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ABSTRACT

With an upward trend for use in real-world problems of high uncertainty, the field of simulation optimization
(SO) is evolving to aid in finding near-optimal solutions more rapidly and reliably. A comprehensive overview
of the vast and diverse literature in continuous and discrete SO over large spaces is difficult. This short tutorial
intends instead to introduce the methodological landscape, stirring a middle ground between statistical
analysis of Monte Carlo sampling and mathematical analysis of numerical optimization. Particular attention
to sampling and its impact on SO Algorithms highlights open and promising research directions.

1 INTRODUCTION

Simulation Optimization (SO) broadly refers to all problems where either the objective function or constraints
or both need to be evaluated with a Monte Carlo simulation. A typical formulation for SO is

min
x∈X

{f(x) := Eξ[F (x, ξ)]} , s.t. {ci(x) := Eξ[Ci(x, ξ)]} ≤ 0 for i = 1, 2, · · · , nc. (P)

In problem (P), f : X → IR and ci : X → IR are real-valued functions and ξ is the random object defined
on a probability space (Ξ,F , P ). F is a σ-algebra, that can loosely be viewed as the collection of all events,
and P is a function assigning a probability to every event. In this paper, we consider bound constraints on x
to be observed in the d-dimensional feasible space X . The real-valued random functions F : X ×Ξ → IR
and Ci : X × Ξ → IR (capital letters denoting randomness) can be computed from the observed outputs
of a stochastic simulation. The noise space Ξ contains all possible values that the random object can take
with a nonzero probability. We denote the optimal solution and function value by x∗ and f∗, respectively.

Depending on the problem, the nature of ξ may range from a random variate to a complicated random
process. For example, when F is a simulated utilization of a queue, ξ is the stochastic process of arrivals
and service times. In simulating a newsvendor’s profit at the end of a fixed time horizon, ξ may be a random
vector of demands or an autoregressive time series. When F is the binary value indicating bankruptcy
of an insurance company, ξ is a composite Poisson process that generates the number of claims and the
amount of each claim. Or in simulated inventory costs, ξ may be a Markov process generated via transition
probabilities of demand or lead time for each product at each time unit. Fixing ξ, the function F (·, ξ) is
also called the sample path (or random field).

Formulation (P) contains most variants of an SO problem. The objective function f (constraint ci)
can also be a quantile (value-at-risk), probability, conditional expectation, or other distributional property
of the stochastic objective function F (stochastic constraint Ci). We review methods that solve (P) with
continuous or discrete X that is too large for an exhaustive search (ranking and selection—R&S) (Kim and
Nelson 2006). Our chief focus is on numerical and iterative solution methods, a.k.a, solvers, that generate,
at each iteration k, an incumbent solution Xk besides other algorithm-generated ingredients that evolve
throughout the search, such as the step size ∆k or the sample size Nk. Besides simulation-based problems,
SO can also be applied to machine learning or calibration (Peng et al. 2023; Shashaani and Vahdat 2023).

SO problems are difficult as they require circumventing mathematical programming challenges and
controlling the noise in evaluated quantities. Both asymptotic and finite-time effectiveness of SO solvers
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involves synergies between estimation and the typical exploration and exploitation trade-offs of numerical
methods (Andradóttir and Prudius 2009). Managing these synergies matter because the commonly used
sample averaging to replace a stochastic problem with a deterministic counterpart may derail the search
towards suboptimal solutions; we will discuss this further in Section 2. In SO research, more novel sampling
strategies not only can eliminate the possibility of divergence, they can also speed up the algorithm. To
understand this better, we review the main metrics that can evaluate an SO algorithm.

1.1 Performance Metrics of Simulation Optimization Solvers and Clarification on Terminology

Convergence: A solver’s desirable asymptotic property is convergence; namely, a probabilistic guarantee that
the solver will eventually find an optimal solution. A place of stringency is the type of probabilistic guarantees,
i.e., showing that the generated sequence of random iterates (a.k.a., solutions) {Xk}k=1,2,··· converges with
probability 1 (wp1), with high probability (whp), in expectation (L1), or in mean-squared error (L2). The wp1
convergence is considered strong, implying that any possible trajectory produced by the solver will converge.
For a nonconvex problem, often first-order convergence is desirable, where P{∥∇f(Xk)∥ −−−→

k→∞
0} = 1.

Global convergence in the same context implies convergence from any arbitrary x0—not to be mistaken
with global optimization algorithms that prove convergence to x∗ (typically of interest in convex or discrete
SO). For example, ASTRO (Adaptive Sampling Trust Region Optimization) (Ha et al. 2024) is a noncovex
SO algorithm that globally converges to a stationary point wp1. Conversely, local convergence requires
that x0 is close enough to a minimizer and is used to derive convergence rates.

Complexity: While convergence guarantees arm the user with confidence, they lack knowledge about
solver’s efficiency and non-asymptotic behavior. In practice, a solution algorithm will terminate when
a computational resource is exhausted or a pre-specified criterion indicates a near-optimal solution has
been reached. A non-asymptotic guarantee for a solver often involves its complexity at termination or
convergence rate, reflecting its speed and efficiency. Iteration complexity analyzes the number of iterations
(steps) required to obtain close enough solutions, parameterized by tolerance ϵ. The metric that measures
closeness depends on the problem class and context (e.g., (f(Xk)− f∗) in convex settings and ∥∇f(Xk)∥
in noncovex ones). In lieu of f(Xk) or ∥∇f(Xk)∥, given their unavailability, the algorithm can use their
estimates. In discrete settings or for cases where f∗ is unknown, the algorithm may use other metrics for
optimality gap, such as distance between consecutive iterates. Iteration complexity concerns characterizing,
as a function of ϵ, the random variable Tϵ, which is the first iteration at which the solver finds an ϵ-optimal
solution in some probabilistic sense. However, in SO, iteration complexity may not reveal the effort
expended to “ϵ-solve” a problem. Effort refers to the number of simulation runs, since one run (of large
simulation models) typically takes more time than most mathematical operations during each iteration of
the algorithm. Algorithms that may take the same number of steps to reach ϵ-optimality may vastly differ in
number of simulation runs. This has led to analyzing stochastic algorithms in terms of sample complexity
(a.k.a. simulation cost). Letting random variable Wϵ be the total number of simulation runs up to iteration
Tϵ, sample complexity involves characterizing its moments or tails as a function of ϵ.

