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ABSTRACT

This tutorial provides an introductory overview of how one may use importance sampling to drastically
reduce the sample requirements in solving stochastic optimization and elementary simulation optimization
problems incorporating tail risk measures. Sample average approximations, while appealing due to their
universality in use, require a large number of samples due to the rarity with which relevant tail events get
observed. Importance Sampling is among the most potent methods for reducing the sample requirements in
estimating rare event probabilities. Can importance sampling be used with similar effectiveness for solving
optimization formulations (involving rare events) as well, and if so, what are the key ingredients required
to operationalize this idea? Focusing on these questions, this tutorial aims to demonstrate (i) how to arrive
at an effective change of measure prescription at every decision, and (ii) the prominent techniques available
for integrating such a prescription within a solution paradigm for optimization.

1 INTRODUCTION

When building optimization models for planning and decision-making under uncertainty, a risk-neutral
approach would seek to identify the best decision on average. Relying on independent yet similar repeated
chances, a risk-neutral approach is justified by the law of large numbers. An unfortunate run entailing
unacceptable losses in the first few runs, for example, may however make it harder to sustain and continue
the operations even if an eventual upturn is inevitable. Therefore, the practice of risk management strives
to look beyond expected outcomes and proactively shape the loss distribution, particularly aspects such as
variability, risks posed by extreme losses, etc.

Mean-risk optimization models, which seeks to minimize a measure of risk while meeting a target
mean return, is a prominent approach by which a modeler may introduce risk-aversion while optimizing
under uncertainty. When performing optimization, a convex risk measure like conditional-value at risk
(CVaR) becomes particularly appealing due to its ability to quantitatively capture distribution tail risks while
retaining the convexity of the objective. Roughly speaking, CVaR at a quantile level 1−β captures the loss
due to top β -fraction of the samples. Since the introduction of CVaR for optimization under uncertainty
in Rockafellar and Uryasev (2000) and Uryasev (2000), mean-CVaR optimization modeling has become
one of the most common vehicle for managing risk in numerous operations research applications, and as
well in a number of related engineering disciplines.

As with most stochastic optimization formulations, solving a mean-CVaR optimization model is
typically tackled by approximating the mean and CVaR by their respective Monte Carlo sample average
approximations (SAA). Despite the bottleneck that only a small fraction of the samples contribute to the
evaluation of the CVaR criterion, SAA remains the most preferred solution approach due to its simplicity
and near-universality in use: The SAA procedure and methods for inferring its solution quality remain
unchanged as long as the objective and constraints possess finite second moments (see e.g., Shapiro 1991;
Homem-de Mello and Bayraksan 2014). For a risk-averse optimization formulation involving CVaR at
quantile level 1−β , the sample requirement for SAA to work gets blown up by a large multiplicative
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factor of O(1/β ), as β → 0, when compared to the risk-neutral counterparts. This unfortunately leads to
extraordinarily large formulations if one is employing a deterministic solver, and slower convergence if
one is employing stochastic gradients.

If we view the literature on tackling rare tail events in simulation, we witness Importance Sampling
(IS) as one of the most prominent variance reduction approaches used for substantially reducing the sample
requirement involved in estimating rare event probabilities and related expectations. Can importance
sampling be used, to a similar degree of effectiveness, in optimization as well? This tutorial is dedicated
to concisely introducing the ingredients required for using importance sampling for optimization under
rare events. As the literature on simulation of rare events is rich and several beautiful expository reviews
have been written on importance sampling for rare events, this tutorial will restrict its discussion to the
scope of using IS for optimization, specifically for mean-CVaR formulations. The focus on CVaR is for
the purposes of clarity, and the discussed methods extend even if CVaR is replaced by a different tail risk
measure (such as expected excess loss) which preserves convexity.

The basic idea behind IS is to accelerate the occurrences of the tail risk events by sampling from
alternate distributions which place greater emphasis on the risk scenarios of interest. Observed samples
are then suitably reweighed to eliminate the bias introduced. This tutorial will specifically focus on the
following two ingredients: (1) how one may arrive at an effective change of measure for evaluating at the
objective at any given decision; and (2) how one may incorporate these decision-dependent changes of
measure in a solution paradigm for minimizing CVaR.

The rest of the tutorial is organized as follows: Section 2 provides a definition of CVaR and introduces
the risk-averse optimization formulation we shall be primarily considering in this paper. Section 3 provides
an introduction to importance sampling and discusses how one may arrive at an effective change of measure
for a given decision with illustrative examples. Section 4 introduces a retrospective approximation approach,
which can be understood as performing SAA with importance samples, while incorporating lazy-updates
for changing the importance sampling distribution. Section 5 presents an adaptive stochastic approximation
procedure which could be suitable if iterative gradient-descent methods are preferred. The methods are
accompanied by results on the magnitude of sample reductions offered by efficient IS, relative to SAA, in
obtaining an optimal solution of desired quality.

2 RISK-AVERSE OPTIMIZATION DRIVEN BY CONDITIONAL VALUE AT RISK

In this section, we define the notion of conditional value at risk (CVaR), describe two prominent CVaR-driven
optimization formulations, and briefly note the merits and challenges in using SAA to solve them.

2.1 Conditional Value at Risk and its Variational Representation

Let XXX be a random vector modeling the collection of uncertain variables affecting an optimization problem.
Suppose that ℓ(xxx,θθθ) denotes the loss incurred for a choice of decision θθθ when the random vector XXX realises
the value xxx. The Value at Risk (VaR) of the loss ℓ(XXX ,θθθ) at a tail level β ∈ (0,1) is simply the loss quantile

vβ (θθθ) = inf{u : P(ℓ(XXX ,θθθ)≥ u)≤ β}.

The Conditional Value at Risk (CVaR) of the loss ℓ(XXX ,θθθ) at a tail level β is the average loss given that
ℓ(XXX ,θ) exceeds the respective value at risk: specifically,

Cβ (θθθ) = E
[
ℓ(XXX ,θθθ) | ℓ(xxx,θθθ)≥ vβ (θθθ)

]
. (1)

In this paper, we shall be considering the challenges in estimating and optimizing CVaR when the tail-level
β is close to zero. The following variational representation, due to Rockafellar and Uryasev (2000), makes
CVaR conducive for optimization:

Cβ (θθθ) = inf
u∈R

{
u+β

−1E (ℓ(XXX ,θθθ)−u)+
}
. (2)
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Here (ℓ(XXX ,θθθ)−u)+ denotes the positive part max{ℓ(XXX ,θθθ)− u,0}, which captures the extent of excess
loss above a level u. The value at risk vβ (θθθ) is an optimal solution in the variational representation (2)
(see Rockafellar and Uryasev 2000), and it is readily verifiable that substituting the choice u = vβ (θθθ) in
the objective in (2) yields the right-hand side in (1).

