliminaries in Section 2, the tutorial
presents a variety of application contexts in Section 3. This is followed by Section 4, Section 5 and Section 6
which draw heavily on (Villani 2021; Peyré, Cuturi, et al. 2019; Carlier 2012) to provide an intuitive
presentation of the basic OT formulations along with the key results. Section 7 treats the semidiscrete OT
formulation, followed by some concluding remarks in Section 8.

2 PRELIMINARIES

In this section, we introduce key notation and definitions used throughout the paper.

2.1 Notation

(a) 1m is the m× 1 column vector of ones. (b) For a metric space (Z ,dz), P(Z ) refers to the Borel
probability measures on Z , that is, the set of measures µ satisfying µ(A)≥ 0 for each A∈ Σz, µ(Z ) = 1, and
µ(

⋃
∞
j=1 A j) =∑ j µ(A j) for a countable collection {A j, j ≥ 1} of pairwise disjoint sets in Z . (c) X ∼ µ means

X is distributed according to the probability measure µ . (d) C(X) denotes the space of continuous real-valued
functions on X , and BC(X) the space of bounded continuous real-valued functions on X . (e) If µ and ν are
probability measures on measurable spaces (X ,Σx) and (Y ,Σy), respectively, then µ⊗ν refers to the product
probability measure defined on (X ×Y ,Σx⊗Σy) given by µ ⊗ν(A1×A2) = µ(A1)ν(A2),A1 ∈ Σx,A2 ∈ Σy.

2.2 Definitions

Definition 1 (atomic and non-atomic) A probability measure µ on (Z,Σz) is said to be non-atomic if for
each A ∈ Σz satisfying µ(A)> 0, there exists B ⊂ A with B ∈ Σz such that 0 < µ(B)< µ(A). The probability
measure µ is atomic if it is not non-atomic, that is, there exists A ∈ Σz such that any B ⊂ A with B ∈ Σz
implies either µ(B) = µ(A) or µ(B) = 0.
Definition 2 (support of a measure) The support of a probability measure µ ∈P(X ) is the set consisting
of points x such that every open neighborhood of x has positive probability under µ . Formally,

supp(µ) :=
⋃

{x ∈ X : µ(Nx)> 0,Nx is any open neighborhood of x} . (10)

Equivalently, supp(µ) is the largest set C such that any open set having a non-empty intersection with C
has positive measure assigned to it by µ . The support should be loosely understood as the smallest set
such that the measure assigned to the set is one.

3 APPLICATION CONTEXTS

We describe several applications of the optimal transport framework. Section 3.1 describes geographical
partitioning problems. Section 3.2 describes the use of OT to remove algorithmic bias. Section 3.3 discusses
applications to color transfer in image processing, while Section 3.4 discusses text mining. Section 3.5
briefly mentions some applications in statistics.

3.1 Geographical Partitioning

The partitioning, or districting, problem is an instance of the semidiscrete formulation (4)-(6). Again,
recall that Y ⊆ R2 is a geographical region. There are M supply facilities with known, fixed locations
y1, ...,yM ∈ Y . Customers appear randomly (for example, following a spatio-temporal Poisson process),
and the location of each new customer is distributed according to a density g supported on Y .

Consider a customer appearing at some fixed location y ∈Y . The customer must choose (or be assigned
to) one of the supply facilities. The cost of assigning the customer to the mth facility is proportional to the
distance that the customer has to travel, i.e., c(m,y) = ∥y− ym∥2. The mth facility has enough resources
to serve a proportion pm of all customers.
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The goal in geographical partitioning (Carlsson et al. 2016) is to find disjoint sets A1, ...,AM ⊆ Y
such that ym ∈ Am for all m,

⋃M
m=1 Am = Y , and

∫
Am

g(y)dy = pm. Essentially, each Am represents a zone
served exclusively by the mth facility, thus giving us a very simple assignment rule: the location y of a
new customer must belong to exactly one of the sets Am, and the customer must be assigned to the facility
serving that set.

Strictly speaking, this problem is more restrictive than (4)-(6), because the latter allows us to make
assignments probabilistically: a customer appearing at location y is assigned to the mth facility with
probability h(m,y)

g(y) . As we will see in Section 7, however, there is no loss of generality in requiring
assignments to be deterministic, because the optimal solution to (4)-(6) will produce a geographical
partition under some mild regularity conditions.