For intuition, two algorithms ASTRO and SA (Stochastic Approximation) (Nemirovski et al. 2009)
that we will discuss later both have proven L1 iteration complexity of O(ϵ−2) for stochastic nonconvex
problems; however, ASTRO attains O(ϵ−2 log ϵ−1) L1 sample complexity, while the best proven SA result
with variance reduction is O(ϵ−3). This means to reach ϵ = 0.1-optimality, SA may require thousands of
simulation runs while ASTRO may only need hundreds. A reciprocal comparison with a fixed simulation
budget b suggests SA reaches O(b−1/3)-distance on average while ASTRO nears O(b−1/2). The latter
comparison is one known as the finite-time analysis, monitoring performance as portions of the budget
are expended. Deterministic benchmarking (e.g., CUTest (Fowkes et al. 2022) and COCO (Hansen et al.
2021)) seeks speed testing plots for such comparisons. A specialized framework for SO, SimOpt (Eckman
et al. 2023), is a growing open-source library with graphical interfaces that compares average performance
and variability of varying classes of solvers (continuous and discrete) when tested on simulation problems.
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1.2 Unique Challenges and Opportunities in Simulation Optimization

Compared to typical approaches in stochastic optimization literature, SO problems have unique difficulties.
First, recent trends of stochastic per-iteration sample sizes complicates the generated stochastic process
{Xk} by randomizing time (number of runs) between two iterations. Second, dependence between iterates
of a solver creates a well-known challenge in analysis of algorithms. Third, in addition to the recognized
difficulties of unknown constants in deterministic analysis, the unknown variance structure of stochastic
values, e.g., VF (x) = Eξ[(F (x, ξ)−f(x))2], and their complex heteroscedastic behavior is another obstacle.

There are also several features in an SO problem such as (i) ability to leverage estimates of stochastic
noise (standard errors or quantiles) and mechanisms to impact more than just average performance; (ii)
variance reduction stemming from dependence between estimates and reuse of data, or free access to
other simulation-generated variables; and (iii) possible benefits of sample-path structures in F rather than
population-level structures in f . More specifically, SO methods embrace a close dialogue between the
inferred noise from the stochastic oracle and the inferred function’s landscape from the optimization engine.

1.3 Paper Organization

With a focus on the synergy between sampling in the noise space and moving in the decision space, we
skip some SO fundamentals; see some of landmark surveys by Fu (2002), Hong and Nelson (2009), Jian
and Henderson (2015). We start by discussing three sampling paradigms (Section 2), namely, sample
average approximation (SAA), retrospective approximation (RA), and adaptive sampling (AS), linking to
well-known budget allocation schemes in R&S literature and sequential estimation in statistics (Ghosh and
Mukhopadhyay 1979). By emphasizing the sampling strategies beyond any solution method framework,
we provide a viewpoint to estimation mechanisms whose potential benefits in different algorithm classes’
performance may vary and are mostly unexplored. Then a review of continuous (Section 3) and discrete
(Section 4) SO methods follows with examples. Due to space limit, we provide brief commentary on
approaches towards constrained SO and other trends (Section 5).

2 SAMPLING (IN THE NOISE SPACE)

A classic approach to SO is SAA or so-called a mini-batch approach, fixing ξ1, ξ2, · · · , ξn as i.i.d.
(independent and identically distributed) realizations of ξ, and instead of a solution to problem (P) seeking

min
x∈X

{F̄n(x) := n−1
n∑

j=1

F (x, ξj)}. (SAA)

Problem (SAA) is now deterministic and viewed as a sample-path problem since we only search n sample
paths for the optimal solution. A deterministic algorithm is typically run until either reaching ϵ-optimality
or exhausting the simulation budget b. See Algorithm 1 for main steps.

Algorithm 1 Sample Average Approximation

1: Input: Initial point x0. Solver of interest. Optimality gap proxy function ϕ : X → IR+. Tolerance value ϵ.
Sample size n. Sampling budget b. Iteration number i = 0. Total samples counter W = 0.

2: while W ≤ b or ϕ(Xi) > ϵ do
3: Find Xi+1 using estimated quantities needed by the solver, at or around Xi, via SAA with n replications.
4: Increment W with the total simulation runs in iteration i and set i = i+ 1.
5: end while

Let the asymptotic solution to (SAA) be X∗
n, with the finite-time approximate X̂∗

n,b,ϵ that depends
on termination criteria ϵ and b. Can one claim that F̄n(X

∗
n) → f∗ and X∗

n → x∗ as n → ∞ in some
probabilistic sense? See (Homem-de Mello and Bayraksan 2014a) for an excellent review for this question,
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listing strong uniform consistency of estiamtor F̄n on X , i.e., supx∈X |F̄n(x) − f(x)| wp1−−−→
n→∞

0, (which

generally holds at the rate of 1/
√
n) as a requirement for wp1 convergence, i.e., F̄n(X

∗
n)

wp1−−−→
n→∞

f∗.

2.1 Sample Size

Given that the convergence guarantees are asymptotic, one naturally may ask how large should n be to close
the gap between X∗

n and x∗? Shapiro et al. (2021) showed that if f is bounded and κf -Lipschitz continuous,
i.e., |f(x1)− f(x2)| ≤ κf∥x1 − x2∥ for all x1, x2 ∈ X and some κf > 0, and F has finite variance, i.e,
VF (x) ≤ σ2 for all x ∈ X , then in order for a δ-optimal solution of problem (SAA) to be among the

ϵ-optimal solutions (δ < ϵ) of problem (P) with probability at least 1−α, we need n ≥ 12σ2

(ϵ−δ)2
log 1

α

(
2κfD
ϵ−δ

)d

samples with feasible space’s diameter D = supx,y∈X ∥x − y∥∞. Even problems with modest choices
such as ϵ = 0.1, δ = 0.05, D = 100, κf = 10, σ2 = 1, and α = 0.05 lead to extremely large n ≈ 167K to
obtain this guarantee. A similar lower bound exists in bounded discrete spaces, i.e., n ≥ 3σ2

(ϵ−δ)2
log |X |

α with

|X | = 2d for binary decisions. Alarmingly, this sample size requirement is for every x evaluated during
the optimization, irrespective of VF (x) or closeness to optimality; this renders SAA far from efficiency.
In principle, we must let n → ∞ for convergence but how fast should it be to maintain efficiency?

