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ABSTRACT

Hypothesis testing is a statistical inference approach used to determine whether data supports a specific 
hypothesis. An important type is the two-sample test, which evaluates whether two sets of data points are 
from identical distributions. This test is widely used, such as by clinical researchers comparing treatment 
effectiveness. This tutorial explores two-sample testing in a context where an analyst has many features 
from two samples, but determining the sample membership (or labels) of these features is costly. In machine 
learning, a similar scenario is studied in active learning. This tutorial extends active learning concepts to 
two-sample testing within this label-costly setting while maintaining statistical validity and high testing 
power. Additionally, the tutorial discusses practical applications of these label-efficient two-sample tests.

1 INTRODUCTION

Much scientific research involves conducting experiments and drawing conclusions from the r esults. This 
process is prevalent in fields such as physics, chemistry, biology, and other natural sciences, where scientists 
perform extensive experiments to verify hypotheses. To address the common pitfall of scientists making 
false discoveries or incorrectly claiming a hypothesis is true, statisticians have developed hypothesis testing, 
a statistical inference approach that evaluates whether a hypothesis is supported by experimental data.

Conducting experiments is often resource-intensive. For example, clinical trials in drug discovery can 
be very costly, running an emulator for physics experiments can demand significant computational power, 
and chemical experiments may involve lengthy reaction times. To address these challenges, the research 
community has proposed “data-efficient" h ypothesis t esting ( Kartik e t a l. 2 019; N aghshvar e t a l. 2013; 
Cohen and Zhao 2015; Naghshvar and Javidi 2010; Dasarathy et al. 2017; Cecchi and Hegde 2017), which 
aims to perform a limited number of experiments to make effective decisions. In this approach, an action 
space that characterizes the data sources (e.g., various experiments) is typically defined. T he hypothesis 
testing procedure then adaptively selects an informative data source to facilitate decision-making regarding 
the hypotheses. This tutorial is focused on an important type of hypothesis testing, two-sample hypothesis 
tests, in a label-costly setting.
Two-sample testing: Two-sample tests are applied to data samples (or measurements) from two distributions 
to determine if the data support the hypothesis that the distributions are different. If we consider each 
data point as a feature and label (indicating which distribution the data is from) pair, then two-sample 
testing is equivalent to testing the dependence between the features and the labels. Viewing the problem 
through this lens, the null hypothesis for two-sample testing states that the feature and label variables are 
independent, while the alternative hypothesis states the opposite. An analyst performing a two-sample 
test is to decide between the null and alternative hypotheses based on the data from the two distributions. 
Depending on the flexibility in examining the two samples, she can choose to perform a batch two-sample 
test, where hypothesis testing is conducted only after all data collection is complete, with no continuous 
data collection and testing allowed. Alternatively, she can opt for sequential two-sample testing, where 
both data collection and hypothesis testing proceed sequentially and concurrently.
Label-costly setting: In traditional two-sample testing, the underlying assumption is that both the features
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and their corresponding labels are simultaneously available. In this tutorial, we discuss two-sample testing
in a rarely considered setting, where the measurements (or features) are readily accessible, but their groups
(or labels) are unknown and difficult/costly to obtain. This scenario is analogous to active learning (Cohn
et al. 1994) in machine learning community, leading to many label-efficient algorithms (Gal et al. 2017;
Balcan et al. 2006; Dasarathy et al. 2015; Hanneke et al. 2014) for classification purposes. In contrast,
this tutorial focuses on making decisions on hypotheses, i.e., hypothesis testing, which requires a different
label query strategy to achieve label efficiency while effectively determining whether the null hypothesis
is supported by the data.
Motivating application: Computer scientists and clinicians have collaborated to develop digital twins for
simulating patient data in clinical trials. Identifying potential biomarkers indicative of disease severity is
crucial before constructing these twins. Without this step, significant resources could be wasted on non-
indicative biomarkers. Clinicians must validate these biomarkers through experiments, which can be costly.
Efficient validation against expensive and labor-intensive labels is essential. Label-efficient two-sample
tests address this challenge by enabling validation with a small subset of labeled data. A motivating example
is the validation of digital biomarkers in Alzheimer’s disease relative to imaging markers. Say we want
to determine whether a series of digital biomarkers that can be collected at scale (e.g. gait, speech, typing
speed measured using a patient’s smartphone) is related to amyloid buildup in the brain (measured via
neuroimaging, and an indication of increased risk of Alzheimer’s disease). In this scenario, we can obtain the
digital biomarkers on a large scale by distributing the tests via the internet. However, actually determining if
a particular patient is amyloid positive (higher risk of Alzheimer’s disease) or negative (lower risk) involves
bringing participants in expensive and burdensome neuroimaging tests. It is of considerable interest to
validate the digital biomarkers relative to the biomarker by only collecting neuroimaging data from a small
number of participants. Notice that this scenario is in stark contrast to traditional formulations of two sample
testing, where the class label (amyloid positivity) is assumed to be available for participants in the study.
Questions to address: Developing a legitimate label-efficient two-sample test requires addressing the
following questions,

• What is an effective query scheme for the label querying?
• Does the developed test maintain statistical validity, i.e., can the error of rejecting the null hypothesis

be controlled when the null is true?
• Does the developed test have high testing power, i.e., can it reject the null hypothesis with high

probability when the alternative hypothesis is true?
In this tutorial, we discuss label-efficient two-sample testing and demonstrate that it is possible to achieve
performance similar to traditional two-sample testing while minimizing the number of label queries. We
will present label-efficient testing algorithms that can answer these questions with supporting theorems.
The organization of this tutorial is as follows. In Section 2, we review the two-sample test. In section 3,
we present the label-efficient two-sample testing problem. In Section 4, we introduce an effective label
query scheme called the bimodal query. In Section 5 and 6, we present batch and sequential label-efficient
two-sample tests, respectively.