2.2 Stochastic Optimization Formulations Incorporating CVaR

Formulation 1 (Minimizing CVaR, potentially with constraints on the mean) Equipped with the above
variational representation, if one wishes to minimize CVaR of a loss ℓ(XXX ,θθθ) over decision alternatives θθθ

in the set Θ⊆ Rp, they may do so by solving the right-hand side of (3) below.

cβ := inf
θθθ∈Θ

Cβ (θθθ) = inf
u∈R,θθθ∈Θ

f (u,θθθ), (3)

where f (u,θθθ) = E[F(XXX ; u,θθθ)] and

F(xxx ; u,θθθ) := u+β
−1 (ℓ(XXX ,θθθ)−u)+ . (4)

Observe that if the loss ℓ(xxx,θθθ) is a convex function of θθθ , for any fixed xxx, then the convexity is retained
in (3). The set Θ can be modeled to include constraints on the decisions one may wish to impose, as
illustrated in Example 1 below.
Example 1 (Portfolio optimization). The task of constructing a linear portfolio with minimum risk while
meeting a target return is among the simplest yet instructive examples one may consider. Suppose XXX is
an Rd-valued random vector modeling the returns of d-assets. For a linear portfolio model which places
a weight θi over the asset i, for i = 1, . . . ,n, the return realization gets specified by θθθ

⊺XXX . In this case, we
can take the portfolio loss to be ℓ(xxx,θθθ) =−θθθ

⊺xxx. It is convenient to require the weights placed over the d
assets to add up to 1. Therefore, when an investor seeks to meet a target return t ∈ (0,+∞), the constraint
set Θ can be specified as in

Θ = {θθθ ∈ Rd
+ : 111⊺θθθ = 1, µµµ

⊺
θθθ ≥ t}, (5)

where the vector µµµ is the mean vector of the d assets.
Formulation 2 (Mean-CVaR optimization) Another convenient model for introducing risk aversion is to
consider a convex combination of the CVaR criterion and the risk-neutral expected value objective as below:

inf
θθθ∈Θ

{
λE[ℓ(XXX ,θθθ)]+(1−λ )Cβ (θθθ)

}
, (6)

where Θ is a convex subset of the euclidean space and λ is a parameter governing the risk-appetite of
a decision-maker. One may use a smaller value of λ to specify a smaller appetite for risk. From the
variational representation in (2), the above mean-CVaR model simplifies to

inf
u∈R,θθθ∈Θ

{λE [ℓ(XXX ,θθθ)]+(1−λ )E [F(XXX ; u,θθθ)]} ,

where F(·) is defined, as before, in (4).
Example 2 (Risk-averse two stage linear programs). In two-stage formulations, a decision-maker takes an
action in the first-stage; and in the wake of the realization of the random vector XXX , he/she additionally gets
to make a recourse decision augmenting the first-stage decision. Usually, a recourse decision is interpreted
as utilizing the extra information to compensate for any bad effects that might have been experienced as a
result of first-stage action. A risk-averse two-stage linear program can be formulated as in (6), with

ℓ(xxx,θθθ) = c⊺θθθ +Q(xxx,θθθ),
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where Q(xxx,θθθ) is the optimal value of a second-stage linear program. The following is an example of a
second-stage formulation:

Q(xxx,θθθ) = inf{yyy⊺xxx : T θθθ +Wyyy = hhh, yyy≥ 000}

where T and W are suitably dimensioned matrices referred to as “tender” and “recourse” matrices. In this
example, we have taken these matrices to deterministic. Allowing them to be random provides additional
modeling power. One may refer to Shapiro et al. (2021), Chapters 1-2 for a comprehensive introduction
to two-stage stochastic programming formulations and applications.

2.3 Sample-Average Approximation (SAA)

For solving (3), one may consider its sample average approximation in which the expectations E(ℓ(XXX ,θθθ)−u)+

in the objective, for all θθθ ∈ Θ, are replaced by the respective average over independent observations of
XXX . In particular, given n i.i.d. samples of data XXX1, . . . ,XXXn from the distribution of XXX , the sample averaged
objective is denoted by,

f̂n(u,θθθ) = u+(nβ )−1
n

∑
i=1

(ℓ(XXX i,θθθ)−u)+. (7)

Then a sample average approximation (SAA) to the optimization problem (3) may be specified as,

ĉn = inf
u∈R,θθθ∈Θ

f̂n(u,θθθ). (8)

Likewise, a sample-average approximation to the mean-CVaR formulation (6) is given by,

inf
u∈R,θθθ∈Θ

{
λ/n

n

∑
i=1

ℓ(XXX i,θθθ)+(1−λ ) f̂n(u,θθθ)

}
. (9)

Approximating the true expectations in the objective by their sample averages is the simplest approx-
imation one can perform, and it has a broad appeal due to its simplicity and near-universal applicability.
The (sample requirements for the) resulting formulations could be extraordinarily large however when
handling tail expectations: Observe that the term (ℓ(XXX i,θθθ)−u)+ appearing in (7) is often zero for most
observations XXX i, when a search is conducted over the variable u to find its optimal value vβ (θθθ). This is
due to the value-at-risk vβ (θθθ) being the (1−β )-th quantile of the loss distribution. Thus, a large fraction
of terms in the summation in (7) will be zero, which is in line with CVaR being a tail risk measure.

Large sample properties such as consistency and asymptotic normality are well-known for SAA
estimators (see Shapiro (1991), Theorem 3.2)). An application of these properties to identify the number of
samples n required in (8) to approximate (3) reveals that the number of samples required scales inversely
proportional to the tail level β of interest. This observation is consistent with the understanding that one
would need approximately Õ(β−1) samples, as β ↘ 0, in order to witness loss scenarios exceeding the
(1−β )-th quantile captured by the value at risk.