RA (Chen and Schmeiser 2001) is a sampling strategy whose main idea is to solve multiple (SAA)
problems sequentially, each with a fixed sample size until it reaches a pre-determined level of optimality
(tolerance). Then the tolerance decreases and the sample size is increased following a prescribed operator.
Simply put, RA has outer iterations that produce {Xk} progressively closer to x∗ via the tolerance sequence
{ϵk}, while between consecutive outer iterations, a sequence of inner iterations with a fixed sample size
nk = O(ϵ−2

k )–Monte Carlo error rate–solves a new sample-path problem until exhausting the outer loop’s
budget {bk}. The term “retrospective” points to each new sample-path problem using the previous solution
for a warm start. The process is simple as specified in Algorithm 2. Similar to SAA, RA is broad enough
and can be applied with any solver of choice, or even a collection of solvers; yet it is largely unexplored.

Algorithm 2 Retrospective Approximation

1: Input: Initial point x0. A solver of interest. Optimality gap proxy function ϕ : X → IR+. A decreasing
tolerance sequence {ϵk}. An increasing sample size sequence {nk}. A sequence of budgets {bk}.

2: for k = 1, 2, · · · do
3: Set x0 = Xk (warm start) and run Algorithm 1 with ϵk, nk and bk to return Xk+1.
4: end for

Another strategy is adaptive sampling (AS), which follows the sequential nature of RA but relies
heavily on the information received in each step of the algorithm. Rather than fixing a tolerance ahead
of running the algorithm, AS uses a proxy function for optimality gap, ϕ(Xk), and keeps adding new
samples until the estimated standard error of the estimated quantity en(Xk) (e.g., if the quantity used by the

solver is F̄n(Xk), then en(Xk) = σ̂n(Xk)/
√
n =

√∑n
i=1

(
F (Xk, ξi)− F̄n(Xk)

)2
/n) is bounded by that

optimality gap proxy (Step 4 in Algorithm 3). This stopping time sampling strategy provides clear intuition
(saving budget for good solutions later in the search) and a dramatic advantage in implementation (Byrd
et al. 2012; Shashaani et al. 2018; Bollapragada et al. 2018) (See Fig. 1).

Of the three sampling techniques, AS can be considered the most dynamic as every simulation run can
be used to learn the sample size. The adaptivity in AS is both because the tolerance is stipulated from the
algorithm’s learned distance to optimality and because the local variance is learned from simulation runs,
gaining flexibility for problems whose noise level vastly changes at different solutions. This is reminiscent
of the sampling procedures used for R&S with fixed precision, which are widely applied to selecting the best
among a relatively small number of solutions with probabilistic guarantees (see Fu and Henderson (2017)’s
R&S history and references therein). The main requirement in using AS with a known deterministic solver
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is to find the right proxy function ϕ(Xk). The preference is on using quantities such as the step size
∆k that are known at the beginning of iteration k and stay unchanged as new simulation runs at Xk are
collected (as opposed to using F̄Nk

(Xk) or estimated gradient, e.g.). In trust-region methods (described
in Section 3.4), depending on (i) sample-path structure (e.g., smoothness), (ii) access to unbiased gradient
estimates, and (iii) stochastic noise behavior (e.g., subexponential tails), ϕ(Xk) ranges from O(∆2

k/
√
k)

to O(1/ log k), the latter leading to a much smaller rate of sampling (as ∆k
wp1−−−→
k→∞

0). The other difficulty

is the stopping time nature of AS since σ̂n changes with every new sample added. A remedy is a two-stage
approach to estimate σ̂n in the first stage and compute Nk in the second stage (Ha et al. 2024).

Algorithm 3 Adaptive Sampling (Approximation)
1: Input: Initial point x0. A solver of interest. An increasing sample size lower bound sequence {nk}. A proxy

function ϕ(·) for optimality gap. Iteration number k = 0. Total samples counter W = 0.
2: while W ≤ b or ϕ(Xk) > ϵ do
3: Estimate quantities needed by the solver with Nk = min{n ≥ nk : en(Xk) ≤ ϕ(Xk)} samples.
4: Use the solver to find Xk+1 and evaluate it with Nk+1 = min{n ≥ nk : en(Xk+1) ≤ ϕ(Xk+1)} samples.
4: Increment W with the total simulation runs in iteration k and set k = k + 1.
5: end while

(a) The solvability profile (% of 60 problems from SimOpt
library, solved to 0.1-optimality) of ASTRO-DF compared to
SAA-based solvers signifies advantage of AS across problems.

(b) Solving a newsvendor problem via fixed-step stochastic
gradient method reveals increasingly fewer but better solutions
with RA/AS and faster progress with limited simulation budget.

Figure 1: The sampling strategy affects the finite-time performance of SO algorithms. Note the rapid
progress with AS-based solvers at the beginning of the search and slow down towards the end.

Besides SAA, RA, and AS, pre-selected total simulation cost in every algorithm milestone can be allocated
to different points being evaluated. Budget allocation strategies such as OCBA (Optimal Computing Budget
Allocation) (Lee et al. 2010) and others fall in this category. While useful for algorithms that must evaluate
a collection of points in each iteration (direct search methods or evolutionary algorithms), budget allocation
strategies may not be flexible for other optimization algorithms since the number of iterations before
termination Tϵ is a stopping time random variable itself.