2 REVIEW OF THE TWO-SAMPLE TESTING

2.1 A Traditional Two-Sample Testing Problem

Two-sample hypothesis testing evaluates whether two samples (or sets of data points) are generated from the
same distribution (null hypothesis) or different distributions (alternative hypothesis). Let X = {x1, . . .xn0}
and Y = {y1, . . . ,yn1} denote two samples of the realizations of i.i.d. random variables {Xi}n0

i=1 and {Yi}n0
i=1

for X ∼ pX (x) and Y ∼ pY (y). The null and alternative hypotheses are formulated as H0 and H1 in the
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following:

H0 : pX (x) = pY (y) ,
H1 : pX (x) ̸= pY (y) . (1)

Then, the traditional two-sample testing problem is to decide whether to reject or retain H0 after
examining X and Y .

2.2 Desired Properties for the Traditional Two-Sample Testing

A conventional two-sample test is formulated as follows Johnson and Kuby 2011: (a) the analyst obtains
two sets of data points X = {x1, . . . ,xn0} and Y = {y1, . . . ,yn1}; (b) she computes a test statistic t from X
and Y ; (c) she then computes the p-value for the statistic t under H0 (both X and Y come from the same
distribution). Formally, the p-value of a valid two-sample test represents the probability of obtaining test
results at least as extreme as the test statistic t, assuming the null H0 is true. In other words, a low p-value
indicates that the test statistic t is unlikely to have been generated under H0, suggesting that H0 should be
rejected. Typically, the analyst compares the p-value to a predefined significance-level α and reject H0 if
p ≤ α . Throughout this tutorial, we will consider the following desired properties for a two-sample test:
Valid p-value: Given pX (x), pY (y), the resulting realization sets X and Y and a significance level α ,
a two-sample test generates a valid p-value computed from X

⋃
Y if P(p ≤ α)≤ α when H0 is true.

Consistency: Given pX (x), pY (y), sets X and Y containing n total samples drawn from these distributions,
and a significance level α , a two-sample test is consistent if limn→∞ P(p ≤ α) = 1 when H1 is true.
High testing power: Given pX (x), pY (y), n= |X |+ |Y |, the resulting realization sets X and Y and a sig-
nificance level α , a two-sample test has high testing power if P(p ≤ α) is high for the finite n when H1 is true.
In other words, a two-sample test is more powerful than another if its P(p ≤ α) is higher given a specific n.

Here, we write P0(p ≤ α) and P1(p ≤ α) to denote P(p ≤ α) under H0 and H1, respectively. P0(p ≤ α)
represents the Type I error, which is the probability of making a wrong decision when H0 is true, while
1−P1(p ≤ α) represents the Type II error, which is the probability of making a wrong decision when H1
is true. A valid two-sample test (i.e., one that produces a valid p-value) can upper-bound its Type I error
P0 by a predefined significance level α . On the other hand, the properties of consistency and high testing
power serve to reduce the Type II error 1−P1.

2.3 Classical Two-Sample Tests

The development of two-sample tests has a rich history (Friedman and Rafsky 1979; Chen and Friedman
2017; Hotelling 1992; Friedman 2004; Vayatis et al. 2009; Lhéritier and Cazals 2018; Hajnal 1961). In
this section, we introduce representative examples of the non-parametric two-sample test and the sequential
non-parametric two-sample test. In section 3, we will see how label-efficient two-sample tests are extended
from these classical two-sample tests.

2.3.1 Nonparametric Two-Sample Testing

This section introduces the Friedman-Rafsky (FR) test (Friedman and Rafsky 1979), a non-parametric,
graph-based test to determine whether two multivariate samples are realization of the same distribution.
The null and alternative hypotheses and the notations used are stated in (1).
The FR test statistic: The FR test statistic is computed as follows. First, one constructs a Euclidean
minimum spanning tree (MST) over the samples X

⋃
Y , i.e., the MST of a complete graph whose vertices

are the samples, and edge weights are the Euclidean distance between the samples. Then, one counts
the edges connecting samples from opposite classes (i.e., cut edges). We use rn to denote the cut-edge
number for the MST constructed over two samples X

⋃
Y with a total size of n, and use Rn to denote the

corresponding random variable. Under the alternative H1, rn is expected to be small, and under the null
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H0, rn is expected to be large. The FR test statistic wn is a normalized version of rn,

wn =
rn −E [Rn | H0]√

Var [Rn | H0]
, (2)

where E [Rn | H0] and Var [Rn | H0] are the expectation and the variance of Rn under the null H0. We use Wn
to denote a random variable of which wn is a realization. The FR test rejects H0 if a small Wn is observed.
A permutation test: In practice, as stated in Friedman and Rafsky 1979, the FR test is carried out as a
permutation test where the null distribution (distribution of a statistic under the null H0) of Wn is obtained by
calculating all possible values of wn (2) under all possible rearrangements of the observations of X

⋃
Y .

Then a p-value is obtained using the permutation null distribution and the wn computed from X and Y .
The p-value is compared to a significance level α to reject H0 for p ≤ α . We refer readers to Welch 1990
for the procedure of the permutation test.
Approximation of the permutation test: Both Theorem 4.1.2 in Bloemena 1964 and Section 4 in Friedman
and Rafsky 1979 demonstrate that, if Wn is generated under H0, then the permutation distribution of Wn

approaches a standard normal distribution for large sample size n → ∞: Wn
D−→ N (0,1), where D−→ stands

for distributional convergence. Therefore, a valid p-value for the FR test is given by

p = Φ[Wn], (3)

An analyst can construct the FR statistic wn to generate the p-value and compare the p-value with α to
decide H0 or H1. The Type I error is upper-bounded by α .
Consistency: The consistency of the FR test is proved in Henze and Penrose 1999 based on the following.
Theorem 1 (Henze and Penrose 1999) Given X = {x1, · · · ,xn0} and Y = {y1, · · · ,yn1} which are i.i.d.
realizations of X ∼ pX (x) and Y ∼ pY (y), and n = n0 +n1, suppose limn→∞

n0
n = u, limn→∞

n1
n = v where

u+ v = 1, then

Rn

n
a.s.→ 2uv

∫ pX(s)pY(s)
upX(s)+ vpY(s)

ds. (4)

Under H0, where pX (s) = pY (s), the R.H.S of (4) is strictly larger than that under H1, where pX (s) ̸=
pY (s), resulting in the consistency of the FR test.