To gather a sense of the magnitude of the number of samples required, consider the following portfolio
optimization example from Caccioli et al. (2018): Even at a tail level of β = 1/40, it has been observed that
one would need about 14 years of observations to achieve a 10% relative error in the optimum portfolio’s
CVaR for 100 stocks. A more detailed discussion on this example is available in Caccioli et al. (2018). The
perils of minimizing CVaR with insufficient samples are also discussed with the help of a detailed empirical
study in Lim et al. (2011). The computational effort required for solving (8) becomes exorbitantly large
as a consequence of the large sample requirement, specifically if the tail level β is small. Small values of
β may be particularly pertinent if a situation demands high reliability, as may be required in settings such
as electric power dispatch and the design of cyber-physical systems.

To keep the discussion centred on overcoming the challenges due to this rarity in CVaR minimization,
we focus on the formulation (3) in the rest of this tutorial and assume that the constraints in the decision
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set Θ are specified in terms of explicitly known quantities: For example, if the constraint set is as in (5),
we assume that the mean vector µµµ is known, even though in practice, the mean has to be estimated by
the empirical mean or its variants. The importance sampling techniques we develop in the subsequent
sections are for approximating E[F(XXX ; u,θθθ)], and they can be used for both the CVaR minimization (3),
mean-CVaR (6) formulations, and as well their variants. In particular, we shall develop importance sampling
based estimator f̂is,n(u,θθθ) for E[F(XXX ; u,θθθ)], which can be used as a replacement for the sample average
approximation f̂n(u,θθθ) in the same way in both the SAA objectives (7) and (9).

3 VARIANCE REDUCTION WITH IMPORTANCE SAMPLING

This section introduces the basic idea behind importance sampling (IS) and outlines techniques one may
employ to derive IS distributions for any fixed decision choice θθθ ∈Θ.

3.1 Importance Sampling for Estimation of Tail Risks

Consider any fixed choice of θθθ ∈Θ. Recall that the main difficulty in the estimation of E[(ℓ(XXX ,θθθ)−u)+]
in (3) is the lack of samples in the excess loss region {ℓ(xxx,θθθ)≥ u}, for values of u around the (1−β )-th
quantile of the loss. IS attempts to overcome this drawback by instead drawing samples from an alternative
distribution under which this tail event occurs more frequently. The bias incurred by sampling from a
different distribution is compensated by suitably weighing the resulting observations. Specifically, let ZZZ
be another random vector of our choice whose probability density fZZZ(zzz)> 0 is absolutely continuous with
respect to that of XXX : that is fZZZ(zzz)> 0 whenever fXXX(zzz)> 0. Now, consider the following weighted estimator
for the objective,

f̂is,n(u,θθθ) = u+
1

nβ

n

∑
i=1

(ℓ(ZZZi,θθθ)−u)+
fXXX(ZZZi)

fZZZ(ZZZi)
(10)

where ZZZ1, . . .ZZZn are sampled i.i.d. from the distribution of ZZZ. The “weights” in the above estimators are
likelihood ratios fXXX(ZZZi)/ fZZZ(ZZZi) accompanying each observation of the excess loss (ℓ(ZZZi,θθθ)− u)+. Had
there been no change in the density from which the samples are obtained (that is, if the samples are obtained
from the original density fXXX(·) itself), then observe that we get back the SAA objective in (7).

Suppose that f̂is,n has finite variance, and let any alternative distribution choice fZZZ which possess this
property be labeled as “admissible”. Then observe that as the number of samples increase, the IS objective
f̂is,n(u,θθθ) approximates the desired objective f (u,θθθ) = u+β−1E[(ℓ(XXX ,θθθ)−u)+] due to the following:

f̂is,n(u,θθθ)→ u+β
−1E

[
(ℓ(ZZZ,θθθ)−u)+

fXXX(ZZZ)
fZZZ(ZZZ)

]
= u+β

−1
∫

zzz
(ℓ(zzz,θθθ)−u)+

fXXX(zzz)
fZZZ(zzz)

fZZZ(zzz)dzzz

= u+β
−1

∫
zzz
(ℓ(zzz,θθθ)−u)+ fXXX(zzz)dzzz = u+β

−1E[(ℓ(XXX ,θθθ)−u)+] = f (u,θθθ),

as n→∞, and therefore the estimator in (10) is consistent. In the above chain, the first equality holds due to
law of large numbers. The above equations also show that there is no bias introduced in this approximation:
That is, E[ f̂is,n(u,θθθ)] = f (u,θθθ), for every choice of u and θθθ .

While every admissible change of distribution approximates the target objective as above, the key to
approximating well with a substantially smaller number of samples relies on making a good choice for
the IS distribution ZZZ. Indeed in the estimation of rare event probabilities, there is a considerable litreature
on how to arrive at good choices for IS distributions: See, for example, Heidelberger (1995), Asmussen
and Glynn (2007), Juneja et al. (2007), or, more recently Blanchet et al. (2019), Bai et al. (2022), Deo
and Murthy (2021) for treatments on objectives which may have a greater relevance from an optimization
point of view.

Keeping typical objectives arising in optimization in view, we next describe two approaches which
could be considered for arriving at an effective IS distribution for any fixed decision θθθ ∈Θ.
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3.2 Approach 1: IS via Exponential Twisting Based on Dominating Points

The first approach for deriving a good importance sampling change of measure is to explicitly use the
distribution of XXX and the loss ℓ(XXX ,θθθ) to carefully arrive at an IS distribution choice. Executing this approach
typically involves two steps.

Step 1: Use the log-moment generating function of XXX to identify the so-called “dominating points” of
the excess loss set {xxx : ℓ(xxx,θθθ)≥ u}, with reference to the given distribution for XXX . Roughly speaking,
the dominating points are a collection of points in the excess loss set {xxx : ℓ(xxx,θθθ)≥ u} such that each
dominating point captures, in a local sub-region of {xxx : ℓ(xxx,θθθ) ≥ u}, the most likely way the excess
loss event happens.
Step 2: Once the dominating points are identified, one typically chooses the IS distribution to be a mixture
distribution, with each component distribution of the mixture being chosen to be an “exponentially
tilted” distribution whose mean coincides with one of the dominating points. Thus one may need as
many component distributions as the number of dominating points.