Evaluation: When evaluating and comparing solvers of any of these algorithms, it is crucial to independently
assess the value of solutions using a separate stream of random numbers not used during optimization,
i.e., evaluating the terminal solution X̂∗

b , with F̄n′(X̂∗
b ) using n′ (large) independent samples. This avoids

optimization bias (Mak et al. 1999), which occurs because the estimated values used by the solver are
conditioned on the information that led it to select those solutions, hence biased for performance evaluation.
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2.2 Variance Reduction

Besides the choice of sample size, one can be more deliberate in the selection of samples to improve the
efficiency of the algorithm. An established idea for variance reduction is the use of common random numbers
(CRN). Using CRN when calling the oracle means “holding the random number fixed” (at say ξ) as the oracle
is called at the points x1, x2, . . . , x2d+1, that is, the inputs to the oracle are (x1, ξ), (x2, ξ), . . . , (x2d+1, ξ).
The oracle will then return F (x1, ξ), F (x2, ξ), . . . , F (x2d+1, ξ). This is in contrast to independent sampling
with (x1, ξ1), (x2, ξ2), . . . , (x2d+1, ξ2d+1) inputs to the oracle, with i.i.d. ξ1, ξ2, . . . , ξ2d+1. In other literature,
CRN is also referred to as the “simultaneous queries” and considered a powerful tool (Arjevani et al. 2023).
CRN enables leveraging sample-path structure, e.g., Lipschitz continuity

|F (x1, ξ)− F (x2, ξ)| ≤ κF (ξ)∥x1 − x2∥, ∀x1, x2 ∈ X (1)

for all ξ ∈ Ξ except a set of measure 0. Such properties can tremendously alleviate the cost of sampling
and improve the per-iteration sampling complexity (Ha et al. 2024; Rinaldi et al. 2024).

While CRN enforces staying on the same sample-path with the same ξ, other variance reduction tech-
niques such as control variates, stratified sampling, importance sampling, and Latin hypercube sampling either
correct (or modify weight of) an output F (·, ξ) or control the choice of ξ. Control variate technique (Nelson
1990) leverages other simulation generated data in one oracle call and their correlation with the objective

function to correct for the error, via F̄ cv
N (x) = F̄N (x)− Ĉov(F (x,ξ),C(x,ξ))

VC(x)
1
N

∑N
i=1(C(x, ξi)− E[C(x, ξ)]).

In this new estimator, another simulation output C(x, ξ) (which could be one used for stochastic constraints)
whose mean and variance may be known is used. Additionally, database Monte Carlo ideas allow the use
of previously simulated data (perhaps at a different solution) for control variates (Rosenbaum and Staum
2015). While the reduction in variance in F̄ cv

N (·) has been well-studied, whether or not control variates
can directly reduce the simulation cost of an SO algorithm is yet to be shown.

Stratified sampling often divides the noise space Ξ into partitions assuming that the distribution of F
for a fixed x varies drastically from one partition to another. This is a harder idea to justify unless with
evidence of heterogeneity. But harder than that is implementation during optimization unless there is a
strong expert judgement for stratification used for all solutions. Dynamic stratification with binary trees
(in the noise space) or control-variate like ideas have proven effective in practice (Jain et al. 2024). In
terms of their help with analysis, there are promising directions for alleviating the sampling requirement,
as shown in a special case of Latin hypercube sampling, where under smooth sample paths the error rate
is O(n−3/2) in lieu of O(n−1/2) Monte Carlo rate (Asmussen and Glynn 2007). Benefits of this and other
variance reduction techniques on overall algorithm complexity and risk are open questions that may vary
for continuous and discrete SO, which we will discuss next.

3 CONTINUOUS SIMULATION OPTIMIZATION

Example 1: The Newsvendor Problem Consider the problem of finding the optimal amount of a
commodity x ∈ IR to purchase at the beginning of the day that maximizes the expected profit by the
end of the day when demand is uncertain. Given c as the purchase cost, p as the selling cost, w as the
salvage price, and ξ as the random daily demand, one simulation output (profit given x on a random
day) is F (x, ξ) = pmin{x, ξ} − cx + wmax{x − ξ, 0}. When a random demand is realized, then we
can immediately calculate the newsvendor’s profit under the choice of x. The point is that profit has a
likelihood based on the probability measure on ξ.

This is an example of a continuous optimization problem, since X = IR in continuous. For this class
of functions, certain properties such as continuity, differentiability, smoothness, and convexity is important
for optimization. But one of the first things that a continuous optimization solver will want is the derivative
of the function. Derivatives can be exploited to point the solver to a promising (descent) directions. With
a good direction, the solver should also decide the step size in that direction to make an improvement in
the next incumbent solution. The algorithm then iteratively continues this process until termination.
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3.1 Derivative Estimation

Derivatives provide information about necessary and sufficient conditions for local optimality. When we
are at a locally optimal solution, moving to any other direction with small steps will worsen the objective
function value. With a Taylor expansion at x∗, and noting all solutions nearby must be worse, note

f(x∗ + s) = f(x∗) +∇f(x∗)⊺s+
1

2
s⊺∇2f(x∗)s+O(∥s∥3) ≥ f(x∗) for all small s ∈ IRd,

which means (i) ∇f(x∗)⊺s ≤ 0 for all small s ∈ IRd, hence ∇f(x∗) = 0—necessary optimality condition,
and (ii) s⊺∇2f(x∗)s ≤ 0 for all s ∈ IRd, implying a positive curvature at x∗, i.e., ∇2f(x∗) ≻ 0 (positive
definite Hessian)—sufficient condition. Proving the positive definiteness of the Hessian yields a second-
order convergence; however, as mentioned in Section 1.1, first-order stationarity is often adequate in
stochastic settings. For the newsvendor problem, one can derive the derivative of F , denoted by ∇F as
∇F (x, ξ) = (p− c)I(x < ξ) + (w− c)I(x > ξ). Thus with a realized demand ξ, we can directly compute
the derivative of the profit at x. This is a first-order stochastic oracle, whereby a direct observation of both
the function value and derivative is attainable from each simulation run. Accordingly the gradient estimate
can be computed via SAA similar to the function estimate. However, there is an implicit assumption:

∇f(x) = ∇xE[F (x, ξ)] = E[∇xF (x, ξ)] (2)

which may not hold. The necessary condition for (2) is interchangability of expectation (integral) and
derivative operator (limit). One condition for interchangeability (via Dominated Convergence Theorem) is
Lipschitz sample paths as in (1) where Eξ[κF (ξ)] < ∞. Another is through uniform integrability of F .

