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ABSTRACT

Input uncertainty in the simulation output is caused by the estimation error in the input models of the simulator
due to finiteness of the data from which they are estimated. Ignoring input uncertainty when formulating
and solving a simulation optimization problem may lead to a solution with poor system performance. This
tutorial discusses how to incorporate input uncertainty in simulation optimization to avoid such risk. We
first categorize the problems into three groups based on their contexts: fixed batch data, streaming data,
and active input data collection problems. Input and simulation output response modeling frameworks that
can be adopted in all three categories are discussed. Then, we provide a high-level overview of simulation
optimization problem formulations and algorithmic approaches to tackle problems in each group. Some
thoughts on future research directions are shared.

1 INTRODUCTION

Simulation is a popular tool to support policy, design, or operational decision making thanks to its modeling
flexibility for representing a real-world system’s stochastic behavior in several application areas including
healthcare, manufacturing, finance, marketing and more. In stochastic simulation, what drives randomness
in its output is the collection of input random variables generated from distribution functions that mimic the
randomness in the real-world system. Often, the true, real-world distributions of such inputs are unknown
and must be estimated from a set of data or postulated based on some prior knowledge in the absence of
data. If the target system to simulate already exists, then it is sensible to estimate the input distributions
from data collected from the target system. The resulting estimators are referred to as input models.

Since the data is always finite, the input models are subject to estimation error. When simulation inputs
are generated from such erroneous input models, their estimation error is propagated to the simulation
output causing what is known as input uncertainty. Input uncertainty must be differentiated from the
inherent stochastic uncertainty in the simulation output. The latter is the randomness we like to model to
mimic the real-world stochasticity of the system, whereas the former is an error we wish to reduce.

When a performance measure of the system is estimated from simulation outputs, both stochastic and
input uncertainties introduce error in the estimate. The estimation error caused by the stochastic uncertainty
can be reduced by improving the simulation experiment design, e.g., increasing the number of replications
or length of the simulation run. However, input uncertainty in the performance measure estimate persists
even if infinite simulation effort is spent unless the input models are improved by collecting additional
data, which may or may not be feasible depending on the problem context; see Section 3.

In simulation optimization, the objective function/constraints are defined as statistics (e.g., expectations)
of simulation outputs. In general, these do not have analytical expressions, and must be estimated by running
simulations at a feasible solution. A classical simulation optimization algorithm controls the level of error
in these estimates caused by stochastic uncertainty so that the solution returned by the algorithm is indeed
optimal at a desired level of statistical guarantee. However, when the estimated objective function values
are subject to input uncertainty, there is risk of selecting a suboptimal solution if a classical algorithm is
applied without accounting for the effect of input uncertainty, known as the input model risk. This tutorial
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discusses how input model risk imposes challenges in the simulation optimization problems, and introduces
mathematical models and algorithmic methodologies to address such challenges.

Input model risk issues can be found in practical simulation optimization studies. One example is
the Vehicle Content Optimization program at General Motors (GM), a simulation-based decision support
system that helps optimize a vehicle content portfolio to improve GM’s market performance (Song et al.
2020). One of the key inputs in their simulator is a consumer’s utility parameter vector whose elements
represent the consumer’s preferences for attribute levels of various features of a vehicle relative to its price.
The distribution of utility parameters is estimated from GM’s conjoint analysis data obtained by surveying
a stratified sample of consumers. Song et al. (2020) report that the estimated utility parameters are the
most significant source of uncertainty in the predicted market performance (e.g., market share), which can
potentially negatively impact their content optimization decisions.

There are several tutorials introducing the input uncertainty quantification problem (Song et al. 2014;
Lam 2016; Corlu et al. 2020; Barton et al. 2022). These are excellent resources to learn the basic premise
of the input uncertainty problem in simulation as well as different simulation experiment design/estimation
methods to quantify input uncertainty. Their common goal is to make a correct inference on the true
performance measure of a single system design or policy even if the true input distributions are unknown.
Estimating the true performance measure with high accuracy can be challenging, if there is large input
uncertainty and additional data collection is difficult. Therefore, the focus tends to be on determining the
minimum simulation effort such that the inference can be made as precisely as possible.

On the other hand, simulation optimization focuses on finding the best solution among the feasible
candidates, which naturally involves comparisons among solutions. This typically alleviates the precision
challenge in the quantification problem. Intuitively speaking, as long as the ordering among the solutions
are correct, the optimal solution can be selected correctly even if the performance measure estimate has
an error. We further expand on this point in Section 4.3. On the contrary, the goal of a simulation
optimization problem is not as straightforward to state as that of the quantification problem because the
problem formulation closely depends on the context—feasibility of additional data collection and frequency
at which the decision is required at the system—and the decision-maker’s attitude towards risk among
others. This tutorial discusses what problem contexts one should consider when tackling a simulation
optimization problem under input uncertainty. We then introduce modeling choices to represent input
uncertainty’s effect on the simulation output, simulation optimization problem formulation, and solution
method (algorithm), all of which depend on the problem contexts.

The rest of the tutorial is organized as follows. Section 2 provides a concrete example that highlights input
model risk in simulation optimization. In Section 3, we discuss the problem contexts one should consider
before formulating the simulation optimization problem. We introduce different modeling techniques to
represent the estimation error in the input models as well as how such error affects the simulation output
in Section 4. In Section 5, we introduce different problem formulations suitable for each problem context
discussed in Section 3, and corresponding solution methods. Some thoughts on future research are shared
in Section 6.

2 INPUT MODEL RISK IN SIMULATION OPTIMIZATION

Consider the following representation of a simulation output random variable:

Y (x;F) = E[Y (x;F)|F ]+ ε(x;F)≜ η(x;F)+ ε(x;F), (1)

where F is the input model adopted to run the simulator. We allow F to be a random quantity in this
tutorial as F is estimated from input data. Additionally, x represents the decision variable (solution) of
the simulation optimization problem. Depending on the purpose, x may be an operational policy or a
design for the target system. The run-to-run variation (i.e., simulation error) of Y (x;F) is represented by
ε(x;F), which has mean 0 conditional on F and we further assume its conditional variance, V(Y (x;F)|F),

1339



He and Song

(a) Top view; each area of (θ1,θ2) is colored to show
the conditional-mean-profit-maximizing k.

(b) Conditional mean profits given (θ1,θ2) for k = 5
and 11.

Figure 1: Conditional means of an hourly profit for a steady-state M/M/1/k queue for different values of k
within the ranges of arrival rate θ1 ∈ [1,1.5] and mean service time θ2 ∈ [1,1.5].

is nonzero and finite for all F . Moreover, η(x;F) is the notation we adopt for the conditional mean of the
simulation output given F , i.e., η(x;F) = E[Y (x;F)|F ].