By placing the emphasis on the dominating points, the guiding principle here is to ensure that locally within
sub-regions in {xxx : ℓ(xxx,θθθ) ≥ u}, the points which are more likely to be observed are indeed given more
probability mass. See, for e.g.., Arief et al. (2021), Definition 2 for a definition of dominating points.
Definition 1 (Exponentially tilted densities) Given a probability density fXXX for the random vector XXX , we
call a new density g to be exponentially titled version of fXXX with a tilt factor bbb if

g(xxx) ∝ exp
(
bbb⊺xxx

)
fXXX(xxx),

and E[exp(bbb⊺XXX)] is finite. In particular, we have

g(xxx) =
exp(bbb⊺xxx)

E[exp(bbb⊺XXX)]
fXXX(xxx) = exp(bbb⊺xxx−Λ(bbb)) fXXX(xxx), (11)

where Λ(rrr) is the log-moment generating function defined by Λ(rrr) = logE[exp(rrr⊺XXX)], for rrr ∈ Rd .

Lemma 1. Suppose that the log-moment generating function Λ(rrr) = E[exp(rrr⊺XXX)] is finite and differentiable
at rrr = bbb. If ZZZ is distributed according to the exponentially tilted density g(·) in (11), then E[ZZZ] = ∇Λ(bbb).

Proof. The conclusion follows directly from the following two deductions (the derivative and integral
below can be interchanged by dominated convergence):

E[ZZZ] =
∫

zzzg(zzz)dzzz =
∫

zzz
exp(bbb⊺zzz)

E[exp(bbb⊺XXX)]
fXXX(zzz)dzzz =

E [XXX exp(bbb⊺XXX)]

E [exp(bbb⊺XXX)]
; and

∇Λ(rrr) =
∫

∇exp(rrr⊺xxx)g(xxx)dxxx =
∫

xxxexp(rrr⊺xxx)g(xxx)dxxx =
∫

xxx
exp(rrr⊺xxx)

E[exp(rrr⊺XXX)]
fXXX(xxx)dxxx =

E [XXX exp(rrr⊺XXX)]

E [exp(rrr⊺XXX)]
.

Equipped with the above definition of exponentially tilted density and its properties, Example 3 below
demonstrates how one may execute the two-step procedure indicated above.

Example 3. Consider the piece-wise linear loss, ℓ(xxx,θθθ) = max{θθθ⊺AAAixxx : i = 1, . . . ,M}, where {AAAi : i =
1, . . . ,M} are p× d matrices. Let XXX be light-tailed with log-moment generating function, Λ(rrr) =
logE[exp(rrr⊺XXX)], for rrr ∈Rd . For this example, we take Λ(·) to be strictly convex, differentiable, and finite
for every rrr ∈Rd . An important quantity useful for identifying a good choice of IS distribution is the convex
conjugate of the log-moment generating function Λ(·) defined as follows: Λ∗(xxx) = suprrr∈Rd {rrr⊺xxx−Λ(rrr)} .
In the example of XXX being a multivariate normal random vector with mean mmm and covariance ΣΣΣ, we have
Λ(rrr) = mmm⊺rrr+ rrr⊺ΣΣΣrrr/2 and Λ∗(xxx) = (xxx−mmm)⊺ΣΣΣ

−1(xxx−mmm)/2. For i = 1, . . . ,M, let

aaai = argmin
xxx
{Λ∗(xxx) : θθθ

⊺AAAixxx≥ u} . (12)
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See that the excess loss set {xxx : ℓ(xxx,θ) ≥ u} which is of interest to us can be seen as the union of the
sub-regions Ri := {xxx : θθθ

⊺AAAixxx≥ u}. We next use {aaai : i = 1, . . . ,M} to find the corresponding collection of
roots {bbbi : i = 1, . . . ,M} satisfying

∇Λ(bbbi) = aaai, (13)

for i = 1, . . . ,M. With these definitions, the following two observations are in order:

(i) Due to the property of convex conjugates, we have that the convex conjugate of Λ∗(·) is, in turn,
Λ(·) itself in this example. As a consequence, we also symmetrically have ∇Λ∗(aaai) = bbbi, for
i = 1, . . . ,M. Therefore, from the optimality conditions for aaai in (12), we have for i = 1, . . . ,M,

bbb⊺i
(
xxx−aaai

)
≥ 0, for all xxx in the sub-region Ri.

(ii) From (13) and Lemma 1, we have E[ZZZ] = ∇Λ(bbbi) = aaai when ZZZ is distributed with an exponential
tilting by a factor bbbi as in,

gi(xxx) ∝ ebbb⊺i xxx fXXX(xxx). (14)

For the above reasons, the collections {aaai : i = 1, . . . ,M} and {bbbi : i = 1, . . . ,M} are called as dominating
points and tilt parameters, respectively. With the tilt factors computed as roots {bbbi : i = 1, . . . ,M} in (13),
we select our IS distribution to be the mixture density

fZZZ(xxx) =
M

∑
i=1

pigi(xxx), (15)

in which the mixture component densities gi are obtained by exponentially tilting the original density
fXXX(·) by a factor bbbi (as in (14)) and the positive mixture weights satisfy ∑

m
i=1 pi = 1. The i-th component

in the mixture density, gi(·), has the dominating point aaai in the rare set as its mean, thereby placing a
prominent amount of probability mass in the target rare set. Besides this property, the exponentially tilted
densities gi are such that the respective likelihood ratios f (xxx)/gi(xxx) stay controlled (small) throughout the
rare sub-regions Ri = {xxx : θθθ

⊺AAAixxxi ≥ u}. 2

Merits and challenges in executing IS via dominating points. We shall see later in Section 3.4 that IS
via dominating points, as in Example 3 above, reduces the sample requirements to a great degree, if (i)
the distribution of XXX is light-tailed, (ii) one can get hold of the dominating points in (12) and the tilting
parameters (13) with relatively low effort, and (iii) there are not too many dominating points for any given
choice of θθθ ∈Θ. These conditions are usually not met, though, for the following reasons:

a) One may often need to solve complicated, potentially nonconvex optimization problems described
in terms of the log-moment generating function Λ(·), its convex conjugate Λ∗, and the excess loss
set {xxx : ℓ(xxx,θθθ) ≥ u} to identify the dominating points. This is made further intractable by the
requirements that (i) such complicated optimization problems (for identifying dominating points
and tilt parameters) have to be solved repeatedly for different choices of (u,θθθ); and (ii) a description
of log-moment generating function Λ(·) and its convex conjugate Λ∗(·) may not be available in
most problems and have to be estimated additionally via Monte Carlo.

b) Further, the number of dominating points may be quite large if the objective L(·) is complex (or)
if the ambient dimension of XXX is not small. In such cases where the number of dominating points
are large, identifying all of them and determining how to arrive at the weighting probabilities pi in
(15) may be non-trivial.