3.2 Algorithmic Fairness

Chzhen et al. (2020) considers the following situation. Let X be a scalar-valued random variable representing
the output of some predictive statistical model. The simplest possible case is the linear model Y = β⊤V
for some β ∈ Rp and some random vector V of covariates. However, there is no loss of generality in
considering more complicated statistical models; for example, Y could even be a prediction calculated by
a deep neural network.

Suppose, however, that there is another discrete random variable Z which is correlated with Y in
some way, and that this correlation is undesirable. To give a specific context, Zhu and Ryzhov (2024)
considers an algorithmic hiring problem where V is a vector describing attributes of a job applicant (such
as undergraduate GPA, years of work experience, test scores, etc.), Y is a prediction of the applicant’s
performance, and Z is a “sensitive attribute” indicating whether the applicant belongs to an underrepresented
demographic or socioeconomic group. Due to many systemic factors not observable to the hiring manager,
there may be statistical correlations between Y and Z. Then, using Y to make a hiring decision may have
the effect of discriminating against a disadvantaged group even if the decision-maker does not explicitly
consider Z.

Our goal is to remove this dependence on Z from Y . We construct some estimate X of Y that is as
close to Y as possible while remaining probabilistically independent of Z. Formally, we write the objective

min
X⊥Z

E
[
(X −Y )2

]
. (11)

This has some of the flavor of the more general OT problem (7-9), except that we do not know what the
marginal distribution of X should be. Chzhen et al. (2020) shows that (11) can be rewritten as

min
f

∑
z

P(Z = z)Γz ( f ) , (12)

where Γz ( f ) is the optimal value of an OT problem with quadratic cost c(x,y) = (x− y)2, the given f
as the marginal density of X , and g(y) = P(Y ∈ dy | Z = z) as the marginal density of Y . Since every
Γz is evaluated at the same f , we ensure that X ⊥ Z. We then add an outer layer of optimization over
f in (12) to find the best possible X . Although this problem appears to be very complicated, it actually
has a closed-form solution (see Section 5.3) based on the deep analysis by Agueh and Carlier (2011) of
“Wasserstein barycenters.”

3.3 Image Processing

In the realm of image processing, an important task is color transfer, when an image is modified with the
color palette of a different image. Suppose, for example, that a visual designer is given a photograph of
an evening scene with a dark blue color scheme, and asked to modify it in Photoshop so that the sky has
vivid sunset colors. A second image of a sunset may be provided as a model.
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This problem can be approached using the framework of OT (Rabin et al. 2014). An image can
be represented as a joint distribution on Y ×C , where the first two dimensions S ⊆ R2 are the spatial
coordinates of the image, and the last three dimensions C ⊆R3 represent the RGB color space. Formally,
one may define a function mapping S into C and let U ⊆ Y ×C be the graph of this function.

The visual designer is given two images: one to be modified, and one serving as a color model. The
space Y = U ×V in the OT formulation is taken to be the concatenation of the graphs U and V of
the two images. The goal is to create a third image with the same spatial domain as U , but whose color
distribution matches that of V . The color map of U is discarded; only the color distribution of V is
included in the cost function.

Bonneel and Digne (2023) surveys other applications of OT in image processing. The concepts sketched
out above for color transfer can also be applied in generative models, where the goal is to create an image
in a certain visual style. Essentially, instead of a distribution over a color space, one considers a distribution
over a space of stylistic techniques or elements.

3.4 Text Analytics

Yurochkin et al. (2019) studies a text mining problem in which X and Y are semantic spaces, and f and
g represent the frequency of certain phrases, topics, or other textual elements in two different documents.
Each textual element is first converted into a mathematical representation (for example, a word is turned
into a word embedding) and the similarity between two elements can be measured using the Euclidean
distance between their embeddings (Kusner et al. 2015).

In a manner of speaking, the OT problem shows how one document can be “translated” into another.
We are matching one set of textual elements with another in a way that preserves contextual similarity
between them as much as possible. The optimal value of the OT problem may be viewed as a measure of
similarity between the two documents, but, just as in the image processing example, the optimal solution
may also be useful in generative contexts, where the goal may be to change the literary style of a document
in some prespecified way while keeping the original subject matter.

3.5 Statistics

Statistics provides a fertile ground for the application of OT, particularly in defining metrics between
probability distributions (Klatt et al. 2020). For example, suppose that we have i.i.d. data Y1, ...,Yn and
we wish to test the null hypothesis that they have density f . Then, we can formulate an OT problem
matching the empirical (discrete) distribution of the data to the hypothesized distribution. This literature
focuses on the asymptotic behavior of the optimal value of the OT problem, which enables the design
of tractable test statistics. See, e.g., Del Barrio et al. (1999) for a treatment of the setting where the
hypothesized distribution is normal, and Hallin et al. (2021) for a more general multivariate setting. Other
modern statistical problems where OT has been used include uncoupled isotonic regression (Rigollet and
Weed 2019), causal inference (Torous, Gunsilius, and Rigollet 2021) and multivariate ranking and quantile
estimation (Carlier, Chernozhukov, and Galichon 2014).