Throughout the tutorial, we denote the true input distribution function that generates the data in the
target system by Fc, where c stands for “correct.” We assume that we can collect independent and identically
distributed (i.i.d.) observations from Fc. Furthermore, Fc can be a collection of several independent input
distributions if there are more than one data sources in the system. Additional notation is specified in
Section 5.3 when we discuss active input data collection from multiple data sources.

The following is a generic simulation optimization problem parameterized by input model F :

x∗(F) = argmaxx∈X η(x;F), Opt(F)

where X represents the feasible solution set. For simplicity, let us assume there exists a unique optimal
solution, x∗(Fc). Note that x∗(Fc) as well as η(x;Fc) for each x ∈ X are deterministic. Indeed, several
algorithms have been proposed to solve Opt(Fc) assuming Fc is known, however, they provide little insights
for finding x∗(Fc) when Fc is unknown. The most common ad hoc approach is to compute estimator F̂ of
Fc, then solve Opt(F̂) hoping that x∗(F̂) = x∗(Fc). In general, this statement is not true; x∗(F̂) is random
because F̂ depends on the randomly observed data, whereas x∗(Fc) is deterministic.

Figure 1 illustrates the challenge more concretely with a system design example, where the objective
is to find the system capacity, k, that maximizes the expected profit of an M/M/1/k queueing system. Here,
the revenue is generated by charging each served customer a price of service, whereas there is cost per
waiting time of each entering customer. If the system is full (i.e., k customers in the system), then no more
arrivals can be accepted. In this example, F consists of the inter-arrival and service time distributions,
which are known to follow exponential distributions. Thus, F can be characterized by the parameter vector
θθθ consisting of the arrival rate, θ1, and the mean service time, θ2. Therefore, inferring Fc boils down to
estimating the true parameter vector, θθθ

c = (θ c
1 ,θ

c
2 ).

Suppose the decision variable x for this problem is the capacity of the system, k, where the feasible solution
set is k ∈{5,6,7,8,9,10,11}. The objective function value is then the mean profit, η(k;θθθ)≜E[Y (k;F(θθθ)|θθθ ],
which depends on both k and θθθ . Larger k increases the revenue by letting more customers into the system,
but it also incurs higher cost as the customers admitted to the queue would wait longer on average. The
trade-off between the revenue and cost depends on the arrival and the service rates, which potentially
makes different ks be optimal for different θθθ values. Such dependence is captured in Figure 1b, which
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plots η(5;θθθ) and η(11;θθθ) in the range of θθθ ∈ [1,1.5]2. Notice that for lower values of θ1 and θ2, k = 11
outperforms k = 5 as the service is fast enough so that the waiting cost does not dominate. In Figure 1a,
we plot η(k;θθθ) for all feasible values of k projected onto the domain of θθθ . Each colored area indicates the
set of θθθ values that makes the corresponding k be optimal. Suppose the unknown true parameter values are
(θ c

1 ,θ
c
2 ) = (1.1,1.4), which implies that the optimal capacity level for the system is k = 6. If θ̂θθ estimated

from data belongs in the area of k = 6, then solving Opt(F(θ̂θθ)) correctly leads us to the true optimum,
k = 6. On the other hand, when θ̂θθ does not belong in this area, then x∗(F(θ̂θθ)) ̸= 6.

3 PROBLEM CONTEXTS

As emphasized earlier, how to tackle Opt(Fc) when Fc is unknown depends on the problem contexts. The
key features to consider are 1) whether it is possible to collect additional input data from the system; and 2)
the timeline at which the decision is required for the target system. In this section, we categorize simulation
optimization problems under input uncertainty in three groups depending on their problem contexts.

The first group is what we referred to as fixed batch data problems. In these cases, a decision-maker is
given a set of input data, however, additional data collection is infeasible or too costly to consider. As such,
the focus is on making statistical inference on the identity of x∗(Fc) among the feasible solutions in X
given the batch data. Here, we use the term “inference” because it is often difficult to find x∗(Fc) with high
statistical confidence with a fixed batch input data (Song et al. 2015). Instead, the problem can be relaxed
to find a set of solutions that contain x∗(Fc), for instance. Or one may formulate a problem alternative to
Opt(Fc) to guard against the risk of not knowing Fc. In both cases, the corresponding solution methods
control stochastic error in simulation, not input uncertainty. Since additional input data is not collected,
the problem can be solved whenever the decision is required.

The second group falls under the category of streaming input data problems, where the system generates
additional data and the decision-maker can passively collect them. Here, by passively we mean that the
input data generating process cannot be actively controlled. The data may be streamed in continuously or
in batches at discrete time points. In either case, for the convenience of analysis, one may discretize the
time into periods and assume that a batch of data is collected at the beginning of each period.

There are two possible decision time lines in this context. First, the system may require a single solution
(e.g., system design) to be implemented and the decision-maker needs to determine when to stop collecting
the streaming data and return a solution. In this case, it is sensible to have a fixed precision requirement
that measures how closely the returned solution approximates x∗(Fc). Second, the system may require a
solution at every period (e.g., operational policy). Then, a feasible solution needs to be returned at the end
of each period. In both cases, the stochastic error can be controlled, not input uncertainty.

In the second case, it is important to mention that the decision can possibly alter the input data generating
process. For instance, if a seller adjust the price of their product at the end of a period, then the sales in the
next period may decrease. However, in this tutorial we focus on the case that the decision is decoupled from
the input-generating process. For instance, the standby location of an ambulance in between its operation
does not affect the distribution of time and location of the emergency incidents.

The third group, active input data collection problems, include the scenarios where the decision-maker
can actively choose the input data sources to collect more data from and how much at a cost. Here, the cost
may be associated with the time or price of obtaining a new data point (e.g., collecting a survey response,
time to process raw data). Therefore, unlike the first two groups, the solution methods for the third group
control both stochastic error and input uncertainty. Since the simulation also costs time and computing
resources, one can consider a trade-off between the input data collection and simulation replication so that
the resulting solution can be found efficiently.

In Section 5, we discuss simulation optimization problem formulations for each of the three categories
defined here and provide pointers to corresponding algorithms to solve them.
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4 MODELING

In this section, we present a brief overview on modeling techniques to characterize input uncertainty in
simulation optimization. In Section 4.1, we introduce different input models and how their estimation
errors can be quantified. Section 4.2 discusses how η(x,F) can be modeled as a function of both x and F
(Section 4.2) to improve efficiency in inferring the objective function values at solutions. In Section 4.3,
we further discuss improving the statistical efficiency of comparison between two solutions using a model
introduced in Section 4.2.