While the above issues have somewhat limited the applicability of IS to a relatively narrow collection
of instances, the last couple of years have witnessed efforts explicitly directed towards overcoming these
limitations (see, example, He et al. (2023), Deo and Murthy (2023), Arief et al. (2021) and references
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therein). Assuming access to the log-moment generating function Λ(·), attempts towards making IS based
on dominating points applicable for more complex objectives have been undertaken in Arief et al. (2021)
and Bai et al. (2023). In particular, if the number of samples to be drawn is delicately chosen to be neither
too small nor too large, Bai et al. (2023) observes that it may be sufficient to choose the mixture distribution
based on dominating points from the sub-collection argmin{Λ∗(aaai) : i = 1, . . . ,M}. The approach presented
in Section 3.3 below, based on Deo and Murthy (2023), is a radically different approach aiming to overcome
the difficulties (a) - (b) above by implicitly learning a good IS distribution from the samples of XXX .

3.3 Approach 2: IS via Self-Structuring Transformations

In this approach, the search for effective IS distributions is instead recast as follows: “Can we find a single
transformation TTT (·) whose respective push-forward distribution (i.e., the law of TTT (XXX)) readily serves as an
effective IS distribution when deployed across a large class of problems?” This re-framed pursuit, seeking
to induce an effective IS distribution implicitly via a map TTT (·), bypasses the need to explicitly tailor the
IS distribution to every decision choice and to every problem. We shall see that this problem agnostic
nature of the approach allows it to be simpler to use, making it closer in spirit to the SAA. The approach is
sufficiently simple to render itself to be readily applicable even for the two-stage programs in Example 2.

To explain the use of this IS approach towards solving (3), suppose that ρ is a positive constant
capturing the asymptotic growth rate of the loss ℓ(xxx,θθθ) as a function of xxx: that is, limn→∞ ℓ(nxxx,θθθ)/nρ > 0,
for some θθθ ∈ Θ and limn→∞ ℓ(nxxx,θθθ)/nρ < +∞, for all θθθ ∈ Θ. For the piece-wise linear and two-stage
losses in Examples 1 - 3, we have ρ = 1. For quadratic losses such as in the Delta-Gamma approximation
for portfolio returns in Glasserman et al. (2000), we have ρ = 2. Define the Rd-valued function

TTT h(xxx) := xxx[sh]
κκκ(xxx),

where for h > 0, we take sh = hmax{log log(1/β ),1}. The positive number sh can be viewed as a scalar
stretch factor which allows the transformation TTT h to stretch the different components of xxx = (x1, . . . ,xd)
differently via the vector-valued exponent κκκ(xxx) = (κ1(xxx), . . . ,κd(xxx)) defined as below:

κi(xxx) :=
log(1+ |xi|)

ρ log(1+∥xxx∥∞)
, i = 1, . . . ,d. (16)

The scalar stretch factor sh, when viewed as a function of tail level β , is larger when the estimation problem
is made rarer by letting β smaller. Exponentiation is done component-wise in the above expression for
TTT h(xxx) as in, TTT h(xxx) = (x1sκ1(xxx)

h , . . . ,xdsκd(xxx)
h ). The map TTT h : Rd → Rd can be shown to be invertible almost

everywhere on Rd (see Deo and Murthy (2023), Proposition 1)) and the transformed vector ZZZ = TTT h(XXX)
has a probability density if XXX has a density. Letting fXXX and fZZZ denote the respective densities of XXX and ZZZ,
the likelihood ratio resulting from this change-of measure is given by,

Lh = fXXX(ZZZ)/ fZZZ(ZZZ) = [ fXXX(ZZZ)/ fXXX(XXX)]Jh(XXX) (17)

where the Jacobian, Jh(·), of the transformation equals,

Jh(xxx) =

[
d

∏
i=1

J̃i(xxx)

]
×

s111⊺κκκ(xxx)
h

maxi=1,...,d J̃i(xxx)
, with J̃i(xxx) := 1+

ρ−1 log(sh)

log(1+∥xxx∥∞)

|xi|
1+ |xi|

, i = 1, . . . ,d.

The hyper-parameter h may be selected by setting h(β ) = k log(log(1/β )), and then tuning k using a line
search; we refer readers to Deo and Murthy (2021) for more details.

From the i.i.d. samples ZZZi = TTT h(XXX i), i = 1, . . . ,d, we have the following IS estimator for the objective
function in (3):

f̂is,n(u,θθθ) =

[
u+

1
nβ

n

∑
i=1

(ℓ(ZZZi,θθθ)−u)+Lh,i

]
, (18)
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where XXX1, . . . ,XXXn are i.i.d. copies of XXX and Lh,i = Jh(XXX i) fXXX(ZZZi)/ fXXX(XXX i) denotes the corresponding likelihood
in (17).
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Figure 1: An illustration of how the self-structuring transformation TTT h(·) helps induce IS distributions with
desirable concentration properties: The two panels in the left show the conditional excess loss samples of XXX
falling in the target tail set {xxx : ℓ(xxx,θθθ)≥ u} (in red) and in the significantly less rare tail set {xxx : ℓ(xxx,θθθ)≥ l},
for a level l≪ u (in blue) and for two different choices of distributions for XXX . The respective panels in the
right show how the same transformation TTT h, when applied to the blue samples in the top and bottom left
panels, manages to replicate the concentrations of the respective target excess loss samples in red.

A main reason to use the map TTT h(·) is that it is capable of making use of the similarities in the
distributions of the excess loss samples at different levels of rarity in order to induce a good IS distribution.
We devote the rest of this section towards developing an intuitive understanding of this property with the
aid of Figure 1 above. For values of l smaller than u, this approach builds on the premise that the excess
loss samples falling in the target rare set {xxx : ℓ(xxx,θθθ)≥ u} and those in the less rare set {xxx : ℓ(xxx,θθθ)≥ u}
exhibit a remarkable similarity in how they concentrate. The figures in the left panel in Figure 1 illustrate
this property by comparing the conditional samples of XXX in the target tail event {ℓ(XXX ,θθθ)≥ u} (red points)
against those in the less rare event {ℓ(XXX ,θθθ)≥ l} (blue points). In the upper panel in the left , XXX = (X1,X2)
is drawn from a bivariate Gaussian distribution, while in the lower panel XXX has i.i.d. Weibull marginals
satisfying P(X1 ≤ x) = 1− exp(−x0.6). For this illustration, the levels u and l are chosen, respectively, to
equal the (1−10−4)-th and (1−10−2)-th quantile of the loss; roughly speaking, the blue samples falling
in the the latter region get observed 100 times more frequently than the target excess loss samples in red.
The similarity observed at different tail levels in Figure 1 can be shown to hold quite generally, including
various parametric and semiparametric distributions and copula families commonly used in practice (see
Assumption 2 in Section 3.4 and Deo and Murthy (2023), Table 2 for a comprehensive collection of
distribution families satisfying this tail-similarity property).