2.3.2 Sequential Nonparametric Two-Sample Testing

FR (Friedman and Rafsky 1979) is a batch two-sample test, where two samples, X and Y are collected,
and then a two-sample hypothesis test is performed on X

⋃
Y to decide on H0 or H1. In this method,

continuous data collection and hypothesis testing are not allowed. The research community has proposed
sequential two-sample tests (Wald 1992; Lhéritier and Cazals 2018; Hajnal 1961; Shekhar and Ramdas
2021; Balsubramani and Ramdas 2015) that allow the analyst to sequentially collect data and monitor
statistical evidence, i.e., a statistic computed from the data. The test can stop anytime when sufficient
evidence has been accumulated to make a decision.

In this section, we present a sequential nonparametric two-sample test constructed by Lhéritier and
Cazals 2018. We consider the observed data a measurement sequence S = X

⋃
Y = {si}n

i=1 and a
corresponding label sequence Z = {z1, . . . ,zn}, where zi = 0 if si ∈ X and 1 otherwise. Accordingly, our
observation model is n i.i.d. draws from the joint distribution pSZ (s,z). The two sample testing problem
under this formulation is equivalent to testing if pS|Z (· | 0) = pS|Z (· | 1) (i.e., S and Z are independent).
(Lhéritier and Cazals 2018) test statistic: Lhéritier and Cazals 2018 assumes the class prior PZ(z) is known
in the problem setting. Additionally, they build a nonparametric class-probability predictor Q(z | s) to
model PZ|S (z | s). Specifically, Qn (z | s) represents a class-probability predictor built with the past observed
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sample sequence {si,zi}n−1
i=1 to model PZ|S (zn | sn)–the posterior probability of zn given newly observed sn.

Any nonparametric probabilistic classifier, such as a decision tree and KNN classifier, can be used to build
Qn(z | s). The following statistic is then constructed,

tn =
PZ(zn)

Q(zn | sn)
=

n

∏
i=1

PZ(zi)

Qi(zi | si)
. (5)

The statistic (5) stems from the well-known likelihood ratio test (Wilks 1938). Here, the likelihood under
H0 where S ⊥⊥ Z is ∏

n
i=1 pS (si)PZ (zi) and the likelihood under H1 where S⊥̸⊥ Z is ∏

n
i=1 PZ|S (zi | si) pS (si).

Replacing PZ|S with an approximation Q in the likelihood ratio ∏
n
i=1

pS(si)PZ(zi)
PZ|S(zi|si)pS(si)

leads to the (Lhéritier
and Cazals 2018) statistic in (5).
Anytime-valid p-value: Typically, a sequential test iteratively collects (s,z), adds (s,z) to the measurement
and label sequences S and Z , and monitors the p-values computed from the sequences for every n.
Implementing the FR in a sequential way generates invalid p-values, meaning that P(p ≤ α) is not
necessarily upper-bounded by α for every n. This occurs when multiple p-values are generated without
adjustment for deciding between H0 and H1, the probability of observing a rare event increases, thereby
raising the likelihood of incorrectly rejecting H0 (i.e., making a Type I error); alternatively, one may make
the test extremely weak by using a very conservative Bonferroni correction (union bound) (Dunn 1961)
across all time steps. In contrast, the (Lhéritier and Cazals 2018) statistic in (5) produces the anytime-valid
p-value stated in the following theorem,
Theorem 2 (Lhéritier and Cazals 2018) An analyst sequentially collects (s,z) resulting in {si,zi}n

i=1 which
are i.i.d. realizations of (S,Z) ∼ pSZ (s,z), and computes the statistic tn as in (5) with {si,zi}n

i=1. Under
H0, the following holds for the random variable Tn from which tn is realized,

P0

(
∃n ≥ 1,Tn =

n

∏
i=1

P(Zi)

Qi (Zi | Si)
≤ α

)
≤ α. (6)

Theorem 2 implies that tn is an anytime-valid p-value and rejects H0 whenever tn ≤ α leading to a
Type I error upper-bounded by α . Briefly, it is proved by observing that the sequence

(
1
T1
, · · · , 1

Tn

)
is a

non-negative martingale, and hence Ville’s maximal inequality (Durrett 2019; Doob 1939) can be used to
bound the tail probability of the infimum of an infinite {Ti}n

i=1 to develop Theorem 2.
Consistency: The authors of Györfi et al. 2002 prove that when Q(z | s) is a kernel, KNN or partition
estimates with proper smoothing parameters (e.g., bandwidth for the kernel), then Qn (z | s) converges to
P(z | s). Then, the following theorem holds:
Theorem 3 When Q(z | s) is a kernel, KNN or partition estimate with proper smoothing parameters (e.g.,
bandwidth for the kernel), then

lim
n→∞

logTn

n
= lim

n→∞

1
n

n

∑
i=1

log
PZ(Zi)

Qi(Zi | Si)
=−(H (Z)−H (Z | S)) =−I (S,Z) (7)

where H(Z), H (Z | S), and I (S;Z) are the entropy, conditional entropy and mutual information for
(S,Z)∼ pSZ (s,z).

Theorem 3 implies that when Q is built with a proper nonparametric method, logTn
n converges to

the negation of mutual information, which is smaller than zero under H1 where S ⊥̸⊥ Z, leading to
limn→∞ P1 (Tn ≤ α) = 1.
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3 THE LABEL-EFFICIENT TWO-SAMPLE TESTING PROBLEM

To motivate our label-efficient two-sample testing problem, we use a pair of random variables (S,Z) to
denote a feature and its label variables whose realization is (s,z) ∈ Rd ×{0,1}. The variable pair (S,Z)
admits a joint distribution pSZ(s,z). Furthermore, we write S to denote the support of pS(s).