4.1 Input Modeling

To set up, let Z = {Z1, . . . ,Zm} denote the input data set of size m, where Zi
i.i.d.∼ Fc represents each

observation within the sample. For simplicity, we assume Zi is a scalar random variable unless otherwise
mentioned, however, all subsequent discussions can be extended to include vector-valued Zi. To infer Fc

from Z , there are two competing philosophies of statistical modeling methods: frequentist and Bayesian.

4.1.1 Frequentist Approach

Frequentists begin with the assumption that there exists a fixed (but unknown) Fc. We call it parametric input
modeling when Fc is assumed to have to a known parametric distribution function such as exponential,
Gamma, normal, etc. Then, estimating Fc boils down to estimating its parameter vector θθθ

c. That is,
Fc(·) = F(·|θθθ c). Let Θ ⊂ Rd denote the feasible parameter space for the distribution family of Fc. Then,
the estimator of θθθ

c, θ̂θθ ∈ Θ, can be computed from Z using various methods, such as M- or Z-estimators,
method-of-moment estimators, and more.

Because θ̂θθ is computed from a finite batch of data, it is random. The sampling distribution of θ̂θθ

characterizes how θ̂θθ would be distributed if we are allowed to sample another size-m data set under the
assumption that the distribution function imposed for Fc is correct. Unfortunately, it is difficult to derive
such a sampling distribution in general when m is finite. This motivates us to turn to the asymptotic
sampling distribution of θ̂θθ , which stipulates how θ̂θθ behaves in distribution when m increases to infinity.

Under certain regularity conditions, these estimators are consistent for θθθ
c and have statistical convergence

rates associated with the sample size m. For example, when θ̂θθ is the maximum likelihood estimator (MLE)
of θθθ

c, under some conditions, θ̂θθ satisfies the following asymptotic normality (Van der Vaart 1998, Section
5.5): √

m(θ̂θθ −θθθ
c)

D→ N (0,Σ(θθθ c)), (2)

where, D→ denotes convergence in distribution, 0 is a zero vector, Σ(·) ≜ I−1(·), and I(θθθ c) is the Fisher
information matrix of F(·|θθθ) at θ c. Although, I(θθθ c) is unknown, one can plug in I(θ̂θθ) to approximate (2).

In reality, the distribution family of Fc is likely unknown. A popular heuristic to tackle this issue is
to fit several different distribution functions and run hypothesis tests to find a statistically valid model.
However, the resulting model is not consistent to Fc unless Fc truly belongs in the chosen distribution
family. Even if m increases to infinity, the approximation error of F(·|θ̂θθ) cannot be made arbitrarily small.

Instead, one can opt for nonparametric input modeling by approximating Fc with an empirical cumulative
distribution function (ecdf) constructed from Z , F̂(z) = 1

m ∑
m
i=1 1{Zi ≤ z}, where 1{·} is the indicator

function. The Glivenko-Cantelli theorem shows that F̂ is uniformly strongly consistent to Fc (Van der
Vaart 1998, Section 19), i.e., F̂ becomes arbitrarily close to Fc over the entire support as m increases, a
strong basis for one to adopt F̂ as an estimator for Fc as it does not require the distribution function of Fc

to be known.
Much like θ̂θθ , one can define the sampling distribution of F̂ from that Z is a size-m i.i.d. sample

from Fc. This again is difficult to characterize for finite m and thus, an asymptotic approximation is often
adopted. A popular approximation method is known as bootstrapping. The main idea of bootstrap is to
regard F̂ as Fc and construct a bootstrap sample Z ⋆ = {Z⋆

1 , . . . ,Z
⋆
m}, where Z⋆

i ∼ F̂ . The ecdf constructed
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from Z ⋆, F̂⋆, is a bootstrap estimator of F̂ . Bootstrap theory relies on that as m increases F̂
D
≈ Fc, and

thus F̂⋆ D
≈ F̂ , where

D
≈ means that the two distributions are approximately equal (loosely speaking). Since

F̂ is known, one can generate multiple sets of Z ⋆ and corresponding F̂⋆, and approximate the sampling
distribution of F̂ with that of F̂⋆.

4.1.2 Bayesian Approach

Alternative to the frequentist standpoint, the (parametric) Bayesian regards the unknown parameter as
random vector θθθ rather than fixed θθθ

c. Before considering the data, they impose prior distribution π(θθθ)
on θθθ to represent its uncertainty. The prior is then updated to the posterior distribution function, p(θθθ |Z ),
reflecting Z via Bayes’ rule:

p(θθθ |Z ) =
L(Z |θθθ)π(θθθ)∫

θθθ∈Θ
L(Z |θθθ)π(θθθ)dθθθ

, (3)

where the likelihood function of θθθ is defined as L(Z |θθθ) = ∏
m
i=1 f (Zi|θθθ) and f (Zi|θθθ) the probability

distribution function of F(·|θθθ) evaluated at each Zi. In words, p(θθθ |Z ) is the posterior belief about θθθ

after reflecting the data, Z . Contrary to frequentist methods where the sampling distributions of the input
models need to be approximated in general, the Bayesian posterior gives the exact probability distribution
of the parameter θθθ given the evidence of Z and prior belief π .

There are nonparametric Bayesian methods that remove the assumptions that π and f belong to known
distribution families, and allow them to be infinite-dimensional models (e.g. an infinite-capacity mixture
model; see Gershman and Blei (2012) for instance). However, we have found these models yet to be
utilized in the input uncertainty literature.

In practice, there are a few factors beyond statistical philosophies that determine the input modeling
approach. The parametric frequentist methods offer the advantage of simplicity in implementation and
computational ease, especially when the input data size is big. The parametric Bayesian methods may reflect
the prior knowledge about θθθ as it can be reflected in the prior, π . However, unless there is conjugacy between
π and L, the posterior distribution in (3) may not be analytically computed. In these cases, one can still obtain
an approximately i.i.d. sample from the posterior via the Markov chain Monte Carlo (MCMC) method,
which tends to be computationally demanding (Asmussen and Glynn 2007). Nonparametric approaches
are free of the bias introduced by the parametric family assumption, however, analyzing input uncertainty’s
effect on the simulation output means can be more mathematically and computationally challenging. Lastly,
Bayesian approaches are well-suited for the active input data collection problems as the posterior update is
not affected by whether the additional input data collection decision is based on the current data set (Kim
and Song 2022), whereas, in the frequentist case, the analysis may become more complex once the i.i.d.
assumption about the input data is violated.

4.2 Simulation Response Modeling

In the design and analysis of computer experiment literature, the simulation conditional mean function,
η(x;F), is often referred to as the “response” function (Santner et al. 2003). We adopt this terminology.