The map TTT h(·) is such that it preserves the concentration behaviour encoded in the less rare samples
falling in sets of the form {xxx : ℓ(xxx,θθθ)≥ l}, for l≪ vβ (θθθ), so that the transformed samples TTT h(XXX) replicate
this concentration in the target rare set {xxx : ℓ(xxx,θθθ)≥ u}. The respective sub-figures in the right panel in
Figure 1 show the distribution induced when the map TTT h is applied to the less rare blue points in the left
panel. In both the top and bottom panels in the right, observe that excess loss samples of ZZZ = TTT h(XXX)
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falling in the target region (drawn in blue) concentrate in the same way as the target excess loss samples
(drawn in red) concentrate. However, the blue samples are observed 100 times more frequently than the
respective red samples, thereby providing a reduction in the overall sample requirement.

A key ingredient in allowing the map TTT h to possess this concentration-preserving property is the
exponent κκκ(·) defined in (16). Briefly, κκκ ensures that the components of XXX are only magnified/stretched to
the extent necessary, as informed by the samples in the less rare region {xxx : ℓ(xxx,θ)≥ l}. For instance, if
a particular component of XXX i falling in this region is small, then the component remains small even after
applying the map TTT h (and vice versa). Please refer to Deo and Murthy (2023), Section 5 for a definition and
properties of rate-function preserving transformations, a notion which lends precision to the idea discussed
only at an intuitive level here with the help of Figure 1.

3.4 Reduction in Sample Requirements in Estimating the CVaR Objective Using IS

As in Sections 3.1 - 3.3, we fix a decision choice θθθ ∈Θ and discuss the magnitude of sample reductions one
may obtain with the presented IS approaches in the estimation of CVaR Cβ (θθθ). Let nSAA(β ) and nis(β )
denote the number of samples required by SAA and IS, respectively, in order to guarantee that the objective
Cβ (θθθ) is estimated with a desired relative precision: In particular, the obtained estimate should be such
that the relative error does not exceed a pre-specified level ε ∈ (0,+∞), with (1−α)×100% confidence.
Theorem 3 For any δ > 0, we have the sample-requirement reduction guarantee that

nSAA(β )

nis(β )
≥ c

β 1−δ
, for all β < β0,

for suitable constants β0 ∈ (0,1) and c > 0, if either

(i) IS density (15) based on exponential tilting is used and Assumption (1) below is satisfied by the
loss ℓ(·) and the distribution of XXX ; (or)

(i) IS estimator (18) based on self-structuring transformations is used and Assumption (2) below is
satisfied by the loss ℓ(·) and the distribution of XXX .

Theorem 3 implies that the sample requirement due to IS grows only like o((1/β δ )), for any δ > 0, as
the tail-level β → 0. This is in contrast to the steep Õ(1/β ) sample requirement that is inevitable with the
use of SAA. Theorem 3 is a consequence of the variance reduction guarantees presented in (i) Arief et al.
(2021), Theorem 1 for exponential tilting and (ii) Deo and Murthy (2021), Theorem 1 for self-structuring
IS transformations. Assumptions 1 and 2 below, respectively, give the conditions under the above sample
reduction requirements can be guaranteed for IS using the two approaches.
Assumption 1. (Assumptions for Exponential Twisting).

(i) The effective domain of the log-moment generating function of XXX , D(Λ) = {rrr : Λ(rrr)< ∞}, has a
non-empty interior. Moreover, Λ(·) is strictly convex and continuously differentiable in the interior
of D(Λ).

(ii) The set {xxx : ℓ(xxx,θθθ)≥ u} is orthogonally monotone for any θθθ ∈Θ: that is, if xxx≤ xxx1 and ℓ(xxx,θθθ)≥ u
for θθθ ∈Θ, then it is necessary that ℓ(xxx1,θθθ)≥ u.

Note that Part (i) of Assumption 1 requires that XXX is light-tailed. For stating the assumptions for
self-structuring transformations, we introduce the following non-restrictive regularity notion: We call a
function f (·) to be multivariate regularly varying if f (nxxx)/ f (n111) is uniformly convergent (as n→ ∞) in
compact subsets of Rd .
Assumption 2. (Assumptions for Self-Structuring Transformations).

(i) Either the density fXXX(·) or log fXXX(·) is multivariate regularly varying.
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ii) The loss ℓ(·) satisfies the following for some ρ > 0 : ℓ(nxxx,θθθ)/nρ is convergent uniformly in compact
sets to a non-zero function.

Assumption 2 allows both light and heavy-tailed distributions for XXX . A wide variety of parametric
and semiparametric multivariate distributions, including normal, exponential family, elliptical, log-concave
distributions and Archimedian copula models satisfy Assumption 2(i) (see, Deo and Murthy (2023), Table
2 for a comprehensive yet nonexhaustive collection of distributions satisfying Assumption 2 or its more
general variants). In its presented form, Assumption 2(i) only allows for distributions whose marginals
have a similar tail strength, To see how the self-structuring transformation continues to work well even
if this condition is relaxed, we refer the reader to Deo and Murthy (2023). Part (ii) of Assumption 2
imposes a mild, non-parametric restriction on the how the loss function ℓ(·) grows. It is satisfied easily
in a number of losses which are of interest in stochastic optimization, including piecewise-linear losses,
quadratic losses, and losses which occur in two-stage programs, such as in Example 2. While the asymptotic
sample requirement reduction in Theorem 3 holds for any fixed choice of h > 0 in the transformation TTT h,
an ideal choice of the hyperparameter h is made numerically as explained in Section 4 below.

4 RETROSPECTIVE APPROXIMATION AS A SOLUTION PARADIGM

We examined in the previous section examples for how one may arrive at effective IS distributions for any
fixed decision choice θθθ ∈ Θ. How to integrate the several IS distribution prescriptions we have, one for
each decision choice, into a method for solving the optimization formulation (3)? The solution paradigm of
retrospective approximation (RA) serves as a natural vehicle to utilize the change of measure prescriptions
effectively towards solving the CVaR minimization in (3).