4 MONGE & KANTOROVICH FORMULATIONS

OT originated in a restrictive formulation that is attributed to Gaspard Monge (1746–1818), and referred
to as the Monge problem. To state the Monge problem in its most general form, let’s recall the notion of
a push-forward measure. Let (X ,dx) and (Y ,dy) be metric spaces equipped with sigma-algebras Σx,Σy,
respectively, and let T : X → Y be a measurable map. Then, the push-forward of a probability measure
µ by T is the probability measure

T#µ(B) := µ(T−1(B)) = µ({x : T (x) ∈ B}), B ∈ Σy. (13)
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A map T : X → Y such that T#µ = ν is called a transport map between probability measures µ and ν .
Intuitively, think of the transport map T as “transporting” x ∈ X to T (x) ∈ Y , and hence of T#µ as the
distribution of T (X), where X ∼ µ . An alternate and equivalent way of expressing (13) is that the following
“change of variable” formula holds for any continuous real-valued function ϕ : Y → R:∫

Y
ϕ(y)T#µ(dy) =

∫
ϕ(T (x))µ(dx), ϕ ∈ C(Y ), (14)

where C(Y ) is the set of continuous real-valued functions on Y .
Given a source probability measure µ and a target probability measure ν supported on X and Y ,

respectively, the Monge formulation seeks that transport map, among those resulting in a push-forward
equal to ν , which incurs least total cost as measured by a function c : X ×Y → R

⋃
{∞}:

M∗
c (µ,ν) := inf

T

{
Mc(T ; µ,ν) :=

∫
X

c(x,T (x))µ(dx) : T#µ = ν

}
. (M)

In the discrete version of the Monge problem where µ and ν are supported on {x1,x2, . . . ,xm} and
{y1,y2, . . . ,yn}, respectively, (M) becomes

min
T

:
m

∑
i=1

c(xi,T (xi))ai

subject to: ∑
i∈T−1(y j)

ai = b j, j = 1,2, . . . ,n (15)

where a=(a1,a2, . . . ,am),ai := µ({xi}), i= 1,2, . . . ,m; and b=(b1,b2, . . . ,bn),b j := ν({y j}), j = 1,2, . . . ,n.
Three observations about the Monge formulation are salient because they have traditionally formed the

basis for reservations about (M). First, the optimization problem associated with the Monge formulation
may not be feasible. This is easy to see — notice that in the discrete version (15), each i is “assigned” to
a single j, implying that if m < n and ν(y j)> 0 for all j = 1,2, . . . ,n then (15) is necessarily infeasible.
Second, the problem in (15) can produce a nonconvex constraint set, that is, if T1 and T2 satisfy T1#µ = ν

and T2#µ = ν , then it is not necessary that (γT1 +(1− γ)T2)#µ = ν for γ ∈ (0,1). And, third, the Monge
formulation violates symmetry. To be precise, suppose M∗

c (µ,ν) denotes that optimal value associated
with (M), with M∗

c (µ,ν) = ∞ if (M) is infeasible. Then it can be shown without too much effort that
M∗

c (µ,ν) ̸= M∗
c (ν ,µ) in general, implying that M∗

c is not symmetric in its arguments. Such asymmetry is
seen as undesirable given that M∗

c (·, ·) represents a distance between two probability measures. (It can be
shown, under mild conditions on the cost function c, that M∗

c satisfies the other two axioms of non-negativity
and triangle-inequality required by a metric.)

The Monge problem is often described as the OT formulation that “does not allow mass splitting.” This
is apt because the map T implicitly stipulates that all mass at a support point xi of the source distribution
is assigned to a single support point y j of the target distribution. Remarkably, relaxing this restriction by
allowing “probabilistic mass splitting,” addresses all three objections raised in the context of the Monge
problem. To see this, consider the discrete setting of (15). And instead of searching over the space of
transport maps T , suppose we relax to allow transport plan matrices, that is, m×n matrices Q of probabilities
such that Q1m = a and QT

1n = b:

min
Q

:
m

∑
i=1

n

∑
j=1

c(xi,y j))Q(i, j)

subject to: Q1m = a; QT
1n = b; (16)

Q(i, j) ∈ [0,1] for (i, j) ∈ {1,2, . . . ,m}×{1,2, . . . ,n},
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where we recall that ai = µ({xi}), i = 1,2, . . . ,m and b j = ν({y j}), j = 1,2, . . . ,n. It can be shown that
the problem in (16) is always feasible. Furthermore, the feasible region is a convex polytope, that is, the
convex hull of a finite set of matrices (Brualdi 2006), and it’s easily seen that the optimal value K∗

c (µ,ν)
of (16) is symmetric in that K∗

c (µ,ν) = K∗
c (ν ,µ).