In simulation optimization, response modeling is exploited to make inference on the solution’s response
more efficiently by imposing some assumption—statistical or functional—about the relationship between
η(x;F) and x so that η(x;F) can be learned by the simulation outputs collected from all solutions, not
only x. In the papers incorporating input uncertainty, it is useful to model the response as a function of
both x and F since the dependence on the solution’s performance on the input model, F, is an important
factor to consider. Below, we introduce some popular models in the literature.

For all models discussed in this section and thereafter, we assume that all solutions share the same
input model; see Song et al. (2015) for a discussion on a more general case. In the M/M/1/k example
discussed in Section 2, all system capacity levels share the same inter-arrival and service time distributions.
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Suppose the decision-maker adopts a parametric model so that Fc(·) = F(·|θθθ c). Then, the following
Taylor series approximation can be adopted to represent η(x;θθθ) for each x under mild conditions:

η(x;θθθ)≈η(x;θθθ
c)+∇θθθ η(x;θθθ

c)⊤(θθθ −θθθ
c) for θθθ ∈ Θ. (4)

Note that ∇θθθ denotes the partial derivative operator with respect to θθθ . Namely, (4) decomposes η(x;θθθ)
into the true mean of solution, η(x;θθθ

c), and the linear effect of θθθ ̸= θθθ
c on η . When θθθ

c is estimated by
its MLE θ̂θθ , Model (4) can be combined with (2) to characterize the sampling distribution of η(x; θ̂θθ):

√
m(η(x; θ̂θθ)−η(x;θθθ

c))
D→ N (0,∇θθθ η(x;θθθ

c)⊤Σ(θθθ c)∇θθθ η(x;θθθ
c)) (5)

as m increases to infinity. Indeed, (5) is extremely handy as it completely characterizes the effect of input
uncertainty on the simulation output provided that (4) is assumed to hold. The gradient, ∇θθθ η(x;θθθ

c), is
unknown, but can be estimated via regression (Song and Nelson 2019).

Clearly, Model (4) has its limitations. First, it leaves out higher-order effects of θθθ . However, the fidelity
of the model improves when m increases as θ̂θθ tends to θθθ

c and ultimately (4) fits well in the neighborhood
of θθθ

c given that η(x;θθθ
c) is smooth at θθθ

c. Second, (4) is defined for each x, which is perfectly reasonable
when each x is categorical (e.g., different queueing priority rules). However, when X can be embedded in
a metric space such as the Euclidean space, it is sensible to consider a model that takes both (x,θθθ)∈X ×Θ

as inputs to achieve a better prediction of the response.
One way to achieve such a model is to assume η(x,θθθ) is a realization of a stochastic process that

maps (x,θθθ) ∈ X ×Θ to η(x;θθθ) ∈ R. Additionally, we assume X ∈ Rp for simplicity in the following
discussion. A popular choice of the model is Gaussian process (GP) regression that imposes the following
prior to η before simulating any (x,θθθ):

η(x;θθθ)∼ GP(µ(x;θθθ),K(x,θθθ ;x′,θθθ ′)), (6)

where µ is the mean function and K(x,θθθ ;x′,θθθ ′) is the covariance kernel, which determines the covariance
between η(x;θθθ) and η(x′;θθθ

′) for any (x,θθθ),(x′,θθθ ′)∈X ×Θ. Although more general models are possible,
the following form of product kernel is a popular choice for incorporating input uncertainty in the simulation
optimization literature (Ungredda et al. 2022): K(x,θθθ ;x′,θθθ ′) = KX (x,x′)KΘ(θθθ ,θθθ

′), where KX (x,x′) and
KΘ(θθθ ,θθθ

′) are the covariance kernels defined on X and Θ, respectively. Moreover, a kernel is said to be
stationary if it only depends on the difference between the two inputs. For instance, the following Gaussian
kernel is a popular stationary kernel:

KX (x,x′) = τ
2
X exp

(
−||x−x′||2/2λ

2) , (7)

where τX and λ are hyperparameters of the kernel. Observe that (7) always returns a positive covariance.
Loosely speaking, (7) models covariance between η(x;θθθ) and η(x′;θθθ) assuming that the function values
are more similar to each other (higher covariance) when x and x′ are closer. A similar choice can be made
for KΘ(θθθ ,θθθ

′) to model the similarity between η(x;θθθ) and η(x;θθθ
′).

After a set of (x,θθθ) are simulated, (6) can be updated to the posterior conditional on the simulation
history. By assuming the simulation error, ε(x;θθθ), to be normally distributed, the posterior of η(x,θθθ) still
remains to be a GP. Moreover, the vector of η at any set of (x,θθθ)s has a multivariate normal distribution
according to its posterior, which can be completely characterized by a mean vector and a variance-covariance
matrix. See Ungredda et al. (2022) for the mathematical details about the posterior update.

One of the advantages of adopting the GP model is that it is conducive to a sequential algorithm; one
can use the current posterior mean and variance at candidate (x,θθθ)s to decide which pair to simulate next.
Once a new pair is simulated the GP can be updated easily to the posterior.

The two models discussed above require parametric input models. Response surface modeling for
nonparametric input models has been explored less in the simulation optimization literature. Although (4)
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is written in the parametric version, the nonparametric functional Taylor series expansion can be adopted
to expand η(x; F̂) as a functional of F̂ ; see Section 17.3.2 of Barton et al. (2022). A nonparametric input
model can be incorporated in the GP model as well by adopting a kernel that measures the similarity
between two empirical distributions (Xie et al. 2021).

The two models reviewed above can be applied to accommodate a continuous parameter space. However,
sometimes Θ can be finite, or continuous Θ may be approximated by a finite set. For instance, if there
is no conjugacy to exploit when updating the posterior on the input model parameter, p(θθθ |Z ), then an
ecdf constructed from an MCMC sample can be adopted as an estimate for the posterior. In this case, the
support of the ecdf is a finite set of sampled θθθ . If Θ is a subset of a continuous parameter space within
which the discussed models can be defined, then the same models can be utilized to make predictions at
discrete θs.

4.3 Effect of Common Input Data on Comparison of Solutions

In the simulation optimization context, it is often of interest to compare the means of two candidate solutions
x and x′; e.g., for a maximization problem, we prefer the solution with the larger mean. In this section, we
discuss a modeling technique, the common-input-data (CID) effect, that improves the statistical efficiency
of the comparison between two solutions when they share the common input model.

First discussed in Song and Nelson (2019), the CID effect models how η(x;F) and η(x′;F) are affected
differently by the common estimated input model, F . Suppose the decision-maker has adopted a parametric
input model. Taking the linear model as an example, consider the difference,

η(x;θθθ)−η(x′;θθθ)≈η(x;θθθ
c)−η(x′;θθθ

c)+
{

∇θθθ η(x;θθθ)−∇θθθ η(x′;θθθ)
}⊤

(θθθ −θθθ
c).