In the traditional two-sample testing problem, discussed in section 2.1, it is assumed that both features
and their corresponding labels are available simultaneously. This tutorial introduces a novel problem
formulation where an analyst has free access to an unlabeled feature set Su = {si}n

i=1, but obtaining
the corresponding labels zi in the label set Z is costly. The analyst is provided with a label budget
Nq ≤ n, allowing her to select a subset S ⊆ Su with at most Nq features, for which an oracle returns the
corresponding label set Z ⊆ Z . The original unlabeled feature set Su consists of realizations of i.i.d.
variables S ∼ pS (s), but the selected S does not necessarily contain i.i.d. variables.

The label-efficient two sample testing problem under this formulation aims to test the following null
and alternative hypotheses:

H0 : pS|Z(· | 0) = pS|Z(· | 1) H1 : pS|Z(· | 0) ̸= pS|Z(· | 1),

or equivalently, to test the independence between S and Z:

H0 : pSZ(s,z) = pS(s)PZ(z),∀s ∈ S H1 : pSZ(s,z) ̸= pS(s)PZ(z),∃s ∈ S

by examining S and Z , whose sizes do not exceed the label budget Nq. Moving forward, we omit the
subscripts in pSZ(s,z), PZ(z) and pS(s) and write them as p(s,z), P(z) and p(s). In addition, we use sN ,
zN and (s,z)N to denote sequences of samples {si}N

i=1, {zi}N
i=1 and {(s,z)i}N

i=1 respectively.

4 BIMODAL QUERY

Our label-efficient tests employ a probabilistic classification-based query scheme called the bimodal query
to determine which features to select from an unlabeled feature set. This query scheme was first proposed,
to the best of our knowledge, in Li et al. 2022. Let S and Z be the features and their revealed labels. The
bimodal query uses a class-probability predictor Q(z | s) and the unlabeled set Su as input. This classifier
Q(z | s) is trained using S and Z . The bimodal query then selects two features, sq0 ∈ Su and sq1 ∈ Su
to query for their labels, where sq0 = argmaxs [Q(Z = 0|s)] and sq1 = argmaxs [Q(Z = 1|s)] ,∀s ∈ Su. In
other words, the features predicted to have the highest class one or zero posterior probabilities are labeled,
as these features lie in the most "informative" region.

The authors of Györfi et al. 2002 prove that when Q(z | s) is a kernel, KNN or partition estimates
with proper smoothing parameters (e.g., bandwidth for the kernel) and labels are sufficiently revealed in
the proximity of s,∀s ∈ S, then Q(z | s) converges to P(z | s). A bimodal query using Q with such a
convergence property leads to the following,
Definition 1 (Consistent bimodal query) Let S be the support of p(s) and let Su be an unlabeled set where
sample features are sampled i.i.d. from p(s), and let P(z | s) denote the posterior probability of z given
s ∈ S. An analyst adopts a label query scheme, for every n > 0, to query the label Zn of Sn ∈ Su such
that Sn admits a probability density function (pdf) pn(s). The label query scheme is a consistent bimodal
query if limn→∞ pn (s) = p∗ (s) where

p∗(s) = 0,∀s ∈ S\
(
Sq0

⋃
Sq1

)
, and p∗(s)> 0,∀s ∈ Sq0

⋃
Sq1 ,

Sq0 =

{
sq0

∣∣∣∣P(Z = 0 | sq0) = max
s∈S

P(Z = 0 | s)
}
,

Sq1 =

{
sq1

∣∣∣∣P(Z = 1 | sq1) = max
s∈S

P(Z = 1 | s)
}
. (8)
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5 A BATCH LABEL-EFFICIENT TWO-SAMPLE TEST

In this section, we propose a three-stage framework for a batch label-efficient two-sample test and outline
its statistical properties. We refer interested readers to Li et al. 2022 for a more comprehensive presentation.

5.1 A Three-Stage Two-Sample Testing Framework

The algorithmic description of the three-stage testing framework is listed in Algorithm 1. The inputs of the
algorithm 1 are as follows: an unlabeled feature set Su, a classification algorithm A that takes a training
set as input and outputs a classifier, the number N0 of labels used to construct a training set, the label budget
Nq and a pre-defined significance level α . The output of algorithm 1 is a single bit of information: was
the null hypothesis H0 rejected? During the first stage, a classification algorithm A takes N0 uniformly
labeled samples (and corresponding labels provided by the oracle) as a training set input, and outputs a
class-probability estimation function Q(z | s) used to model P(z|s) subsequently. During the second stage,
we propose a bimodal query algorithm that queries the labels of samples with highest class one probability
Q(1 | s) and highest class zero probability Q(0 | s) until the label query budget, Nq, is exhausted. During
the third stage, we split a labeled feature set S to two samples X and Y , where each set only contains
features from one class. Then the FR two-sample test is performed with the following steps: (1) compute
the FR statistic (see Section 2.3.1) from X and Y ; (2) compute p-value; (3) rejects the null hypothesis
if the p-value is smaller than the pre-defined significance level α .

Algorithm 1 A three-stage framework for the batch label-efficient two-sample testing
input S ,N0,Nq,α,A
output Reject or accept H0

First stage: model P(Z = 1|s)
Uniformly sample N0 features S ⊂ Su and query their labels Z ; Su = Su/S ;
A takes input S and Z , and outputs class-probability predictor Q(z | s) used to model P(z | s);
Second stage: bimodal query
Select ⌊(Nq −N0)/2⌋ features S 0 ⊆ Su which corresponds to ⌊(Nq −N0)/2⌋ highest Q(0 | s), and query
their labels Z 0;
Select Nq −N0 −⌊(Nq −N0)/2⌋ features S 1 ⊆ Su which corresponds to Nq −Nt −⌊(Nq −N0)/2⌋ highest
Q(1 | s), and query their labels Z 1;
S = S

⋃
S 0

⋃
S 1; Z = Z

⋃
Z 0

⋃
Z 1

Third stage: FR two-sample test
Split S to two samples X and Y based on the label set Z ; compute FR statistic using X and Y ;
compute p-value;
If p < α Then Reject H0 Else Accept H0.