The derivative explicitly derived in Example 1 is an application of the infinitesimal perturbation analysis
(IPA) (Chong and Ramadge 1993). Under differntiability of F , this derivation of ∇F (the sample-path
gradient) can be done with full access to its mathematical expression; when no access or too complicated,
automatic differentiation tools (Ford et al. 2022) may obtain IPA estimators. Back-propagation in neural
networks is an automatic differentiation, providing the IPA derivative. If (2) holds, then IPA yields unbiased
gradients; though even without unbiasedness guarantees, IPA estimators may still be useful.

Another widely known technique for derivative estimation is the likelihood ratio (LR) technique (Glynn
1987). LR re-structures the problem by putting all the influence of x on the sampling distribution rather
than on the function value, i.e.,

f(x) =

∫
F (ξ)px(ξ)dξ =

∫
F (ξ)

px(ξ)

q(ξ)
q(ξ)dξ =

∫
F (ξ)ℓx(ξ)q(ξ)dξ,

where q is another probability measure independent ofx and ℓx(ξ) =
px(ξ)
q(ξ) is the likelihood ratio. Then, under

conditions that allow interchangability of integral and limit in this set-up, we get ∇f(x) = Ẽ[F (ξ)∇xℓx(ξ)],
with Ẽ representing expectation under the new probability measure q. A good choice of q is px=Xk

yielding
∇xℓx(ξ) = ∇x ln px=Xk

(ξ), also known as the score function. LR is easier to implement as long as the
reformulation of the problem is not difficult. However, its main disadvantage is large variance that grows
linearly with the dimension of Ξ. While the above summarizes some popular derivative estimation methods,
we recommend (Fu 2015) for a comprehensive review.

3.1.1 Derivative-free Methods

Unlike Example 1, in many SO problems ∇xF (x, ξ) is not directly observable and the function value is
the only information available, i.e., the zeroth-order stochastic oracle. The effort to augment a zeroth-order
oracle with an IPA-like derivative observations is not convenient in many cases. There are also problems
whose sample paths are not differentiable; for example, when the objective function is a probability, the step
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function sample path F (x, ξ) = I(A(x, ξ) ∈ a) for event A and region a has 0 derivative everywhere except
at points of discontinuity where it is not defined. In other cases, sample paths may not be smooth despite
being differentiable. In these and many other cases, it is important to have solvers that do not explicitly
need derivative information. These classes of algorithms are called the derivative-free (DF) solvers (Conn
et al. 2009; Rios and Sahinidis 2013; Larson et al. 2019). DF solvers either approximate the gradient from
function values of a collection of points in each iteration, or move in X directly.

A predominant technique to approximate derivatives when derivations above are not possible is the
finite-difference (FD) approximation. For example, forward FD approximates the derivative with

Gk :=

[
F (Xk + hke1, ξ

1+
k )− F (Xk, ξk)

hk
, · · · ,

F (Xk + hked, ξ
d+
k )− F (Xk, ξk)

hk

]
, (3)

where ei is the i-th unit vector, and the perturbation sequence {hk} may be chosen in each iteration
appropriately. One Gk evaluation therefore requires running the simulation at d+1 solutions. Central FD is
similar to (3) but perturbing forward and backward and dividing by 2hk, hence evaluating 2d many points.
The gradient estimator has a bias that disappears as hk → 0. However, smaller hk blows up the variance,
rendering an SAA warranted to control the variance with sample size nk, with ḠNk

(Xk) = N−1
k

∑Nk
j=1Gk,j ,

where each j-th copy Gk,j uses samples (ξi+k,j , ξk,j i = 1, 2, · · · , d). Balancing the squared bias O(h2k)

and variance in i-th direction V([ḠNk
(Xk)]i) = N−1

k h−2
k V(F (Xk + hkei, ξ

i+
k ) − F (Xk, ξk)) requires

nk = O(h−4
k ), which is very expensive. CRN can help by reducing the required sample size to n = O(h−3

k )
since

V
(
F (Xk + hkei, ξ

i+
k )− F (Xk, ξk)

)
=


O(1) ξi+k ⊥ ξk (independent random variables),
O(hk) ξi+k = ξk,

O(h2k) ξi+k = ξk & F (·, ξ) satisfies (1) ∀ξ.

Directional direct search (DS) methods are a different class of algorithms that sample points in the
decision space with fixed or randomized directions (Kolda et al. 2003). The first algorithms in this class
used coordinates ei resembling FD. In DS methods, a set of polling solutions Xk = {Xk +∆kp : p ∈ Pk}
are evaluated using a direction set Pk = {p ∈ X ⊆ IRd : minv∈X

d⊺v
∥d∥∥v∥ > 0} that spans the feasible space.

A solution that yields the best improvement to the incumbent Xk by at least a sufficient reduction criteria,
i.e., infp∈Pk

F̄Nk
(Xk) − F̄Nk

(Xk +∆kp) ≥ c∆2
k with a constant c > 0 is chosen as the next incumbent

and the step size increases for a wider search in next iteration. Otherwise, if no such point in found among
the polling solutions, the current incumbent does not change and the step size is reduced to look in closer
neighborhoods for improvement. The randomized and opportunistic polling reduce the dependence of the
complexity on the problem dimension. Mesh or grid-based methods such as pattern search are also a
group of DS solvers that only require simple decrease; mesh adaptive direct search (MADS) is the basis
of a well-known software called NOMAD (Le Digabel 2009). Another example is DS is the Nelder-Mead
algorithm (Nelder and Mead 1965) that in each iteration performs five main operations on the simplex to
create a new one: reflection, expansion, outside contraction, inside contraction, and shrinking. The new
point generated with each operation follows X = Xc

k + α(Xc
k − Xw

k ), where Xc
k is the centroid of all

points except the worst one Xw
k and α is a scalar. In this recursion the direction of the line connecting

the centroid and the worst point may be seen as a possible descent direction. Two optimality gap proxies
often used here are the size of the simplex and the standard deviation of the function values in the simplex.
Barton and Ivey Jr (1996) modified this algorithm for SO, re-evaluations are warranted before shrinking
the simplex in response to lack of progress (which signals that we may be close to an optimal region).
particularly a promising framework for nonsmooth problems (Garmanjani and Vicente 2013).