The true difference, η(x;θθθ
c)−η(x;θθθ

c), is what we want to make inference on to correctly compare x
and x′. The additional term, {∇θθθ η(x;θθθ)−∇θθθ η(x′;θθθ)}⊤ (θθθ −θθθ

c), characterizes the difference in the CID
effects at x and x′. If θθθ = θ̂θθ admits (2), then the difference in the CID effects can be shown to have the
following normal distribution as the input data sample size increases:

√
m(η(x;θθθ)−η(x;θθθ))

D→ N
(

0,
{

∇θθθ η(x;θθθ)−∇θθθ η(x′;θθθ)
}⊤

Σ(θθθ c)
{

∇θθθ η(x;θθθ)−∇θθθ η(x′;θθθ)
})

(8)

Notice that the variance of (8) depends on the difference in the gradients of η(·;θθθ) with respect to θθθ .
Consider the simplest case when the gradients at all solutions are equal. Then, the variance term vanishes
to 0 and the problem can be solved as if there is no input uncertainty.

In general, ∇θθθ η(x;θθθ) ̸= ∇θθθ η(x′;θθθ) for x ̸= x′ for non-trivial problems. Nevertheless, if the variance
of (8) is smaller, then the inference on the true mean difference, η(x;θθθ

c)−η(x′;θθθ
c), can be made more

precisely. If η(x;θθθ) is sufficiently smooth in x, then the gradient difference at the same θθθ tends to be small
in the neighborhood of a good solution, e.g., x∗(F(θθθ c)), making the local comparison easier. This links back
to the comment made in Section 1 such that the comparison of solutions may be made more precisely than
inferring a single solution’s true mean under input uncertainty. Several simulation optimization approaches
introduced in Section 5 exploit (8) to design algorithms more robust to input model risk.

5 PROBLEM FORMULATIONS AND SOLUTION METHODS

In this section, we discuss problem formulations and solution methods for each of the three problem contexts
discussed in Section 3. We first provide minimal background on classical simulation optimization, where
input uncertainty is not considered, to set up the discussion; F is adopted to denote a generic input model.
We refer the readers to Fu (2015) for a comprehensive overview.

A simulation optimization algorithm allocates simulation replications to a set of solutions to learn the
unknown responses until it either runs out of the simulation budget (fixed budget) or achieves a statistical
guarantee that the algorithm is designed to provide (fixed precision). Let the solution returned by an
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algorithm after solving Opt(F) be x̂(F). Because x̂(F) is dependent on the simulation sample paths
generated within the algorithm run, it is difficult to provide a deterministic guarantee for the optimality
of x̂(F). Instead, several statistical guarantees have been considered in the literature. For instance, the
suboptimality of x̂(F) can be bounded by some tolerable error ε > 0 with at least 1−α confidence:
P{η(x∗(F);F)−η(x̂(F);F) ≤ ε} ≥ 1−α, where α ∈ (0,1) and the probability is taken with respect to
the simulation sample path generated by the algorithm. Different algorithms provide different guarantees,
which is an important factor for the decision-maker to consider when selecting an algorithm.

When X is countable and |X | = k is a relatively small integer, the problem is often referred to as
ranking and selection (R&S). R&S can accommodate the case when the solutions are categorical, e.g.,
different priority policies for a queue. When discussing R&S, we replace x with index i of the solution
to write η(i;F) and i∗(F) instead of η(x;F) and x∗(F), respectively. Similarly, î(F) denotes the solution
returned by an R&S procedure. A popular statistical guarantee for an R&S algorithm is the probability of
correct selection, PCS ≜ P{î(F) = i∗(F)}.

The subsections are organized as follows: Section 5.1 discusses the fixed batch data problems while
Sections 5.2 and 5.3 respectively concern the streaming data and active data collection problems.

5.1 Fixed Batch Data

When the decision-maker is given a fixed batch of input data, input uncertainty of the problem cannot
be further reduced. As mentioned in Section 3, there are two streams of research that account for the
input uncertainty in this context: one aims to make inference on the identity of x∗(Fc), while the other
focuses on reformulating Opt(Fc) to hedge against the risk of not knowing Fc. Both approaches only
control simulation error, not input uncertainty. In Section 5.1.1, we introduce the inference approach and
Section 5.1.2 discusses the reformulation approach.

5.1.1 Inference Approach

Song et al. (2015) show that one may not find x∗(Fc) with the desired probability guarantee (e.g., 95%) in
general when the input data size is finite. Intuitively, when the best solution (x∗) and a close contender (x′)
have very similar mean performances under θθθ

c, then large input uncertainty makes it difficult to determine
the sign of η(x∗;Fc)−η(x′;Fc) with high probability. This can be easily seen from (8). Moreover, recall
that η(x;F) must be estimated by running simulations at (x,F), which makes it even harder to infer the
true mean difference when the simulation error in the estimator is convoluted with input uncertainty.

One way to handle this challenge is to modify the objective from finding x∗(Fc) to returning a set of
solutions that includes x∗(Fc) with high probability. For the latter, any target probability 1−α is achievable
by simply returning the entire feasible solution space, X . Of course, this is extremely naïve. The key is
to design a procedure that returns the smallest set of solutions that are statistically indistinguishable from
x∗(Fc) given the finite input data.

To achieve this in the R&S context, Song and Nelson (2019) adopt (8) to explicitly model the difference
in the CID effects. They extend the classical multiple comparisons with the best (MCB) algorithm to
incorporate both input uncertainty and simulation error. The goal of the classical MCB is to find k
simultaneous confidence intervals (CIs) [Li,Ui],1 ≤ i ≤ k, that satisfy

P{η(i;Fc)−maxℓ̸=i η(ℓ;Fc) ∈ [Li,Ui],1 ≤ i ≤ k} ≥ 1−α. (9)

In words, [Li,Ui] covers the difference between the ith solution’s mean performance and the best of the
rest’s. Consequently, the set of solutions that have positive MCB upper bounds, I = {1 ≤ i ≤ k : Ui > 0},
is guaranteed to contain the best solution with probability ≥ 1−α . Chang and Hsu (1992) show that
{Li,Ui}k

i=1 satisfying (9) can be obtained from {wiℓ, i ̸= ℓ} satisfying the following one-sided simultaneous
CIs for all 1 ≤ i ≤ k:

P{η(i;Fc)−η(ℓ;Fc)≥ wiℓ,∀ℓ ̸= i} ≥ 1−α. (10)
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Indeed, the same approach can be adopted to incorporate input uncertainty if one can find {wiℓ, i ̸= ℓ} that
reflect input uncertainty to provide 1−α coverage probability.