Retrospective approximation (Chen and Schmeiser (2001), Pasupathy (2010)) has been developed as
a computationally attractive alternative to SAA in solving general stochastic optimization and root finding
problems. For a fixed error tolerance, recall that SAA involves solving one large problem formulated
with all the samples allowed by the computational budget. The premise behind RA is to reduce the
overall computational effort relative to SAA by instead solving a sequence of SAA sub-problems: each
sub-problem in the sequence is initialized with the solution of the previous sub-problem and is solved with
a larger number of samples, and upto a smaller error tolerance, than its predecessors. This eases the overall
computational burden as follows: The initial sub-problems are computationally light due to smaller sample
sizes and larger error tolerances; the later sub-problems are computationally efficient as they are initialized
with the solution from the previous stage, and refining them locally with the availability of more samples
is less demanding than conducting an overall search.

4.1 Retrospective Approximation for Minimizing Tail Risks

Interestingly, this general RA paradigm becomes an ideal vehicle for executing importance sampling, as
every new sub-problem offers an opportunity to obtain samples from an IS distribution which is most suited
for the regions in which the search for a solution is being presently conducted.

With this guiding philosophy, the RA procedure outlined in Algorithm 1 below provides a template to
suitably incorporate IS distribution prescriptions we have from Section 3 within a solution paradigm. In
the general template presented in Algorithm 1, this scheme assumes that we have chosen a suitable family
{gα : α ∈A } of IS probability densities, and a method for arriving at a good IS density choice gα for any
given selection of (u,θθθ) in solving the right hand side of (3). To capture this method’s use succinctly in
the algorithm, we represent it as an oracle mapping bbb : R×Θ→A satisfying the following assumption.
Assumption 3. The IS oracle bbb : R×Θ→ A is such that for every decision (u,θθθ), the resulting IS
probability density gα , with α set to α = bbb(u,θθθ), is the IS distribution of our choice for the estimation of
E(ℓ(XXX ,θθθ)−u)+.

Describing a solution paradigm conveniently via an IS oracle, as in the case of Algorithm 1 above,
follows from the work of He et al. (2023). Considering the case of self-structuring importance samplers
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Algorithm 1: Retrospective Approximation based CVaR Optimization
Input: Initial iterate (u0,θθθ 0), an increasing sequence (nk : k ≥ 0) of sample-sizes with n0 = 0, a

decreasing sequence of error tolerances {εk : k ≥ 1}, an initial IS parameter α0, IS oracle bbb(·).
For k ≥ 1, do

1. Obtain importance samples: Draw i.i.d. samples ZZZnk−1+1, . . . ,ZZZnk from the distribution Pαk−1 .
2. Solve the IS based optimization: With the likelihood ratios set to Li = fXXX(ZZZi)/gαk−1(ZZZi) for
i = nk−1 +1, . . . ,nk, solve the following problem upto a tolerance of εk:

ĉis,nk := inf
u,θθθ

[
u+

1
nkβ

nk

∑
i=1

(
ℓ(ZZZi,θθθ)−u

)+
Li,

]
= inf

u,θθθ
f̂is,nk(u,θθθ) (19)

with an initial solution (uk−1,θθθ k−1). Return (uk,θθθ k) as the solution obtained by solving (19).
3. Update IS distribution choice: Set αk = bbb(uk,θθθ k). Set k = k+1.
Final Output: Return the solution (uk,θθθ k)

explained in Section 3.3, Deo et al. (2022) provides the above RA procedure for integrating IS with
optimization. The above RA procedure can alternatively be interpreted as performing lazy-updates for IS
distributions in the adaptive SAA scheme introduced by He et al. (2023).
Example 4 (An IS oracle bbb for use with exponential tilting). In the case of IS based on dominating points
and exponential tilting considered in Example 3, the following serve as the oracle mapping bbb(u,θθθ) : For
any given (u,θθθ), consider the tilt parameters (bbbi : i = 1, . . . ,M) obtained by solving (12) and (15), together
with the mixture weights (pi : i = 1, . . . ,M). With these collections defining the parameters used in IS
density in (15), we use (bbbi : i = 1, . . . ,M) and (pi : i = 1, . . . ,M) as the oracle mapping bbb(u,θθθ)
Example 5 (An IS oracle b(·) for use with self-structuring IS in Section 3.3). Recall that for the case of
self-structuring IS transformations introduced in Section 3.3, a wide range of stretching hyperparameters h
have been shown to offer good variance reduction asymptotically. If one wishes to update to a specific choice
of h in Step 3 of Algorithm 1 above, they may do so via a simple cross-validation type one-dimensional
search demonstrated in Algorithm 2 below. The iterate (u,θθθ) input to Algorithm 2 is an approximation
of the solution of the stochastic optimisation problem (2). Recall that the standard error in stochastic
optimisation depends on the variance of the objective evaluated at the optimal solution. Algorithm 2 seeks
to approximate this using samples to arrive at a suitable value of parameter bbb(u,θθθ).

Algorithm 2: An IS oracle bbb for use with Self-Structuring IS transformations
Input: iterate (u,θθθ) , i.i.d. samples XXX1, . . . ,XXXm from the distribution of XXX , initial seed h0.
1. The oracle objective, for any choice of stretch hyperparameter h, is evaluated to be the second

moment defined below:

M̂2(h ; u,θθθ) =
1
m

m

∑
i=1

[
(ℓ(XXX i;θθθ)−u)+

]2
Lh,i,

where Lh,i denotes the likelihood ratio (17).
2 Update the cross validation parameter: Return a stretch parameter minimizing the oracle

objective above as the output of the IS oracle:

bbb(u,θθθ) ∈ argmin
h

M̂2(h ; u,θθθ)
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4.2 Guidance on Selecting Sample Size and Tolerance Parameter for RA

Assumption 4 below imposes a mild condition on the sample-size nk and error tolerance εk one may need
to use for the k-th sub-problem in Algorithm 1.
Assumption 4. Suppose that the sequence {(εk,nk) : k ≥ 1} satisfies the following requirements:

1. If the optimization procedure used to solve (19) exhibits linear convergence, then (nk,εk : k ≥ 1)
is such that liminfk→∞ εk−1

√
nk > 0. If this procedure exhibits polynomial convergence, then

(nk,εk : k ≥ 1) is such that liminfk→∞ log1/
√

nk−1(logεk)
−1 > 0.