Evolutionary methods such as the Genetic Algorithms (GA) (Boesel et al. 2003) or Particle Swarm
Optimization (PSO) (Zhang et al. 2016) are among other DF methods include that are population based
and rely on the intelligence a pool of genes/agents that evolves as more knowledge is obtained. GA learns
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from the population by mutating genes (bits) or crossovers and discarding bad points from one generation
(iteration) to another. PSO sends a number of particles in difference directions (velocity) but corrects their
trajectory using their best and population’s best, which resembles the averaging technique we shall see
in the stochastic approximation algorithms. Given their intuitive mechanisms and easy implementations,
these methods have been widely used and often have available resources online. However, some lacking
theoretical foundations has led to little developments to reduce their dependence on the problem dimension.

3.2 Stochastic Gradient / Stochastic Approximation

The classic stochastic approximation (SA) method by Robbins and Monro (1951) takes iterative steps in
the opposite direction of the gradient, generating a sequence of iterates with a simple recursion

Xk+1 = Xk −∆k∇xF (Xk, ξk). (4)

Instead of using the recursion directly, its projection onto a compact set in X can help with generating
feasible solutions and also alleviate SA’s sensitivity in large search spaces (Andradóttir 1995).

It is well-known that the deterministic version of (4), the gradient descent method, converges to a
first-order stationary point as long as ∆k = ∆ < 2/κg at the rate O(k−1); where κg is the Lipschitz
constant of function gradients, i.e., ∥∇f(x) − ∇f(y)∥ ≤ κg∥x − y∥ for all x, y ∈ X (f is κg-smooth).
However, the stochastic counterpart does not converge with a fixed ∆. The reason is, given a κg-smooth
(and for simplicity, µ-strongly convex) function f , ∆ < 2/κg, E[∇xF (Xk, ξ) | Fk] = ∇f(Xk), and
V(∇xF (Xk, ξ) | Fk) ≤ σ2 for Xk ∈ Fk, the fundamental inequality for smooth functions implies

E[f(Xk+1)− f∗ | Fk] ≤ (f(Xk)− f∗)(1− 2µ∆) +
κg∆

2

2
σ2. (5)

In other words, the optimality gap in each iteration improves by a factor (identical to the gradient descent
analysis and providing geometrically fast improvements) plus another term that depends on σ2 and does
not go away with k. This means the algorithm nears optimality up to a neighborhood (whose size depends
on the noise level in the stochastic gradient) and then exhibits a random walk in that neighborhood without
ever converging. The main direction to drive this added term to 0 was the use of diminishing step sizes
∆k as k → ∞. Robbins Siegmund Theorem shows

∑
k ∆k = ∞ yet

∑
k ∆

2
k < ∞, e.g., ∆k = O(ka)

with a ∈ (1/2, 1] (preventing step size to decay too quickly) guarantees wp1 convergence.
The choice of ∆k has proven crucial. Conservatively small ∆k slows the progress. The preference is

always to keep the step size large for rapid progress, but too large ∆k leads to oscillations and zigzags.
Finding the iteration where reducing ∆k is most beneficial is nontrivial. Some adaptive step size selection
methods reduce ∆k only with significant changes in the direction of consequent iterates to get unstuck, but
keep up pace otherwise (Kesten 1958). Another direction is the iterate averaging and defining iterates as
X̃k = k−1

∑k
i=1Xk, with numerous variations in weight systems or sliding windows, that de-emphasize

the effect of step size (Polyak and Juditsky 1992). For an excellent review of other advances in SA,
including techniques that combine first- and zeroth-order derivative estimates, see (Chau and Fu 2014).
Notably, these attempts challenge the third term’s removal in (5) by means of the step size. Instead of using
one gradient instance, another strategy is using a gradient estimate by averaging several i.i.d. observed
stochastic gradients, i.e., Xk+1 = Xk − ∆kḠNk

(Xk) with ḠNk
(Xk) = 1

Nk

∑Nk
j=1∇F (Xk, ξk,j). This

imposes an N−1
k coefficient to the third term (standard error) that vanishes as long as Nk −−−→

k→∞
∞. Recent

adaptive Nk strategies by Bollapragada et al. (2018) ensure the estimated gradient is a descent direction
whp; complexity analysis in this class of algorithms remains open. Variance-reduced versions of SA, such
as SPIDER and SVRG, use simultaneous queries to reduce the sample complexity from O(ϵ−4) to O(ϵ−3).

Kiefer-Wolfowitz: Volatility of SA is exacerbated in the derivative-free settings; the SA algorithm that
uses FD gradients is called the Kiefer Wolfovitz (KW) algorithm which is the same as (3.2) but with
∇F (Xk, ξi,k) replaced by (3) (Kiefer and Wolfowitz 1952). The perturbation size for KW needs to satisfy
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(i) hk → 0 as k → ∞, (ii)
∑

k ∆khk < ∞ (perturbation size grows at least as fast as the step size),
and (iii)

∑
k(∆k/hk)

2 < ∞. The trade-off between the two is that small hk leads to noisy gradients
knowing that FD gradients. On the other hand, large ∆k leads to large oscillations. Typical choices here
are ∆k = O(k−1) and hk = O(k−1/4). As evident, for one iteration of the KW algorithm, 2d points (in
the case of central finite difference) and d+ 1 points (in the case of forward finite difference) need to be
evaluated. Whereas in the first-order oracle, we only need the evaluation of one point (irrespective of d).
This is why DF methods are very expensive. A popular remedy for this curse of dimensionality is the
Simultaneous Perturbation Stochastic Approximation (SPSA) method (Spall 1992; Spall 2005) that only
requires one additional point evaluation in a random dimension, i.e., using Xk+1 = Xk − ∆kḠNk

(Xk)
where

[ḠNk
(Xk)]i =

1

Nk

Nk∑
j=1

F (Xk + hkUk, ξ
+
k,j)− F (Xk − hkUk, ξ

−
k,j)

2hk[Uk]i
,

using Uk ∈ IRd as a random vector with elements sampled i.i.d. from a uniform distribution. This is on par
with the notion of randomized directional DS methods (Gratton et al. 2015) that also remove dependence
of |Pk| (see Section 3.1.1) on d. KW’s success concerns its sensitivity to x0, ∆k, and the dilemma of
balancing the noise in the derivative estimates (that now contain bias) and the progress of the algorithm.