Suppose a frequentist parametric input model is adopted to estimate θθθ
c with θ̂θθ . Running r replications

of all k solutions adopting F(θ̂θθ) as the common input model, one can obtain the sample average, Ȳ (i; θ̂θθ) =

∑
r
j=1Yj(i; θ̂θθ)/r, for all 1 ≤ i ≤ k, where Yj(i; θ̂θθ) is the simulation output from the jth replication at (i, θ̂θθ).

Consider a pair of solutions i ̸= ℓ. Then, their sample mean difference can be decomposed as

Ȳ (i; θ̂θθ)− Ȳ (ℓ; θ̂θθ) =η(i; θ̂θθ)−η(ℓ; θ̂θθ)+ ε̄(i; θ̂θθ)− ε̄(ℓ; θ̂θθ)

≈η(i;θθθ
c)−η(ℓ;θθθ

c)+{∇θθθ η(i;θθθ
c)−∇θθθ η(ℓ;θθθ

c)}⊤ (θθθ −θθθ
c)+ ε̄(i; θ̂θθ)− ε̄(ℓ; θ̂θθ), (11)

where ε̄(i; θ̂θθ) ≜ Ȳ (i; θ̂θθ)−η(i; θ̂θθ) and the approximation in the second line is from (4). Therefore, by
deriving the joint distribution of {∇θθθ η(i;θθθ

c)−∇θθθ η(ℓ;θθθ
c)}⊤ (θ̂θθ −θθθ

c)+ ε̄(i; θ̂θθ)− ε̄(ℓ; θ̂θθ) for all ℓ ̸= i, one
can find {wiℓ, ℓ ̸= i} satisfying (10).

Finding the joint distribution of ε̄(i; θ̂θθ)− ε̄(ℓ; θ̂θθ) at all i ̸= ℓhas long been studied in the classical simulation
optimization literature. However, the challenge in (11) is that, the simulation error difference is convoluted
with the difference of the CID effects. Song and Nelson (2019) address this by decomposing the CI bounds as
wiℓ =w1

iℓ+w2
iℓ for ℓ ̸= i, where {w1

iℓ, ℓ ̸= i} and {w2
iℓ, ℓ ̸= i} satisfyP{{∇θθθ η(i;θθθ

c)−∇θθθ η(ℓ;θθθ
c)}⊤(θθθ −θθθ

c)≥
w1

iℓ,∀ℓ ̸= i} ≥ 1−α1 and P{ε̄(i; θ̂θθ)− ε̄(ℓ; θ̂θθ)≥ w2
iℓ,∀ℓ ̸= i} ≥ 1−α2, respectively. Namely, the former and

the latter respectively provide the simultaneous CI widths for the CID effects and the simulation errors.
Choosing 1−α = (1−α1)(1−α2), (10) can be guaranteed asymptotically as m increases, which justifies
adopting wiℓ = w1

iℓ+w2
iℓ to construct the MCB CIs and find I . Here, note that the asymptotic framework

of m → ∞ does not imply that the input data size increases; it is to provide an assurance that for sufficiently
large m, the asymptotic scheme can provide an effective approximation. If the returned I contains a single
solution, then the solution has a high probability of being i∗(θθθ c) even in the presence of input uncertainty.

Corlu and Biller (2013) take a similar modeling approach as above to return a set of solutions containing
the true best. Instead of the MCB, they extend the classical subset selection algorithm.

A clear downside of the inference approach is its inability to guarantee |I |= 1. If input uncertainty
is large, then I is likely to contain many solutions, which may not be too useful for the decision-maker.
Nevertheless, a large |I | suggests that the input uncertainty is significant for the problem at hand and the
decision-maker should try to collect more data if it is feasible at all to reduce the input uncertainty, or
choose a solution robust against input uncertainty as discussed in the following section.

5.1.2 Reformulation Approach

The second approach reformulates Opt(Fc) to account for that Fc is estimated based on finite data. Problem
formulations fall under this category reflect uncertainty about Fc in the objective function so that the
solution to the modified problems can be found by algorithms designed to control the simulation error.

Assuming a Bayesian parametric input model, Wu et al. (2018) connect several reformulations proposed
in the literature, which we explore below. Consider the following problem formulation:

x∗ρ = argmaxx∈X ρθθθ [η(x;θθθ)], (12)

where ρθθθ denotes a statistical measure taken with respect to the distribution of θθθ . The decision-maker’s
willingness to take the risk of not knowing θθθ

c when choosing a solution to implement in the system can
be coded into ρθθθ . For example, a risk-neutral decision-maker can take ρθθθ as the expectation,

ρθθθ [η(x;θθθ)] = Eθθθ [η(x;θθθ)] =
∫

η(x;θθθ)p(θθθ |Z )dθθθ , (13)

where p(θθθ |Z ) is the posterior distribution of θθθ defined in (3). Adopting (13) as the objective function
of (12) implies that η(x;θθθ

c) is replaced with the average of η(x;θθθ) over all possible realization of θθθ .
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However, this may expose the decision-maker to input model risk if there is larger uncertainty about θθθ and
each solution’s performance varies significantly at different values of θθθ ; recall the example in Figure 1.

To make the problem robust to input uncertainty, one can adopt a risk measure for ρθθθ . For example,
given α ∈ (0,1), one can choose α-quantile of η(x;θ), ρθθθ [η(x;θθθ)] = qα(η(x;θθθ)). For small α , the
quantile provides a robust assessment (pessimistic) on the performance of x with respect to uncertainty
about θθθ . A criticism for the quantile function, however, is that it cannot detect when η(x;θθθ) below the α-
quantile is extremely poor. Alternatively, the conditional expectation, ρθθθ [η(x;θθθ)] = Eθθθ [η(x;θθθ)|η(x;θθθ)≤
qα(η(x;θθθ))], can be adopted to compare the average performance on the lower extreme tail. If we take
α = 0 for either choice, ρθθθ [η(x;θθθ)] is equivalent to minθθθ∈Θ η(x;θθθ) and (12) reduces to

x∗ρ = argmaxx∈X minθθθ∈Θ η(x;θθθ), (14)

which can be linked to the distributionally robust optimization (DRO) framework (Delage and Ye 2010).
In DRO, Θ is referred to as the ambiguity set as it contains the values that the uncertain θθθ

c can take.
Clearly, (14) is more conservative as it evaluates each x based on its worst-case performance among θθθ ∈ Θ.