5.2 Consistent Bimodal Query Minimizes the FR Statistic Wn
Our problem statement in Section 3 assumes that the original unlabeled feature set Su includes i.i.d
realizations of S ∼ p(s), and that the access to every si ∈ S is free; but it is costly to obtain the
corresponding label zi ∈ Z . However, we are assigned a label budget Nq such that we can select a set
S ⊆S to query labels from an oracle, and each random variable Zi corresponding to the returned label zi
admits P(z|si). We then divide S to X from class zero and Y from class one and perform a two-sample
test on X and Y . We write |X |= n0 and |Y |= n1 and we have Nq = n0 +n1.

Our aim is to find a query scheme that increases the testing power of a test performed on the selected
samples X and Y . For a uniform sampling query scheme, then we will have S as a set of Nq i.i.d
realizations generated from the original marginal distribution p(s), and we can rewrite p-value in (3) as
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p = Φ[WNq ] where WNq is a FR statistic random variable obtained from Nq i.i.d. pairs of (Si,Zi)∼ p(s,z).
Instead of directly tackling the query scheme, we consider to find an optimal marginal distribution pq(s)
such that, under H1, performing the FR test on a set of i.i.d. S ∼ pq(s) generates large testing power than
performing on the uniformly sampled data points with the same number of labels Nq.

Under H0, the feature variable S is always independent of label variable Z and the Type I error can
be controlled by running a permutation test or approximation of that regardless of pq (s). Here, we focus
on pq (s) under H1. Specifically, given Nq i.i.d. realizations generated from pq (s), we seek a pq (s) to
minimize the FR statistic WNq in (2), thereby creating a more powerful FR test under H1. Before presenting
our theoretical analysis, we need the following proposition, which follows from Theorem 1.
Proposition 1 Suppose (S,Z)n comprises i.i.d. pairs {S,Z}∼ p(s,z), and let u=P(Z = 0) and v=P(Z = 1).
Then, the following holds for a normalized FR statistic Wn

n generated from (S,Z)n,

Wn

n
a.s.→ [

∫
2P(Z = 0 | s)p(Z = 1 | s)p(s)ds−2uv]√

2uv[2uv+(Ad −1)(1−4uv)]
(9)

where Ad is a constant dependent on the dimension d of S.
We direct readers to Section 7 in Li et al. 2022 for the proof. From Proposition 1 we know that the

convergence of
WNq
Nq

only depends on p(s). Therefore, we construct the following optimization problem:

min
pq(s)

∫
P(Z = 0 | s)P(Z = 1 | s)pq(s)ds

subject to
∫

P(Z = 0 | s)pq(s)ds = u,
∫

pq(s)ds = 1, pq(s)≥ 0. (10)

Under the null hypothesis H0, Z and S are independent and thus p(s,z) = p(s)p(z), and
∫

P(Z = 0|s)P(Z =
1|s)pq(s)ds = uv for any pq(s). Therefore, minimizing (10) with pq(s) does not alter the Type I error.
On the other hand, under the alternate H1, solving the optimization problem (10) leads to a solution that
minimizes WNq in (3) for large sample sizes Nq → ∞, leading to a decreasing Type II error of the FR test.
Theorem 4 The optimal solution to (10) is p∗(s) defined in (8).

We direct readers to Section 8 in Li et al. 2022 for the proof. Briefly, the proof of Theorem 4 comes
about when we combine the linear constraints in Eq. (10) with the fact that the optimum value is always
achieved on the boundary of the constraint set for Linear Programming (LP) (Korte et al. 2011). The optimal
solution p∗(s) of (10) is a pdf that samples the highest posterior probabilities of P(Z = 0|s) and P(Z = 1|s).
Remark 1 Let S be the support of p(s) and let Su be an unlabeled set where sample features are i.i.d.
sampled from p(s). Suppose pn(s) denotes the pdf of Sn, whose label Zn is queried by the consistent
bimodal query (see Definition 1) for every n > 0. Then pn(s) converges to the optimal solution of (10).
In the finite-sample regime, we use a bimodal query where the class-probability predictor Q(z | s) is an
approximation of P(z | s) to query the labels of features in the regions with high posterior probability for
class one and zero.

5.3 Type I Error of the Three-Stage Framework

One important observation for the proposed framework is that the features labeled in the second stage
are dependent on the uniform sampled features in the first stage. For every n i.i.d. realizations (s,z)n of
(Si,Zi)

n ∼ p(s,z) under the null hypothesis H0, we write S = {s̄1, . . . , s̄Nq} to denote a set that our query
scheme (comprised of uniform sampling and bimodal query) selects from the original unlabelled set Su,
and write Z = {z̄1, . . . , z̄Nq} to denote a set of label observations corresponding to S . We use S̄i and Z̄i to
denote the random variables corresponding to s̄i and z̄i. In the following, we present our theorem regarding
the Type I error control:
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Theorem 5 Suppose
(
S̄, Z̄
)Nq are pairs of random feature variables and label variables acquired in the end

of the second stage of the framework, using a permutation test in the third stage of the framework to obtain
p-value from

(
S̄, Z̄
)Nq for any two-sample test have Type I error P(p ≤ α)≤ α,∀α for the framework.