3.3 Quasi-Newton Recursions

Recall that the typical SA recursion relies solely on the gradient values. A different remedy to the issues
above has been the direct or indirect inclusion of the second order derivatives, as well as the reduction
criterion in the function values. Broadly, inclusion of these elements is aligned with the Newton-Raphson
numerical methods. For a quick review of Newton methods, recall that for κg-smooth functions, one can
build an upper bound approximation mk(s) = f(Xk)+∇f(Xk)

⊺s+ 1
2∆k

∥s∥2, for all s ∈ X that are close
to Xk (using ∆k < 2/κg). The idea behind the Newton methods is to find the minimizer of this quadratic
approximation; setting ∇smk(s) = 0 yields the solution s∗ = −∆k∇f(Xk), which is the well-known
gradient descent recursion. This approximation will be weak if the function’s curvature is wobbly (i.e.,
large condition number of ∇2f(Xk) which is the ratio of its largest to smallest eigenvalue). This causes
moving along the gradient to lead to many zigzags until the algorithm finds a good direction. A better
approximation that can save those zigzaggy steps and find a good direction early and enable taking large
steps in that direction must take the curvature information into account, i.e.,

mk(s) = f(Xk) +∇f(Xk)
⊺s+

1

2
s⊺∇2f(Xk)s, (6)

where the Hessian replaces the identity matrix in the first approximation, where ∥s∥2 = s⊺Ids (Id being
an identity matrix in IRd×d). Then minimizing this approximation yields s∗ = −(∇2f(Xk))

−1∇f(Xk),
a.k.a., the Newton-Raphson recursion. When ∇2f(Xk) is not accessible or expensive to compute which is
a prevalent issue in SO, one would instead use a symmetric positive definite matrix, denoted by Bk, to get
a quasi-Newton recursion. The objective with the quasi Newton methods is to have a good representative
of the function curvature with easy and inexpensive updating (without requiring additional simulation runs)
in each iteration; a common method is BFGS with limited memory (Liu and Nocedal 1989).

3.4 Line Search and Trust Region Methods

Despite is far-reaching reputation, SA is still subject to its Achille’s hill—the step size—especially in
functions with negative curvatures. Line search (LS) methods have attempted to solve the step problem in
SA by fixing a “good” direction and choosing how far to move in that direction by solving a one-dimensional
problem min∆>0 f(Xk + ∆Pk), where Pk ∈ X is a descent direction (e.g., gradient descent, Newton,
quasi Newton, or conjugate gradients). Typically a large ∆ initiates LS, and is reduced in a backtracking
look if minimum reduction f(Xk +∆Pk) > f(Xk) + c′∇f(Xk)

⊺Pk is not achieved (Armijo condition).
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c′ < 0.001 makes the linear approximation an almost flat line. For a speed up, if the slope at the trial
point signals potential faster reduction in that direction, i.e., |∇f(Xk +∆Pk)

⊺Pk| ≤ c′′|∇f(Xk)
⊺Pk| for

c′′ ∈ [0.1, 0.9] (curvature condition), then the step size can increase. Unlike SA, LS uses both the function
value and the gradient at the trial point to accept it; this conservativeness tremendously helps in the stochastic
settings. SASS (Jin et al. 2024) is a recent stochastic LS method that accepts Xk −∆kB

−1
k ḠNk

(Xk) if
the reduction in the function estimates is more than ∆k(ḠNk

(Xk))
⊺B−1

k ḠNk
(Xk).

Trust regions (TR) circumvent this by just minimizing the quadratic approximation of the function in a
∆k-ball around the incumbent solution Xk. Therefore, TR evolves in the search space by looking in compact
regionsXk := {s ∈ X : ∥s∥ ≤ ∆k}whose size increases when sufficient reduction is achieved and decreases
otherwise. Concretely, the trial step X̃k+1 := Xk + Sk in TR, with Sk = argmins∈Xk

Mk(s) as defined
in (6) but with estimated quantities, is accepted if Ak := F̄Nk

(Xk)− F̄Nk
(X̃k+1) is similar to the predicted

reduction Bk := Mk(0)−Mk(Sk). An important ingredient for both TR and LS is to ensure the stochasticity
in function and gradients does not derail the search. SASS stands on a common assumption for the stochastic
gradient ḠNk

(Xk) (Bottou et al. 2018), namely, E[∥ḠNk
(Xk)−∇f(Xk)∥2 | Fk] ≤ c1+ c2∥∇f(Xk)∥ for

some c1, c2 > 0. Two stochastic TR algorithms, STORM (Blanchet et al. 2019) and ASTRO, both enjoy

|f(Xk)− F̄Nk
(Xk)| = O(∆2

k), and ∥∇f(Xk)− ḠNk
(Xk)∥ = O(∆k) whp or wp1;

proven to find an ϵ-optimal solution with simulation cost O(ϵ−6 log ϵ−1). However, ASTRO allows for
CRN which, under smooth F , dramatically reduces this cost to O(ϵ−2 log ϵ−1). Cao et al. (2023) have
considered (without sample complexity guarantees) replacing the typical sufficient reduction criterion with
Ak + r > θBk, where r is a relaxation incorporating uncertainty in the function estimate. Lastly, inspired
by regularizing (6) in deterministic settings, recent endeavours have embarked in SO, e.g., adding a cubic
regularizer 1

3∆k
∥s∥3 (Scheinberg and Xie 2023) that has challenges in cubic minimization with no sample

complexity guarantees. Regularized quadratic approximation (Curtis and Wang 2023) is unexplored in SO.