As mentioned in the beginning of this section, a benefit of the reformulation approach is that once the
choice of ρθθθ is made, only simulation error needs to be controlled to solve (12) as input uncertainty is
already reflected in the objective function by ρθθθ . For instance, focusing on the R&S context with finite
ambiguity set F , Gao et al. (2017) propose an R&S algorithm to solve (14). They redefine PCS to evaluate
if the solution returned from the algorithm, îρ , matches i∗ρ ≜ argmax1≤i≤k minF∈F η(i;F). Equivalently,
PCS = P

{
minF∈F η(îρ ;F)≥ max1≤i≤k minF∈F η(i;F)

}
. They formulate a budget allocation problem to

determine fixed sampling ratios for all (i,F) pairs to maximize the convergence rate of the PCS when the
simulation budget is infinite, and solve it with some approximations. The resulting sampling ratios are then
utilized to design a sequential sampling algorithm when the simulation budget is finite.

There are several frameworks in the literature that adopt the risk-neutral measure for reformulation.
Corlu and Biller (2015) propose a subset selection algorithm to return a set containing i∗ρ when ρθθθ is the
expectation. With the same choice for ρθθθ , Pearce and Branke (2017) and Wang et al. (2020) extend the
Bayesian optimization framework to incorporate input uncertainty. Meanwhile, Fan et al. (2020) consider
the same problem setting as Gao et al. (2017) and provide a fixed precision R&S algorithm to find i∗ρ .

5.2 Streaming Data

In the streaming data environment, input uncertainty can be reduced when additional data is gathered over
time. In this section, we focus on the case where the additional data are made available periodically and
a system decision can be updated at the end of each period reflecting the changes due to the additional
data. As the data streaming process is beyond the decision-maker’s control, the algorithms designed to
solve these problems can only control the simulation error. Thus, the focus is on incorporating simulation
and optimization methods to account for progressively decreasing input uncertainty and allocating the
simulation budget efficiently to update each period’s decision.

To make the discussion concrete, consider a time horizon with discrete time points that define periods,
p = 1,2, . . . ,P. In period p, additional input data of size ∆mp are gathered at the beginning of the period,
and the updated decision xp is required by the end of the period. Suppose the decision-maker adopts a
parametric frequentist input model and estimates θθθ

c by its MLE. As new data comes in at each period,
it is sensible to update the MLE so that the simulator can be run with the most up-to-date input model.
Namely, at the beginning of the pth period, using all cumulative data, mp ≜ ∑

p
i=1 ∆mi, the MLE, θ̂θθ p, can be

updated. Since the simulator’s input model is parameterized with the updated θ̂θθ p, then the corresponding
simulator optimization problem is also updated to Opt(θ̂θθ p). One can expect its optimal solution x∗(θ̂θθ p) to
be closer to the true optimum, x∗(θθθ c) as p increases because θ̂θθ p approaches θθθ

c. Of course, no simulation
optimization algorithm can solve Opt(θ̂θθ p) to optimality in finite time due to the simulation error. Instead,
it returns estimator xp of x∗(θθθ p) after spending a finite simulation budget. Thus, if xp is a poor estimator
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of x∗(θθθ p), we may not be able to achieve convergence of xp to x∗(θθθ c). To design a good algorithm, a
criterion is needed to determine how good xp returned at the end of each period p is.

Song and Shanbhag (2019) suggest that since xp is adopted in the system whose stochasticity is
characterized by F(θθθ c), an appropriate metric is the cumulative expected suboptimality of the sequence,
{xi}p

i=1, for Opt(θθθ c): ∑
p
i=1E[η(x∗(θθθ c);θθθ

c)−η(xi;θθθ
c)]. The ith summand evaluates how much loss in the

objective function value there is if xi is adopted in the system instead of the true optimum, x∗(θθθ c), where
the expectation is with respect to the simulation sample path generated by the algorithm as well as the
sampling distribution of θ̂θθ p. Intuitively, the suboptimality may be caused by the mismatch between (i)
Opt(θ̂θθ p) and Opt(θθθ c); and (ii) the stochastic error in solving the former. Although (i) cannot be controlled
in the streaming data environment, (ii) can be reduced by controlling the algorithm that solves Opt(θ̂θθ p).

To control (ii), consider the following decomposition of the suboptimality at the pth period:

|η(xp;θθθ
c)−η(x∗(θθθ c);θθθ

c)| ≤|η(xp;θθθ
c)−η(xp; θ̂θθ p)|︸ ︷︷ ︸

(a)

+ |η(xp; θ̂θθ p)−η(x∗(θ̂θθ p); θ̂θθ p)|︸ ︷︷ ︸
(b)

+ |η(x∗(θ̂θθ p); θ̂θθ p)−η(x∗(θθθ c); θ̂θθ p)|︸ ︷︷ ︸
(c)

+ |η(x∗(θθθ c); θ̂θθ p)−η(x∗(θθθ c);θθθ
c)|︸ ︷︷ ︸

(d)

.

Here, (a) represents Solution xp’s performance gap for Opt(θθθ c) and Opt(θ̂θθ p); and (d) shows the same
difference for x∗(θθθ c). Term (b) is the suboptimality of xp for Opt(θ̂θθ p); and (c) represents the performance
gap between x∗(θθθ c) and x∗(θ̂θθ p) for Opt(θ̂θθ p). Among these, only (b) is controllable by adopting a suitable
simulation optimization algorithm while the other three terms are caused by the estimation error in θ̂θθ p and
can only be diminished by collecting more input data. Nevertheless, the decomposition above provides a
useful insight on how to determine the precision at which Opt(θθθ p) should be solved. Namely, spending a
large simulation budget to close the suboptimality in (b) is wasteful if all other parts are dominant due to
large remaining input uncertainty at period p.

Focusing on continuous X , He et al. (2024) design an efficient algorithm to solve the streaming data
problem by deriving asymptotic upper bounds for parts (a)–(d) under some smoothness assumptions on η ,

E[η(xp;θθθ
c)−η(x∗(θθθ c);θθθ

c)]≤ γ1E[∥xp −x∗(θ̂θθ p)∥2]+ γ2E[∥θ̂θθ p −θθθ
c∥2], (15)

where γ1 and γ2 are constants associated with the smoothness conditions. The solution approach they adopt
is stochastic approximation (SA), which takes a editsstochastic gradient ascent step at each iteration, where
the gradient is estimated via simulations (Shapiro et al. 2021). Namely, the first term of the upper bound
in (15) is derived from (b). Indeed, E[∥xp −x∗(θ̂θθ p)∥2] can be controlled by choosing the numper of SA
iterations, np, taken in the pth period. On the other hand, the second term in (15) has the asymptotic
convergence rate of O(m−1

p ) from (2). This bound implies that choosing large np for earlier period p may
be unnecessary—even with np = ∞, the upper bound in (15) may be large if θ̂θθ p has large error. Conversely,
when θ̂θθ p is more precise, larger np is favored to obtain a tighter upper bound. Under some regularity
conditions, the first term can be shown to diminish in O(1/np) implying that matching np with mp attain
the best convergence rate of the expected suboptimality while minimizing the computational cost.