We direct readers to Section 10 in Li et al. 2022 for a detailed proof. Theorem 5 states that the Type
I error of our framework is upper-bounded by α for any two-sample test carried out as a permutation test
in the third stage. A permutation test rearranges labels of features, obtains permutation distribution of a
statistic computed from the rearrangements, and rejects H0 if a true observed statistic is contained in α

probability range of the permutation distribution. This process does not need features to be i.i.d. sampled
to control the Type I error at exact α , and it is applicable to any two-sample tests testing independency
between S̄i and Z̄i. However, we need to make sure our query procedure maintains S̄i ⊥⊥ Z̄i under the H0.
Our framework only trains a classifier one time with uniformly sampled data points in the first stage, and
then the bimodal query selects a subset of features from S to label based on the trained classifier. For a set
of feature and label variables Q = {S̄i, Z̄i}

Nq
i=1 obtained in the end of the second stage, we write Qu ⊆Q to

denote the set obtained from uniform sampling, and write Qb ⊆Q to denote the set obtained from bimodal
query. Considering that a uniform sampling scheme does not change the original distributional properties
(S ⊥⊥ Z under the null) to generate (S̄i, Z̄i) ∈ Qu, we have S̄i ⊥⊥ Z̄i,∀(S̄i, Z̄i) ∈ Qu. Qb is not used to train
the classifier, so we also have S̄i ⊥⊥ Z̄i,∀(S̄i, Z̄i) ∈ Qb.

6 A SEQUENTIAL LABEL-EFFICIENT TWO-SAMPLE TEST

The batch design discussed in Section 5 invariably exhausts the label budget. Fixing the number of labels
can lead to inefficiencies: if the two-sample testing problem is difficult, additional label query for more
evidence may be required for a final decision, whereas if the problem is simple, the test may collect excessive
labels. Therefore, this section introduces a sequential label-efficient two-sample testing framework that
adapts the number of label queries based on the problem’s complexity while maintaining statistical validity.
For a more comprehensive presentation, we refer interested readers to Li et al. 2024.

6.1 A Sequential Label-Efficient Framework

Suppose Nq is a label budget and α is a significance level. An analyst uses the proposed framework
to sequentially and actively query the label zn of sn from an unlabelled feature set Su based on the
predictions of Qn (z | s). As a new zn of sn is queried, the analyst constructs the following statistic,

un =
n

∏
i=1

P̂(zi)

Qi (zi | si)
. (11)

The analyst evaluates wn and makes one of the following decisions: (1) rejects H0 if un ≤ α; (2)
retains H0 if the label budget Nq is exhausted and (1) is not satisfied; and (3) continues the test and
updates Qn to Qn+1 if (1) and (2) are not satisfied.

Figure 1: The sequential label-efficient framework

In Li et al. 2024, we introduced a novel framework for the sequential label-efficient two-sample test. We
use a statistic un slightly modified from the sequential testing statistic vn (5). Given that labels are costly to
access in the problem setting (See Section 3), the class prior P(z) required to compute (5) is also unknown.
Therefore, we will use a likelihood estimate P̂(zn), maximized over all class priors, to replace P(zn)—the
product of the class prior in (5). This results in un =

P̂(zn)
Q(zn|sn) = ∏

n
i=1

P̂(zi)
Qi(zi|si)

where P̂(Z = 1) = ∑
n
i=1 zi
n . Our
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framework begins by labeling sample features randomly selected from from Su, the unlabeled feature set,
and then initializing the class-probability predictor Qn(z | s) at n = 1 with the labeled features. Then, the
framework enters the sequential testing stage to sequentially query label, update and monitor the statistic
un. We formally introduce our framework in Fig 1.

We provide a framework instantiation called bimodal query based active sequential two-sample testing
(BQ-AST) described in Algorithm 2. The algorithm takes the following input: an unlabelled feature set Su, a
probabilistic classification algorithm A , the size N0 of an initialization set used for A , a label budget Nq and
a significance level α . Then, the algorithm initializes a class-probability predictor Q using A with a small set
of randomly labeled samples. In the sequential testing stage, the algorithm uses bimodal query discussed in
Section 4 to sample sn with samples having the highest posteriors from either class (e.g. a fair chance to select
the highest Qn (Z = 0 | s) or Qn (Z = 1 | s)) from Su, queries its label zn and updates the statistic wn. Next,
the algorithm compares wn with α and make a decision, e.g., reject H0 or continue testing. In what follows
in this section, we simply use Nq to denote the “label budget” allowed to be used after the initialization.

Algorithm 2 Bimodal Query Based Active Sequential Two-Sample Testing (BQ-AST)
1: Input: Su,A ,N0,Nq,α
2: Output: Reject or fail to reject H0
3: Initialization: Initialize Q1(z | s) using A with N0 features uniformly sampled from Su without

replacement and then labeled.
4: Active Sequential testing:
5: for n = 1 to Nq −N0 do
6: Sample a feature sn = sq0 or sq1 with fair chance where sq0 = argmaxs [Qn(Z = 0|s)] ,∀s ∈Su

and sq1 = argmaxs [Qn(Z = 1|s)] ,∀s ∈ Su

7: Query the label zn of sn

8: Update un in (11) with (sn,zn) and Qn(zn | sn)
9: if un ≤ α then

10: Return Reject H0
11: else
12: Update Qn(z | s) with newly queried (sn,zn) and past training examples.
13: end if
14: end for
15: Return Retain H0

6.2 The Proposed Framework Results in an Anytime-Valid p-value

Our framework rejects H0 if the statistic un ≤ α . The following theorem states that under H0, un is an
anytime-valid p-value.
Theorem 6 If an analyst uses the proposed framework to sequentially query the oracle for Z with S ∈ Su
resulting in (S,Z)n, then we have the following under H0,

P0

(
∃n ∈ [Nq] ,Un =

n

∏
i=1

P̂(Zi)

Qi (Zi | Si)
≤ α

)
≤ α

where Nq is a label budget and α is the pre-specified significance level.
We direct readers to Section A in Li et al. 2024 for the detailed proof. Theorem 6 implies the

probability P0 (or Type I error) that our framework mistakenly rejects H0 is upper-bounded by α . The
proof of Theorem 6 builds upon Theorem 2, and we can demonstrate that P(Un ≥ Tn) = 1,∀n, assuming
tn (5) is constructed from the same (s,z)n with a known class prior P(z).
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6.3 Asymptotic Properties of the Proposed Framework

We consider normalizing the test statistic in (11) as follows,

Un =
1
n

n

∑
i=1

log
P̂(Zi)

Qi (Zi | Si)
,(Si,Zi)∼ pi (s,z) = p(z | s) pi (s)

where (Si,Zi) denotes a feature-label pair returned by a label query scheme when querying the i-th label.
We then state the following theorem.
Theorem 7 Let S be the support of p(s) that sample features are collected from and added to an unlabeled
set Su, and let P(z | s) denote the posterior probability of z given s ∈S . There exists a consistent bimodal
query scheme (see Definition 1); when an analyst uses such a scheme in the proposed active sequential
framework, then, under H1, Un converges to the negation of mutual information (MI), and the converged
negated MI lower-bounds the negated MI generated by any p(s) subject to P(z | s) ,∀s ∈ S. Precisely, there
exists a consistent bimodal query leading to the following

lim
n→∞

Un =−(H∗(Z)−H∗ (Z | S)) =−I∗ (S;Z)≤−I (S;Z) .