The general version of the Kantorovich problem, where the measures µ,ν are not necessarily discrete,
should be somewhat evident from (16), although some care is needed in precisely formulating the problem.
The transport plan between probability measures µ,ν on (X ,Σx) and (Y ,Σy), respectively, is a probability
measure π on X ×Y having marginals µ and ν ; and the set of all such transport plans, denoted Π(µ,ν),
is

Π(µ,ν) :=
{

π ∈ P(X ×Y ) : Π#,X π = µ;Π#,Y π = ν
}
, (17)

where ΠX : (x,y) ∈ X ×Y 7→ x and ΠY : (x,y) ∈ X ×Y 7→ y are projection maps, and Π#,X ,Π#,Y
are corresponding push-forwards of π. Analogous to (14), the set Π(µ,ν) appearing in (17) can also be
characterized as the set of probability measures π on X ×Y such that∫

X ×Y
(ϕ1(x)+ϕ2(y))π(d(x,y)) =

∫
X

ϕ1(x)µ(dx)+
∫

Y
ϕ2(y)ν(dy), (ϕ1,ϕ2) ∈C(X )×C(Y ).

Then, the Kantorovich problem searches in the space Π(µ,ν) to identify a transport plan which incurs
minimum cost under c:

K∗
c (µ,ν) = inf

π

{
Kc(π; µ,ν) :=

∫
X ×Y

c(x,y)π(d(x,y)), π ∈ Π(µ,ν)

}
(K)

The problem in (K) is a relaxation of (M) in a sense to be discussed, but it also has much more structure and
is well-posed. Indeed, the set Π(µ,ν) can be shown to be convex. It is also always non-empty because the
measure µ ⊗ν ∈ Π(µ,ν). Furthermore, it can be shown that the problem in (K) is well-defined, and that
Kc : π 7→

∫
X ×Y c(x,y)π(d(x,y)) attains its minimum on Π(µ,ν). (That Kc attains its minimum on Π(µ,ν)

follows upon showing that Π(µ,ν) is weak* compact, and that Kc is weak* continuous on Π(µ,ν).)
Theorem 1 The problem in (K) admits a solution, that is, the set Π∗(µ,ν) where the infimum in (K) is
attained, is non-empty.

How do transport maps relate to transport plans? Suppose T : X →Y is a transport map. Then, there
corresponds a transport plan πT defined through the push-forward of µ by (id,T ) : X → X ×Y , that is,
πT := (id,T )#µ . Then, as usual, πT satifies∫

X ×Y
ϕ(x,y)πT (d(x,y)) =

∫
X

ϕ(x,T (x))µ(d(x)), ϕ ∈ C(X ×Y ). (18)

Also notice that by the definition of πT , we have that

Mc(T ; µ,ν) :=
∫

X
c(x,T (x))µ(d(x)) =

∫
X ×Y

c(x,y)πT (d(x,y)),

implying that the minimum associated with the Kantorovich problem (K) is necessarily smaller than the
infimum associated with the Monge problem (M), that is, K∗

c (µ,ν)≤ M∗
c (µ,ν).

Another symptom of the structure inherent to (K) is its connection with the useful p-Wasserstein metric
on P(X )×P(Y ). To see this, suppose X = Y and d is a metric on X , that is, ∀x,y ∈ X ,d(x,y) =
d(y,x) ≥ 0, d(x,y) = 0 if and only if x = y, and ∀x,y,z ∈ X ,d(x,y)+ d(y,z) ≥ d(x,z). Assume that the
resulting metric space (X ,d) is a Polish space, that is, (X ,d) is separable and completely metrizable. Then,
assuming the probability measures µ,ν on P(X ) and P(X ), respectively, have finite p-th moments,
the p-Wasserstein distance between µ and ν is given by

Wp(µ,ν) =

(
inf
π

∫
X ×Y

dp(x,y)π(d(x,y))
)1/p

, p ∈ [1,∞). (19)

Comparing (19) and (K), it should be clear that Wp(µ,ν) =
(
K∗

dp(µ,ν)
)1/p.
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5 EXAMPLE TRANSPORT MAPS

The quantile transportation map is useful in solidifying the simulationist’s intuition of optimal transport.
As we discuss, this map is optimal to (M) under certain circumstances.