Liu et al. (2024) study a similar algorithm to solve a simulation optimization problem with continuous
X while adopting a Bayesian input model and (12) as the objective, where ρθθθ is the risk-neutral measure
(mean). The streaming data problems have also been considered in the R&S context. Wang and Zhou
(2022) propose an optimal computing budget allocation procedure, where simulation size is decided in
each period to maximize the convergence rate of the probability of false selection. Wu et al. (2024) design
two sequential eliminating algorithms with confidence bands on the solution accounting for the decreasing
input uncertainty.

1349



He and Song

5.3 Active Input Data Collection

If collecting additional data is feasible for the system in consideration, then the decision-maker can choose
to acquire additional input data at a cost should it help finding x∗(Fc). Here, the aim is to find x∗(θθθ c)
by actively collecting input data to improve the simulation model. In this case, both simulation error and
input uncertainty can be controlled.

To facilitate the discussion, we assume that there are L independent input sources in the system
and corresponding L input distributions. We explicitly define F as a collection of L input models,
F = {F1,F2, . . . ,FL}, where each Fℓ is estimated from mℓ i.i.d. observations from the ℓth true input
distribution, Fc

ℓ . Furthermore, we modify the definition of m as m = ∑
L
ℓ=1 mℓ. In the parametric case, for

each ℓ, Fc
ℓ = F(ϑ c

ℓ ) and Fℓ = F(ϑ̂ℓ), where ϑ c
ℓ and ϑ̂ℓ are the true and the estimated parameter vectors,

respectively. We still adopt θθθ = (ϑ1,ϑ2, . . . ,ϑL) to represent the parameter vector for all L input models.
Kim and Song (2022) consider this problem by adopting a Bayesian parametric input model in the

R&S context. Given the posterior, p(θθθ |Z ), Kim et al. (2021) define the following posterior probability
each Solution i being optimal as the posterior preference for Solution i:

Pi,m ≜
∫

θθθ∈Θ

1(i = i∗(θθθ)) p(θθθ |Z )dθθθ . (16)

From the posterior preferences of all solutions, the maximum a posteriori estimator (MAP) of x∗(θθθ c) can
be found as ĩm ≜ argmax1≤i≤k Pi,m. Kim et al. (2021) refer to ĩm as the most probable best (MPB). Although
suppressed from notation, Pi,m and im depend on Z .

The MPB has several features suitable for designing an active input data collection algorithm. First,
when all L input processes data are collected infinitely many times, the posterior preference of the MPB
converges to one. Since p(θθθ |Z ) concentrates the probability mass at θθθ

c, this implies that the MPB converges
to i∗(θθθ c) with probability one. More interestingly, the convergence rate of the posterior preference of the
MPB can be characterized as a function of fractional sample sizes βℓ ≜ mℓ/m for 1 ≤ ℓ ≤ L, if each βℓ

converges to a constant when m increases:

lim
m→∞

− 1
m

log(1−Pĩm,m) = infθθθ /∈Θi∗(θθθc) ∑
L
ℓ=1 βℓKL(ϑ c

ℓ ||ϑℓ) almost surely, (17)

where Θi∗(θθθ c) ≜ {θθθ |i∗(θθθ) = i∗(θθθ c)} and KL(ϑ c
ℓ ||ϑℓ) is the Kullback-Liebler (KL) divergence between

Fℓ(ϑ c
ℓ ) and Fℓ(ϑℓ), which measures how much the two distributions differ. By definition, θθθ

c ∈ Θi∗(θθθ c).
Thus, (17) characterizes the logarithmic convergence rate of the MPB’s preference probability to one.

To gain the insight, recall that 1−Pĩm,m is the probability assigned to the event of θθθ ending up outside
of Θi∗(θθθ c), which becomes a rare event as p(θθθ |Z ) concentrates at θθθ

c. By the large-deviation theory, the
convergence rate of the probability of a union of rare events is determined by the most likely event among
them (Hollander 2000). Loosely speaking, out of all θθθ /∈ Θi∗(θθθ c), the θθθ with the minimal weighted KL
divergence in (17) is the θθθ assigned with the largest probability mass in its neighborhood by p(θθθ |Z ) as
m increases (i.e., most likely θθθ ), if the input data from L sources are collected according to the sampling
ratios, {βℓ}L

ℓ=1.
Hence, by finding {βℓ}L

ℓ=1 that maximize the right-hand side of (17), the input data collection can
be optimized to achieve the fastest convergence rate of the MPB’s posterior preference. In general, this
maximization problem is challenging to solve when Θ is continuous. Moreover, one must know θθθ

c and
Θi∗(θθθ c) to be able to solve the problem. For the former, a natural plug-in estimator is the MAP of θθθ

c given
p(θθθ |Z ). The latter must be learned by estimating η(i;θθθ) at each (i,θθθ) via simulations. For the case when
Θ is finite, Kim and Song (2022) present a sequential sampling algorithm that incorporates both simulation
sampling and input data collection.

Wang and Zhou (2023) also considers a R&S problem, where additional data collection scheme is
developed based on asymptotic normality of the point estimator (cf. (2)) assuming a frequentist parametric
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input model. The Bayesian optimization algorithm proposed by Ungredda et al. (2022) is more flexible
than the previous two as it can incorporate continuous X and Θ.

6 REMAINING RESEARCH QUESTIONS

Although significant attention has been brought to input uncertainty quantification in the literature, simulation
optimization under input uncertainty is explored much less. In particular, there are relatively fewer algorithms
to solve streaming input data or active input data collection problems. Moreover, there is lack of frameworks
to accommodate dependent input data such as time series. All works reviewed in this tutorial assume i.i.d.
input data. Also, majority of them adopts parametric input models by assuming their distribution families
are known. Although it makes theoretical analyses more convenient, it is difficult to hold in practice.

Depending on the system, there may be feedback between the solution implemented by the decision-
maker and the input-generating process, which was not discussed in this tutorial. Incorporating such
dependence in the active data collection problem is an open question to the best of our knowledge. Also,
input uncertainty may not be the only source of model risk. Logical error in the simulation model can be
a significant source of model risk that cannot be reduced by methods discussed in this tutorial.

Lastly, we believe that there are significant opportunities to apply simulation optimization methods to
solve streaming data and active input data collection problems in various applications where input data are
continuously collected and updated via interconnected smart devices (e.g. the network of the internet of
things or the digital twin applications). Developing theories to design simulation optimization algorithms
that incorporate the domain-specific characteristics of the input data (e.g., consumer survey data in the GM
example in Section 1) would enhance the practical impact of this research stream.
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