I∗ (S;Z) is the MI constructed with (S,Z) ∼ p∗ (s,z) = P(z | s) p∗ (s) (See (8) for p∗ (s)); I (S;Z) is MI
constructed with (S,Z)∼ p(s,z) = P(z | s) p(s).

We direct readers to Section B in Li et al. 2024 for the detailed proof. Recalling the null H0 is rejected
when the test statistic un in (11) is smaller than α; hence, the proposed framework, when used with a
consistent bimodal query to asymptotically minimize the normalized un in (11), favorably increases the
testing power when |Su| is large and Q(z | s) is close to P(z | s). Theorem 7 alludes that the proposed
framework asymptotically turns the original hard two-sample testing problem to a simply by increasing
the dependency between S and Z.
Remark 2 Our testing framework is also consistent under H1 and the same conditions of Theorem 7
as limn→∞ P1

(
∏

n
i=1

P̂(Zi)
Qi(Zi|Si)

≤ α

)
= limn→∞ P

(
Un ≤ 1

n log(α)
)
= P1(−I∗ (S,Z)≤ 0) = 1. The last equality

holds due to I∗ (S,Z)> 0 under H1.

6.4 Finite-Sample Analysis for the Proposed Framework

This section analyzes the testing power of the proposed framework in the finite-sample case. Section 6.4.1
and 6.4.2 offer metrics that assess the approximation error of Q(z | s) and an irreducible Type II error.
They together determine the finite-sample testing power. Furthermore, Section 6.4.3 presents an illustrative
example of using our framework. In Section 6.4.4, we conduct a finite-sample analysis for the example,
incorporating both the metrics that characterize the approximation error and the irreducible Type II error.

6.4.1 Characterizing the Approximation Error of Q(z | s)

As our framework constructs the test statistic in (5) with the approximation Q(z | s), there arises a need to
establish a metric for assessing the approximation error of Q(z | s) for our finite-sample analysis. To this
end, we introduce KL2-divergence,
Definition 2 (KL2-divergence) Let p0 and q0 be two probability density functions on the same support
X . Let f (t) = log2(t). Then, the KL2-divergence between p0 and q0 is

DKL2 (q0∥p0) = EX∼p0(x)

[
f
(

q0(X)

p0(X)

)]
= EX∼p0(x)

[
log2

(
q0(X)

p0(X)

)]
.

DKL2 (q0∥p0) is the second moment of the log-likelihood ratio and has been used (see, e.g., (3.1.14)

in Koga et al. 2002) to understand the behavior of the distribution of log
(

q0(x)
p0(x)

)
. We use DKL2 (q0||p0) to
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evaluate the distance between p(s,z) = P(z | s) p(s) and q(s,z) = Q(z | s) p(s), which yields the following

DKL2 (q(s,z)∥p(s,z)) = E(S,Z)∼p(s,z)

[
log2

(
q(S,Z)
p(S,Z)

)]
= E(S,Z)∼p(s,z)

[
log2

(
Q(Z | S)
P(Z | S)

)]
. (12)

Remarkably, DKL2 (q(s,z)∥p(s,z)) in (12) also characterizes the discrepancy between P(z | s) and Q(z | s)
by averaging their log square distance over S . DKL2 (q(s,z)∥p(s,z)) and DKL2 (p(s,z)∥q(s,z)) both
characterize the approximation error of Q(z | s), and in our main results, we will also see they jointly
determine the testing power of the proposed framework in Section 6.4.4.

6.4.2 Characterizing the Factor that Leads to the Irreducible Type II Error in Finite-Sample Case

We also introduce another factor influencing testing power, which persists even in the absence of approxi-
mation error, i.e., Q(z | s) = P(z | s). To see this, we recall the following random variable,

Ī(Sn;Zn) =
1
n

n

∑
i=1

log
p(Si,Zi)

pS(Zi)pZ(Zi)
, (S,Z)∼ p(s,z)

The distribution of Ī is formally defined as the information spectrum in Han and Verdú 1993. Han 2000
leverages the dispersion of Ī(Sn;Zn) to quantify the rate that Type II error goes to zero with increasing n.
Their underlying rationale is that, for a larger variance of Ī, the probability of Ī falling outside the acceptance
region for an alternative hypothesis also increases, thereby resulting in a slower convergence rate for the Type
II error. In our work, we will make use of the variance of the log-likelihood ratio between p(s,z) and p(s)p(z)

Var(S;Z)∼p(s,z)Ī(S,Z) = nVar(S;Z)n∼p((s,z)n)Ī(Sn,Zn) = Var(S,Z)∼p(s,z)

[
− log

P(Z)
P(Z | S)

]
.

It remains present even in the absence of approximation error (i.e., Q(z | s) = P(z | s)). As we will see in
Section 6.4.4, the persistent Var(S,Z)∼p(s,z)Ī(S;Z) leads to a non-zero Type II error in the finite-sample case.