5.1 Quantile Transport Map

Suppose µ and ν are probability measures on R, with µ being non-atomic (see Section 2.) Define the
x-quantile of µ:

Tq(x; µ,ν) = Tq(x) = min{t : ν((−∞, t])≥ µ((−∞, t])} . (20)

It can be shown that the push-forward of µ by Tq is ν , that is, Tq,#µ = ν , and that Tq is the unique monotone
transport map with this property. It turns out that for a wide family of transportation costs, the optimal
transport map takes the form in (20).

5.2 Knothe’s Conditional Quantile Transport Map

Knothe’s transport builds on the quantile map to construct a powerful transport map in d-dimensions.
For simplicity, suppose µ and ν are probability measures on R2, and further suppose µ is absolutely
continuous. Let µ1 = ΠX ,#µ,ν1 = ΠY ,#ν be the push-forwards of µ and ν by the projections ΠX (x,y) = x
and ΠY (x,y) = y, respectively; and let µx1 ,νy1 be the corresponding conditional measures so that

µ = µ1 ⊗µ
x1 ; ν = ν1 ⊗ν

y1 . (21)

(In other words, if (X1,X2)∼ µ , then X1 ∼ µ1 is the marginal measure corresponding to X1, and X2|X1 =
x1 ∼ µx1 is the measure corresponding to the conditional random variable X2|X1 = x1.) With this notation,
Knothe’s transport map TK(x) = (TK,1(x1),TK2(x1,x2)) can be constructed “coordinatewise” from the quantile
transport map:

TK,1(x1) = Tq(x1; µ1,ν1);

TK,2(x1,x2) = Tq(x2; µ2,ν
TK,1(x1)). (22)

Notice now that for any ϕ ∈ C(Y ),∫
R2

ϕ(TK(x))µ(dx) =
∫
R2

ϕ(y)TK,#µ(dy)

=
∫
R

∫
R

ϕ(y)ν
y1(dy2)ν1(dy1)

=
∫
R2

ϕ(y)ν(d(y)), (23)

where the first equality comes from the definition of the push-forward, the second equality from (22)
and (20), and the last equality from (21). The equality in (23) justifies the Knothe’s transport from µ to
ν , and extending it to d ≥ 2 dimensions should be clear from the construction in (22).

5.3 When is a Quantile Transport Map Optimal?

When X ,Y ⊆R and the cost function satisfies the so-called twist condition on the cost function c, namely,
that the mapping x 7→ ∇yc(x,y) is injective (Gangbo and McCann 1996; Levin 1999), the continuous OT
problem can be solved explicitly. A consequence of the twist condition in this setting is that the optimal
Monge map T ∗ is the unique monotonic map (Maggi 2023) satisfying,

T ∗ (x) = Tq(x; µ,ν), (24)
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where Tq is defined in (20). In other words, the problem is solved by matching the quantiles of both
distributions, so that the x-quantile of µ is transformed into the x-quantile of ν .

This result is used to solve the algorithmic fairness problem in Section 3.2. Returning to (12), we see
that each individual OT problem Γz can be solved by (24), which yields the optimal transformation

X = ∑
z

P(Z = z)Gz
(
G−1

Z (Y )
)
,

where Gz (y) = P(Y ≤ y | Z = z). In words, we observe (Y,Z) and calculate the percentile of Y within its
subgroup. We then “blind” it by turning it into a weighted average of those same percentiles across all
subgroups.

6 DUALITY

Like the classical linear programming problem (Luenberger and Ye 1984), the Kantorovich problem (K)
can be paired with a dual problem that is sometimes computationally easier, and sheds insight on OT’s
structure, while also helping to establish the existence of transport maps. Following the broad lines used
in the classical linear programming construction, we can arrive at the following dual problem to (K):

sup
∫

X
ϕ(x)µ(dx)+

∫
Y

ψ(y)ν(dy)

s.t. c(x,y)≥ ϕ(x)+ψ(y), ∀(x,y) ∈ X ×Y ,

(ϕ,ψ) ∈C(X )×C(Y ). (25)