2. limsupk→∞(∑
k
j=1 n j)

2/ε2
k < ∞ and limsupk→∞ n−1

k ∑
k
j=1 n j < ∞.

Assumption 4 imposes conditions so that the errors due to finite sample size and the errors due to solver
error tolerance are balanced out, so that the cumulative work performed is kept minimal. For instance,
condition 1 requires that the optimization error tolerance εk decays does not decay to 0 too fast. If this is
not satisfied, then the error in solution due to imperfect optimization will be orders of magnitude smaller
than the sampling error, and therefore lead to a wastage of computational effort. Likewise, achieving low
variance with a large sample size while allowing a larger error tolerance in the solver is also computationally
inefficient. Conditions 2 imposes a lower bound on rates at which (nk,εk) converge to their limits, so
that the solutions output by successive epochs do not get “stuck”. For instance, if εk converges to 0 too
slowly, then the tolerance condition may be too easily satisfied, and therefore lead to no improvement in
solution. Conversely if nk goes to ∞ too slowly, the difference in nk−1 and nk is so small that the iterate
does not move. In either case, the work done in the kth iteration of the RA procedure is wasted and leads
to a computational suboptimality. The specifications in Assumption 4 are such that these two errors are
balanced. A natural choice sample size is nk = ⌈cnk−1⌉ for linearly converging optimization procedures,
and nk = ⌈nc

k−1⌉ for polynominally converging procedures; an optimisation procedure is linearly converging
if the sequence of iterates it produces, call them xxx∗1, . . . satisfy limsupk→∞ ∥xxx∗k−xxx∗∥/(∥xxx∗k−1−xxx∗∥) ∈ (0,1)
and is said to be polynomially converging, if for some p > 1, limsupk→∞ ∥xxx∗k−xxx∗∥/(∥xxx∗k−1−xxx∗∥p)∈ (0,1),
where xxx∗ is the solution of the optimisation problem. Meanwhile, for both these cases, εk = K/

√
nk is

a good choice for the error tolerance. We refer interested readers to Pasupathy (2010), Section 5.3 for a
detailed investigation.

4.3 Reduction in Sample Requirements Due to IS

Recall the IS oracle bbb(·) mapping selections illustrated in Examples 4 - 5. For these IS oracles, we next
show that the reduction in sample requirement exhibited in Theorem 3 for a fixed decision carries forward
to solving the risk minimisation problem (3). As before, let nSAA(β ) and nis(β ) denote the number of
samples required to optimise CVaR such that the resulting optimal values lie within ε-relative precision of
the true optimal value cβ in (3) with (1−α)×100% confidence.
Theorem 4 Suppose that Assumptions 3 - 4 are satisfied. Then for any δ > 0, we have

nSAA(β )

nis(β )
≥ c

β 1−δ
, for all β < β0,

for suitable constants β0 ∈ (0,1) and c > 0, if either (i) Assumption 1 holds and the oracle mapping for
Algorithm 1 be as in Example 4; or (ii) Assumption 2 holds and the parameter h for the self-structuring
IS transformation TTT h(·) be selected as in Algorithm 2.

Similar to Theorem 3, Theorem 4 implies that the sample requirement to solve the more challenging
CVaR optimization problem using IS also grows only like o(1/β δ ), for any δ > 0, as the tail-level β → 0.
In particular, there is no efficiency lost in embedding the IS change of distributions using the RA solution
paradigm. To get a numerical sense of the savings in sample requirement, consider the portfolio optimization
task in Example 1. For β = 1/100, Deo et al. (2022) demonstrates, for instance, that while SAA takes
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about 8000 samples to achieve a 1% relative error, self-structuring IS require only about 550 samples (about
15 times less). Deo et al. (2022) carries an additional analysis on the savings in the work complexity (or
the total computational effort) due to the RA procedure in Algorithm 2 relative to SAA.

5 STOCHASTIC APPROXIMATION AS A SOLUTION PARADIGM

As an alternative to RA, one may also consider iterative stochastic approximation methods as a solution
paradigm for solving (3). Under mild technical conditions, (3) reduces to the stochastic root finding problem

∇ f (u,θθθ) = 000 or equivalently E[GGG(XXX ;u,θθθ)] = 000 where GGG(xxx;u,θθθ) =
∂F(xxx;u,θθθ)

∂ (u,θθθ)
. (20)

A typical approach to solving (20), without any change of distribution, is to use the following iterative
scheme (see, for e.g.., Asmussen and Glynn (2007)): Given a sample XXXn, update the iterate recursively via

(un,θθθ n)← (un−1,θθθ n−1)− γnGGG(XXXn;un−1,θθθ n−1) for n = 1,2, . . .

The gradients GGG(xxx;u,θθθ) = ( ∂F
∂u ,

∂F
∂θθθ

)(xxx ; u,θθθ) can be readily computed for the objective (3) as in,

∂

∂u
F(xxx ; u,θθθ) = 1−β

−1111(θθθ⊺xxx≥ u)
∂

∂θθθ
F(xxx ; u,θθθ) = β

−1 ∂ℓ

∂θθθ
(xxx;θθθ)111(θθθ⊺xxx≥ u).

Following the approach devised in He et al. (2023), one may readily embed the IS change of distributions
into the update step as shown in Algorithm 3 below. One may also obtain the sample-requirement
reduction guarantees similar to that obtained for the retrospective approximation in Theorem 4, thanks to
the convergence analysis executed in He et al. (2023).

Algorithm 3: CVaR Optimization using oracle-based adaptive IS

Input: Density fXXX(·), initial iterate (u0,θθθ 0), initial IS parameter choice α0, IS oracle bbb, step-size
parameters c > 0, γ ∈ (1/2,1)

Initialise n = 1. While stopping criterion not met do
1. Generate an independent sample ZZZn from the IS density gαn(·).
2. Set γn = cn−γ and update root estimate

(un,θθθ n)← (un−1,θθθ n−1)− γnGGG(ZZZn;un−1,θθθ n−1)
fXXX(ZZZn)

gαn(ZZZn)

3. Update IS parameter αn+1 = bbb(un,θθθ n). Set n = n+1.

Output: Return the averaged iterate (ūn, θ̄θθ n) = n−1
∑

n
i=1(un,θθθ n) as an estimate of the optimal

solution to (3).
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