4 DISCRETE SIMULATION OPTIMIZATION

Example 2: The Ambulance Placement Problem In a city, when a call request comes in, the nearest
idle ambulance is dispatched to the scene, driving at a random speed, and on arrival, spending a stochastic
amount of time for treating the patient (Nickel et al. 2016). Where should ambulance bases be placed to
minimize the expected patient call response time? This is an example of a discrete optimization problem,
since the space in which x is defined is within a finite set X by, e.g., coordinates of intersections in a grid.

When the feasible set is countable and small, exhaustive search with R&S dominates the literature. For
larger feasible sets, faster solvers that explore the decision space are needed. Heuristics and evolutionary
algorithms are popular in practice for this setting and can be economized with smart sampling schemes (in
the noise space) (Shashaani and Vahdat 2023). However, discrete SO solvers are advantageous due to their
convergence to global solutions (showing that if the algorithm is run long enough, the entire feasible space
will be covered) and complexity guarantees. A typical way of dealing with a high-dimensional discrete
problem f : X ⊆ Zd 7→ IR is (i) to solve its linear interpolation f̃ : IRd 7→ IR (that can maintain the original
problem’s properties such as convexity) to find x̃∗ ∈ IRd, and (ii) find the best neighboring solution to x̃∗

in X ⊆ Zd. In SO, this is quite expensive as solving the continuous envelope of the original problem is
itself time consuming with noise, and enumerating the neighborhood is also expensive in high dimensions.

4.1 Methods Based on Partitioning

This group of algorithms searches for good neighborhoods before searching for good solutions. Branch
and bound methods have been used for a long time with the philosophy that maybe we can save lots of
computation by screening a whole subregion out, or rather mark a subregion as a promising one to focus
our efforts on. The SO counterparts of this approach are three algorithms: i) COMPASS (Xu et al. 2010),
ii) nested partitioning (Shi and Ólafsson 2009), and iii) stochastic branch and bound methods (Xu and
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Nelson 2013). In some sense, these group of algorithms pass on the best neighborhoods they find from
one iteration to another. These partitioning schemes are different from randomized sub-spacing schemes
in continuous optimization that have been studied for dimension reduction (Cartis and Roberts 2023).

4.2 Methods Based on Pseudo-Gradients

In line with the intuitive Newton methods, there are attempts in discrete SO that leverage finding good
directions via gradient-like steps. Zhang et al. (2023) propose to use sub-gradients G̃k of f̃—a convex
linear interpolation of f , which is non-smooth. They use truncation to reduce the simulation cost and
project the trial step to the feasible region via ΠX (Xk−∆kG̃k), attaining O(log d) dependence on problem
dimension (a drastic reduction from O(d3)) under convexity and R&S-based sampling rules. A similar idea,
Retrospective Search using Piecewise-Linear Interpolation and Neighborhood Enumeration (R-SPLINE),
was proposed by Wang et al. (2013) that computes a pseudo-gradient on the nearest non-integer point
X̃k to Xk via piece-wise interpolation to apply LS and backtracking to. Once a good solution X̃k+1 was
found, the algorithm chooses the best nearest in the feasible space and in doing so uses RA for sampling.

4.3 Methods Based on Sampling (in the Decision Space)

These methods define sampling distributions on the decision space and update those distributions based on
the incoming data from simulated points. One can also include the partitioning methods in this category when
point selection in each partition is done following history-informed distributions. In some studies, this group
of solvers are called model-based methods (Hu 2014) were the word model refers to the distribution that
governs the randomized selection of new points in the decision space. In fact, one can view these algorithms
as passing along probability distributions (with evolving supports) from one iteration to another rather than
passing iterates. The early algorithms in this category were the pure adaptive random search (Zabinsky
2013) that sampled new Xk uniformly in the most recent level set of the function and replaced the incumbent
accordingly. The hesitant adaptive search (Zabinsky and Linz 2023) distribution that aligns with the idea
behind hit-and-run methods (Kiatsupaibul et al. 2011), aiming for the sampling distribution to converge to
a uniform distribution for global solutions and zero elsewhere. Adaptive annealing procedures (Romeijn
and Smith 1994; Alrefaei and Andradóttir 1999) sample Xk from the entire space but increase the sampling
probability in the promising region following the Boltzman distribution.

5 CONCLUDING REMARKS AND OTHER ADVANCES

An aim and hope of this tutorial is to promote that besides great strides of the SO theory and algorithms
exploited in statistical realms, exciting opportunities await. The cost of randomness in all classes of stochastic
optimization algorithms provably dominates complexity. SO offers a new perspective: let’s control that
cost with sampling—a classical strength of simulation methods—in dialogue with mathematical programs!

We regretfully leave out other advances in SO due to space limit and refer the interested reader to excellent
surveys in multiobjective SO (Hunter et al. 2019), parallelization (Hunter and Nelson 2017), Bayesian and
metamodeling-based SO (Wu et al. 2018), (distributionally) robust methods and input uncertainty (Zhou
and Xie 2015), and sequential SO (Luo et al. 2015). But we say a few words about constrained SO.

In (P), each constraint function ci can be deterministic (e.g., a space capacity constraint for the
newsvendor problem), or stochastic and only estimable using the outputs of a stochastic simulation (e.g.,
a constraint on the expected number of unsold items by the end of the day). When the constraints are
deterministic, an SAA approach can adopt any of the existing constrained optimization solvers, such as
with Lagrange multipliers and other penalty / dual methods, projection methods, or feasible direction
methods including the conditional gradient (Frank-Wolfe) methods, manifold-based methods, or interior
point methods to solve (P). In random search methods and those that sample points in the decision space,
the feasibility can be directly enforced on the sampling distribution. Complexity analysis in these settings
remains open. On the other hand, when the constraints are stochastic (including chance constraints), whether
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Xk is feasible or not is uncertain. This is an active area of research; see review by Homem-de Mello and
Bayraksan (2014b), feasibility metrics proposed by Eckman et al. (2023), and a cooperative SA method
for a convex X that may move using estimated constraint gradients instead (Lan and Zhou 2020).
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