The functions ϕ,ψ are analogues of the Lagrange variables in classical linear programming and have clear
physical interpretations. Suppose a company wishes to transport goods “spatially distributed” in X as µ ,
as cheaply as possible, and to locations “spatially distributed” in Y as ν . Assuming the cost of transporting
from x to y is c(x,y), the problem (K) describes the problem that the company would have to solve to
minimize the cost of transport. Now, imagine that the job is outsourced to an operator who would first
collect goods from each x ∈ X , and then transport the collected goods to each y ∈ Y , charging a price
for each step. Specifically, suppose ϕ(x) represents the price charged by the vendor for collecting from
x, and ν(y) the price of transporting to y. The vendor attempts to choose ϕ,ψ so that the total price∫
X ϕ(x)+

∫
Y ψ(y) is maximized, but while making sure that ϕ(x)+ψ(y)≤ c(x,y), for otherwise the job

will not be outsourced.
Given the formulation in (25), we can argue that weak duality holds, that is, the supremum in (25)

lower bounds the infimum in (K). Indeed for any π that is primal feasible, that is, π ∈ Π(µ,ν), and for
dual feasible ϕ,ψ , that is, c(x,y)≥ ϕ(x)+ψ(y), we can write∫

X ×Y
c(x,y)π(d(x,y))≥

∫
X ×Y

ϕ(x)π(d(x,y))+
∫

X ×Y
ψ(y)π(d(x,y))

=
∫

X
ϕ(x)µ(dx)+

∫
Y

ψ(y)ν(dy), (26)

implying that the supremum in (25) has to necessarily be a lower bound to the infimum in (K).
We say strong duality holds if the supremum in (25) equals the infimum in (K). While we do not

go into details here, the Kantorovich dual formula can be used to demonstrate that strong duality indeed
holds, and there exists a primal feasible π∗ and a dual feasible (ϕ∗,ψ∗) such that∫

X ×Y
c(x,y)π

∗(d(x,y)) =
∫

X
ϕ
∗(x)µ(dx)+

∫
Y

ψ
∗(y)ν(dy). (27)

In such a case, π∗ ∈ Π(µ,ν) is necessarily an optimal transport plan, that is, it solves (K).
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6.1 Kantorovich-Monge Equivalence

We have seen that the problem in (M) may be infeasible, that is, there may exist no transport map such that
T#µ = ν . This was easily evident in the discrete case (15) where if m < n, the problem became infeasible.
It turns out that such existence of atoms presents the only serious impediment to feasibility even for the
general Monge problem. In fact, as the next theorem states, the infimum in (M) and the infimum in (K)
coincide as long as µ is atomless. (See Definition 1 for a non-atomic measure.) Also, see (Pratelli 2007)
for alternative conditions.
Theorem 2 Suppose µ is non-atomic, and let (id,T ) be the map (x,y) 7→ (x,T (x)) for (x,y) ∈ X ×Y .
Then the set {πT = (id,T )#µ : T#µ = ν} of push-forward measures is weak* dense in Π(µ,ν), and

inf
T

{∫
X

c(x,T (x)) : T#µ = ν

}
= inf

π

{∫
X ×Y

c(x,y)π(d(x,y))
}
.

The equivalence in Theorem 2 does not imply the existence of an optimal transport map. To understand
when such a map might exist, notice that since c(x,y)≥ ϕ∗(x)+ψ∗(y) for all (x,y) ∈X ×Y , the equality
in (27) implies that π∗-almost surely,

ϕ
∗(x) = c(x,y)−ψ

∗(y), (x,y) ∈ X ×Y

= inf
z∈Y

{c(x,z)−ψ
∗(z)} . (28)

Thus, if for µ-almost surely x ∈ X , there exists a single y that attains the infimum in (28), this will prove
the existence of a Monge transport map corresponding to the optimal transport plan π∗.

The expression in (28) can be used to show that ϕ∗ is Lipschitz on X . Then from Rademacher’s
theorem (Mattila 1995, p. 101-102), we know that ϕ∗ is almost-everywhere differentiable on X . Now if
we further assume that µ is absolutely continuous on an open ball B of Rd , then ϕ∗ is µ-almost surely
differentiable on B. Letting S denote the set where ϕ∗ is discontinuous, we can write for x ∈ B\{S

⋃
∂B},

ϕ
∗(x+h) = ϕ

∗(x)+∇ϕ
∗(x)T h+o(h). (29)

if the cost c(·, ·) has the special structure c(x,y) ≡ c0(x− y) for some c0 : Rd → R , we can write for
x ∈ B\{S

⋂
∂B},

ϕ
∗(x+h) = c(x+h,y)−ψ

∗(y)

= c0(x− y)+∇c0(x− y)T h+o(h)−ψ
∗(y)