(An example of the proposed framework) Given a label budget Nq, α , an unlabeled set Su, a partition
P = {A1, · · · ,Am}, and class priors {P(Z = 0 | A1), · · · ,P(Z = 0 | Am)}, an analyst initializes Q(z | s)
with a set of labeled features randomly sampled from Su, then, she estimates I (S;Z | Ai) by

Î (S;Z | Ai) = H (Z | Ai)− Ĥ (Z | S,Ai)

=−
1

∑
z=0

P(Z = z | Ai) logP(Z = z | Ai)+
∑s∈Ai

⋂
Su ∑

1
z=0 Q(Z = z | s) logQ(Z = z | s)

|Ai
⋂

Su|
, (13)

selects A∗ = argmaxA∈P Î (S;Z | A), and sequentially constructs the statistic un = ∏
n
i=1

P(zi)
Q(zi|si)

by
labelling features randomly sampled from A∗⋂Su. The analyst rejects H0 whenever un ≤ α or
retains H0 if the label budget runs out.
(The baseline) Given a label budget Nq, α , an unlabeled set Su and the class prior P(Z = 0),
an analyst initializes Q(z | s) with a set of labeled features randomly sampled from Su, then, she
sequentially constructs the statistic un = ∏

n
i=1

P(zi)
Q(zi|si)

by labelling features randomly sampled from
Su. The analyst rejects H0 whenever un ≤ α or retains H0 if the label budget runs out.

Figure 2: An example of the proposed framework and the baseline.
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6.4.3 An Example of Using the Proposed Framework

We write P = {A1, · · · ,Am} to denote a partition of the support S of p(s) from which unlabeled sample
features in Su are generated; in other words,

⋃m
i=1 Ai = S. In the following, we quantitatively compare an

example of the framework to a baseline where features are randomly sampled from Su and labeled. The
example of the framework and the baseline are as in Fig 2. The class priors {P(z | Ai)} are given to simplify
our analytical results. In addition, the label-efficient test chooses the partition A∗ predicted by Q(z | s) to
have the highest dependency between S and Z and only conducts sequential testing with the labeled points
in A∗. In contrast, the baseline case conducts the sequential test entirely the same, except that the analyst
queries the labels of features that are randomly generated from Su. Both the proposed framework and
the baseline cases assert the use of a stable Q(z | s) with no updates in the sequential testing, which is
sufficient and convenient for our analysis.

6.4.4 Finite-Sample Analysis for the Example

We use ε1 = maxA∈P DKL2 (q(s,z)∥p(s,z) | A) and ε2 = maxA∈P DKL2 (p(s,z)∥q(s,z) | A) to capture
the maximum approximation error of Q(z | s) over the partition P = {A1, · · · ,Am}, and use σ2 =
max

{
maxA∈P Var(S,Z)∼p(s,z|A)Ī(S;Z),Var(S,Z)∼p(s,z)Ī(S;Z)

}
to capture the maximum irreducible Type II

error over the same partition P . We will need to make the following assumptions.
Assumption 1 (Maximum mutual information gain) maxA∈P I (S;Z | A)− I(S;Z) = ∆ ≥ 0.

Assumption 1 characterizes the largest MI gain of the proposed framework in the case study over the
baseline; that is the direct reason for the increased testing power of the proposed framework.
Assumption 2 (Sufficient size of unlabeled samples)

∑s∈A∩Su EZ∼Q(z|s)

[
log
(

Q(Z|s)
P(Z|s)

)]
|A∩Su|

≈ DKL (Q(z | s)∥P(z | s) | A) ,∀A ∈ P.

Assumption 2 assumes a sufficient supply of unlabeled samples to simplify the analysis and concentrate
solely on the number of labels needed for the case study of the proposed framework. Now, we present our
theorem to address the testing power of the case study in the finite-sample case.
Theorem 8 Under Assumption 1 and 2, the example of the proposed framework with a label budget Nq
and α has a testing power of approximately at least

Φ

 logα√
Nq

+
√

Nq
(
I (S;Z)+∆−2

√
ε1 −

√
ε2
)

(ε1 +σ2 +2σ
√

ε1)
1/2

 ; (14)

and the baseline test has a testing power of approximately at least

Φ

 logα√
Nq

+
√

Nq
(
I (S;Z)−

√
ε1
)

(ε1 +σ2 +2σ
√

ε1)
1/2

 . (15)

We direct readers to Section C in Li et al. 2024 for the detailed proof. We observe that

• Given α , the lower bounds of the testing powers for both the proposed framework and the baseline,
increase with a larger budget Nq and smaller approximation errors characterized by ε1.

• Comparing (14) for the proposed framework to the (15) for the baseline, the extra ∆ is ascribed to the
maximum power gain, and

√
ε1 +

√
ε2 accounts for the diminishing of the maximum power gain in

selecting a A∗ ∈ P that does not have the highest MI over A ∈ P .
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• When the approximation errors ε1 = 0 and/or ε2 = 0, both testing power’s lower-bounds are decreased
by a factor of σ , resulting in the irreducible Type II error.

• When the maximum MI gain ∆ can compensate the approximation error of Q(z | s) being larger than√
ε1 +

√
ε2, our framework in the example has higher testing power’s lower bound than the baseline

test given the same label budget Nq and α .

7 FUTURE DEVELOPMENT

Beyond the digital health example for Alzheimer’s Disease, there are many other applications where
label-efficient two-sample tests improve validation efficiency. In cancer research, genetic biomarkers can
be collected non-invasively from patients, but confirming the presence of a specific type of cancer may
require invasive biopsies or expensive imaging tests. Using a limited number of biopsy-confirmed cases
can help efficiently validate the association between genetic biomarkers and cancer presence. In wildlife
studies, data from non-invasive methods like camera traps or acoustic sensors can be collected over large
areas, while confirming species presence or health status may necessitate capturing and tagging animals, a
costly and labor-intensive process. Similarly, in financial transactions, features such as transaction amount,
frequency, and location can be collected automatically, but identifying fraudulent transactions often demands
human investigation and verification. Finally, for assessing pollution levels, inexpensive sensor data (e.g.,
air quality indices) can be collected widely, while confirming the exact pollutant composition and levels
may require costly laboratory analyses. In all these examples, label-efficient two sample testing allows
researchers to validate sensor data against lab results using a small sample of lab-verified data.
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