= ϕ
∗(x)+∇c0(x− y)T h. (30)

From (29) and (30), we see that

∇ϕ
∗(x) = ∇c0(x− y), x ∈ B\{S

⋃
∂B}. (31)

If we further assume that c0 is strictly convex, then the y satisfying (31) is unique and takes the form of a
transport map

T (x) = x−∇c−1
0 (∇ϕ

∗(x)). (32)

Let’s gather the assumptions and arguments leading to (32) as a theorem. Also see (Gangbo and McCann
1996; Levin 1999) for the so-called twist condition, leading to a variation.
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Theorem 3 Suppose c0 : Rd → R is a C1 and strictly convex function. Let B ⊂ Rd be a ball, and µ,ν
probability measures on X and Y , respectively, such that supp(µ)⊆ B, supp(ν)⊆ B, and µ is absolutely
continuous on B. Then, the Monge problem given by

inf
T

{∫
X

c0(x−T (x))µ(dx), T#µ = ν

}
, (33)

attains its minimum at
T ∗(x) = x−∇c−1

0 (∇ϕ
∗(x)),

where ϕ∗ is a conjugate c0-concave function. Moreover, the transport plan given by the push-forward T ∗
# µ

uniquely solves the Kantorovich problem

inf
π

{∫
X ×Y

c0(x− y)π(d(x,y)), π ∈ Π(µ,ν)

}
, (34)

that is, if R is a measure that solves (34), then R = T ∗
# µ , µ-almost surely.

Now let’s consider the special and frequently encountered context of a quadratic cost c0(x) = 1
2∥x∥2,

and notice from (28) that

ϕ
∗(x) = inf

y∈Y

{
1
2
∥x− y∥2 −ψ

∗(y)
}

(35)

implying that
1
2
∥x∥2 −ϕ

∗(x) = sup
y∈Y

{
xT y−

(
1
2
∥y∥2 −ψ

∗(y)
)}

. (36)

Analogously, we also have

1
2
∥y∥2 −ψ

∗(y) = sup
x∈X

{
yT x−

(
1
2
∥x∥2 −ϕ

∗(x)
)}

. (37)

Notice from (36) and (37) that the functions u(x) := 1
2∥x∥2 −ϕ∗(x) and v(x) := 1

2∥y∥2 −ψ∗(y) are convex
conjugates (Boyd and Vandenberghe 2004) of each other. Furthermore, since c0(x) = 1

2∥x∥2, we see from
Theorem 3 that the optimal transport plan has the form

T (x) = x−∇c−1
0 (∇ψ

∗(x)) = ∇u(x), (38)

where u(x) := 1
2∥x∥2 −ϕ∗(x) is convex since it is the convex conjugate of v.) The map in (38) is called

Brenier’s map, named after the now famous Brenier’s theorem.
Theorem 4 Consider the Monge problem in (34) with the quadratic cost c0(x) = 1

2∥x∥2. Then, the map

T ∗(x) = ∇u(x), x ∈ X

solves (34) uniquely (up to µ negligible sets), where u : X → R is a convex function. Moreover, the
push-forward T ∗

# µ of µ by T ∗ uniquely (up to µ negligible sets) solves the corresponding Kantorovich
problem (34) with quadratic cost c0(x) = 1

2∥x∥2.
Notice that Theorem 3 establishes equivalence between the Monge and Kantorovich problems when,

among other assumptions, the cost function c(·, ·) takes the particular form c(x,y)≡ c0(x− y)). If such a
structure on cost does not hold, then the equivalence between the Monge and Kantorovich formulations
may not hold. This issue might be interesting because a number of applications in machine learning and
statistics explicitly seek a transport map, and in such cases, solving the Kantorovich formulation may make
sense only when the equivalence between the Monge and Kantorovich formulations is guaranteed.
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7 SEMIDISCRETE OPTIMAL TRANSPORT

In this section, we show how (4)-(6) can be solved efficiently, using classical methods for simulation
optimization. The key observation is that the semidiscrete problem can be viewed as a kind of linear
program, much like the classical transportation LP (1)-(3). Since the integral is a linear operator, both (4)
and (5)-(6) are linear in the decision variables h(m,y). It should therefore be intuitive (and Theorem 1.3
in Villani 2021 rigorously proves) that (4)-(6) also has a Kantorovich dual. This problem is written as

sup
v,w

M

∑
m=1

pmvm +
∫

Y
w(y)g(y)dy (39)

subject to
vm +w(y)≤ c(m,y) m = 1, ...,M, y ∈ Y . (40)

The decision variables v and w are functions, but since one of our distributions is supported only on
{1, ...,M}, we may write v = (v1, ...,vM). Since the primal problem had only equality constraints, there are
no sign restrictions on v or w.

The infinite-dimensional system of inequalities (40) can be handled by taking

w(y) = min
m

c(m,y)− vm.

Consequently, (39)-(40) admits the finite-dimensional (!) reformulation

sup
v∈RM

E
(

min
m

c(m,Y )− vm

)
+ p⊤v. (41)

For any y and any m, the function vm 7→ c(m,y)−vm is linear. Therefore, the minimum of these functions
over m ∈ {1, ...,M} is concave. Because concavity is preserved under expectations, (41) is an unconstrained,
finite-dimensional concave maximization problem.

This is a problem that the simulation community is in a prime position to solve. Let H (v,y) =
minm c(m,y)− vm. Then, it can be shown, under some mild conditions on the distribution of Y , that
∇vE(H (v,Y )) =E(∇vH (v,Y )), an example of what the simulation literature calls “infinitesimal perturbation
analysis” (Fu 2006; Kim 2006). It is also easy to see that

(∇vH (v,y))m =−1{m=argminm′ c(m′,y)−vm′}

at any v that yields a unique argmin on the right-hand side. Consequently, the optimal solution v∗ of (41)
is the solution to the system of equations

P
(

m = argmin
m′

c
(
m′,Y

)
− vm′

)
= pm. (42)

The probability in (42) is an integral over the marginal density g of Y only. Essentially, v∗ is a vector
of bonuses and penalties that are used to adjust the costs c(m,Y ) such that the mth cost has precisely
probability pm of being the smallest.

The system (42) is none other than a stochastic root-finding problem (Pasupathy and Kim 2011). To solve
it, we actually do not need to know the density g. We only need to be able to simulate independent replications
Y 1,Y 2, ... from that density. Then, we can compute v∗ iteratively using the stochastic approximation algorithm

vn+1
m = vn

m +µn

(
−1{m=argminm′ c(m′,Y n+1)−vn

m′}+ pm

)
,

where {µn}∞

n=0 is a stepsize sequence satisfying the standard conditions ∑n αn = ∞, ∑n α2
n < ∞. The initial

estimate v0 can be chosen arbitrarily. Since the stochastic gradient is bounded, the convergence vn → v∗
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(a) c(m,y) = ∥y− ym∥1. (b) c(m,y) = ∥y− ym∥2.

Figure 1: Optimal partitions for two distance metrics. The pre-specified areas pm for each facility, starting
in the lower-left corner and moving clockwise, are 0.0439, 0.2970, 0.1305, 0.2452, and 0.2834.

easily follows from classical stochastic approximation theory (Kushner and Yin 2003). To our knowledge,
Genevay et al. (2016) was the first to solve semidiscrete OT in this way, though there are some alternate
approaches based on mathematical programming (Carlsson et al. 2016; Hartmann and Schuhmacher 2020).

We now have an optimal dual solution v∗. It is relatively straightforward to show (really it is just a
consequence of strong duality) that

X = argmin
m

c(m,Y )− v∗m, (43)

with ties broken arbitrarily, yields an optimal solution to the primal problem (4)-(6); in other words, the
joint density of (X ,Y ) achieves the minimum expected cost when X is chosen in this way. Thus, the
geographical partitioning problem of Section 3.1 is solved: we simply let

Am =

{
y ∈ Y : c(m,y)− v∗m ≤ min

m′ ̸=m
c
(
m′,y

)
− v∗m′

}
. (44)

In fact, partitions of the form (44) have a long history in computational geometry, where they are known as
“additively weighted Voronoi diagrams” (Aurenhammer 1991). The framework described here allows us to
compute such diagrams for a wide variety of cost functions; Figure 1 shows an illustration for Manhattan
and Euclidean distances in an instance with five facilities where Y = [0,1]2 and the facility locations ym
are represented by black dots.

8 CONCLUSION

Optimal Transport provides a versatile and powerful framework for a wide range of problems that can
be posed as the question of optimally transporting resources between distributions. Understanding OT
is crucial for researchers and practitioners seeking solutions to complex problems involving resource
allocation, distribution matching, and logistics. This tutorial has explored OT’s mathematical foundations,
key formulations, diverse applications across different domains, and some fundamental ideas that could
form the basis of numerical algorithms. This tutorial does not treat computation, but numerical methods
for solving the many flavors of OT is a fertile area of ongoing research.
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